
Practical Task-Oriented Parallelism for Gaussian

Elimination in Distributed Memory

Gene Cooperman

1

College of Computer Science

Northeastern University

Boston, MA 02115

gene@ccs.neu.edu

Abstract

This paper discusses a methodology for easily and e�ciently paralleliz-

ing sequential algorithms in linear algebra using cost-e�ective networks of

workstations, where the algorithm lends itself to parallelism. A particular

target architecture of interest is the academic student laboratory, which

typically contains many networked computers that lay idle at night. A

case is made for why a task-oriented approach lends itself to the twin

goals of programming ease and run-time e�ciency. The approach is then

described in the context of TOP-C (Task-Oriented Parallel C), an exam-

ple of a system to support task-oriented parallelism. In this system, the

programmer is relieved of lower level concerns such as latency, bandwidth,

and message passing protocols, so as to better concentrate on higher level

issues of task granularity and reduction of communication tra�c. Gaus-

sian elimination is chosen as the main example, since this algorithm is

both widely used and su�ciently interesting to require non-trivial forms

of parallelization for the sake of e�ciency.

1 Introduction

The arrival of cheap, networked workstations and personal computers has made

distributed parallelism an attractive opportunity for speeding up calculations.

In particular, academic environments typically include student laboratories with

such facilities often lying idle at night. Nevertheless, many of the available

software tools for parallelization are either large or have a signi�cant learning

curve or both. This article describes a particularly simple form of parallelism

that is easily adaptable to many tasks in linear algebra. We take Gaussian

elimination as our example in this article.

1

Partially supported by NSF Grant CCR-9509783.

1

While there has been a great deal of work on parallel Gaussian elimination

for more specialized machines (see [20] for a good, if somewhat older survey),

there has been relatively little work for general, distributed memory architec-

tures, such as a NOW (Network of Workstations). No doubt, this is due to the

relative ine�ciency of typical NOW's. (It should be noted that the work on

ScaLAPACK [6, 5] runs on top of both MPI and PVM and hence does apply to

NOW's, although it is also meant to target more specialized, high-performance

machines.) Nevertheless, the price of such a con�guration is zero if one already

has access for running overnight jobs remotely on laboratory machines. This

article proposes an easy methodology for parallelizing linear algebra routines,

taking Gaussian elimination as our main example. This will su�ciently illus-

trate the principles so that the reader can easily apply the same principles to

other tasks in linear algebra.

The parallel tool to be used here is TOP-C [9] (Task-Oriented Parallel C).

(Information on obtaining the distribution is provided at the end of this ar-

ticle.) Task oriented parallelism is a term that has gained usage in order to

contrast it to data oriented parallelism. Data oriented parallelism is a style of

parallelism in which opportunities for parallelism are identi�ed typically within

a loop construct in the code. The sequential code for iterating the loop is then

converted to parallel code in which iterations of the loop are assigned to distinct

processors. We discuss these ideas in light of a distributed architecture, where

communication among processors takes place through messages, since this cor-

responds best to a model that takes advantage of student laboratories for \free"

CPU cycles. It should be noted that data oriented parallelism is also frequently

implemented on shared memory computers (formally known as a SMP, or Sym-

metric MultiProcessor) and on vector processors. As we shall see, the same

code that runs in a distributed environment using a library from TOP-C can

run on a SMP with no change in code by swapping in a second TOP-C library

designed for that purpose. Further, TOP-C includes a third, sequential library

that makes the use of C debugging tools, such as dbx, particularly easy.

A good example of data parallelism might be code that implements an in-

ner product,

P

n

i=1

u

i

v

i

. If p processors are available, then up to dn=pe of the

products and the sum of those dn=pe products can all be executed on a single

processor. The dn=pe subtotals can then be combined to �nd the answer.

One can arrange the partial sums to be computed according to a binary tree

with p leaf nodes | each leaf node being identi�ed with a distinct processor.

The dn=pe subtotals can then executed in dlog

2

dn=pee steps, the depth of the

tree, in the obvious manner. (The binary tree is chosen to be as close to balanced

as possible.)

Data oriented parallelism has been attractive because it is relatively easy

for a compiler to recognize the opportunities for parallelism. With few or no

hints from the program writer, the compiler can still convert many of the loops

into parallel routines. This approach tends to result in a relatively �ne gran-

ularity of parallelism. On vector processors and SMP processors, this type of

2

parallelization can be very e�cient. On a distributed memory architecture, a

successful data parallelization must overcome the message latency. There are

predictions that the overall communication bandwidth for a message (including

amortized delays due to latency) will be less than the bandwidth to memory

in the future. However, it is still likely to be many years before such network

become economical for student laboratories.

Task oriented parallelism is a style of parallelism in which the program writer

speci�es opportunities for parallelism by executing multiple tasks or subroutines

on distinct processors. This type of parallelism requires more e�ort from the

program writer. However, it also allows the program writer to consider the

structure of his or her algorithm to obtain further opportunities for parallelism.

Further, this approach tends to yield a coarser granularity that makes it easier

to overcome the message latency of a distributed memory processor.

2 TOP-C

TOP-C [9] is a system that provides a C library for easily parallelizing code.

There are also related software packages written for LISP [8] and GAP [7]

(Groups, Algorithms, and Programming) that apply the same methodology.

TOP-C and its relatives have already been used successfully in several applica-

tions of discrete computational algebra [10, 11, 12, 13]. TOP-C functions both

in a distributed and in a shared memory architecture. TOP-C also includes

a shared memory library that adds the ability for processors to communicate

directly through a common memory location. The use of that additional capa-

bility is not discussed here, although code designed for TOP-C under distributed

memory will work without change on shared memory.

For a tutorial in programming TOP-C, it is recommended to examine [9] or

to obtain the distribution, itself. This article describes only enough of the model

to describe the task-oriented approach. There are many parallel tools that use a

task-oriented or object-oriented approach (a selection includes [2, 3, 4, 14, 16]),

and the ideas described here could be ported to many of those architectures,

too.

The TOP-C model takes place in a master-slave architecture. The processor

on which the jobs is begun is the master processor, and all other processors

are slave processors. TOP-C runs on top of MPI [17, 19] (Message Passing

Interface). A subset implementation of MPI is included with the TOP-C dis-

tribution. The programmer writes a single program, which is executed on all

processors. (This is often called SPMD, or Single Program Multiple Data.) As

with most implementations of MPI, this one use the UNIX utility rsh to spawn

processes on each slave processor, although other mechanisms for starting slave

processes are also possible.

The TOP-C model can best be understood through two concepts: the task

and the environment. Informally, the environment can be thought of as a glob-

3

ally shared memory. We shall later see that this is only approximately true, since

there is a question of when the environment is updated on each processor. The

task is a subroutine that takes as input a task input (sometimes also referred to

as the task), and returns a task result. It is up to the programmer to determine,

based on the algorithm, what is a suitable task and environment. The program-

mer will then write the routines get task(), do task(), get task result()

and update environment(). These routines will implicitly de�ne both the task

and the environment.

Graphically, one can describe the TOP-Cmodel through the following model.

MASTER SLAVE

�

�

�

�

get task()

�

�

�

�

do task(task)

�

�

�

�

get task result(result, task)

�

�

�

�

update environment(result, task)

P

P

P

P

P

P

P

P

Pq

task

�

�

�

�

�

�+

result

�

�

�

�

�3

(if action == REDO)

P

P

P

P

P

P

P

Pq

(if action == UPDATE)

Figure 1: (This diagram appeared in [9] and is copyright by IEEE.)

If one ignores the upward arrow of the diagram, it is clear how this can be

viewed as a form of trivial parallelism. Even as a tool for trivial parallelism,

TOP-C can ease the programming chore, as illustrated by the following program

for matrix multiplication. It should be understood that under TOP-C, the

program below will be run on all processes, and the master slave() routine

4

while (NOTASK <> (task = get_task())) do [on master]

redo:

result = do_task(task); [on slave]

action = get_task_result(result, task); [on master]

switch (action)

case NO_ACTION: /* do nothing */;

case UPDATE: update_environment(result, task); [on master & slave]

case REDO: goto redo;

case CONTINUATION: ;

will arrange to call the appropriate user-de�ned routines, according to whether

the process is the master process or the slave process.

#define DIM 100

int mat1[DIM][DIM], mat2[DIM][DIM], mat_prod[DIM][DIM];

void *get_task() {

static int row = -1; /* row remembered betw. calls */

row++;

if (row >= DIM) return NOTASK;

return MSG(&row, sizeof(row)); }

void *do_task(void *row_ptr) {

int i, j, row = *(int *)row_ptr;

int result[DIM];

for (i = 0; i < DIM; i++) {

result[i] = 0;

for (j = 0; j < DIM; j++)

result[i] += mat1[row][j] * mat2[j][i]; }

return MSG(result, DIM*sizeof(*result)); }

void *get_task_result(int *result, void *row_ptr) {

int i, row = *(int *)row_ptr;

for (i = 0; i < DIM; i++)

mat_prod[row][i] = result[i];

return NO_ACTION; }

int main() {

read_matrices(mat1, mat2); /* into all processors */

master_slave(get_task, do_task, get_task_result, NULL);

if (is_master()) print_matrix(mat_prod); }

In order to take advantage of non-trivial parallelism, one must bring into

play a global environment, shared across processors. The environment need

not be explicitly declared by the user. Instead, the user de�nes a routine,

update environment(), and any non-local data structures modi�ed by that

5

routine are, by de�nition, in the environment. The routine, update environment(),

is invoked on all processors whenever the user routine, get task result(), re-

turns the action, UPDATE. The environment is typically initialized identically

on all processors before the �rst call to master slave(). It is the user's re-

sponsibility to insure that the environment is never modi�ed by any routine

on any processor, unless that routine was called by update environment().

(More generally, a routine modifying the environment must be a descendant

of update environment() in the call graph.) A detailed example using the

environment is contained in section 3.3.

Thus, the basic model of TOP-C is simple, and yet, as we shall see, sur-

prisingly powerful. There are enhancements of TOP-C that are not discussed

here. The most important of these is a utility, up to date(), that can be called

within get task result() to check if the environment had changed between

the time when the task was originally generated and the time when the result

of the task was delivered. This makes possible a standard idiom by which users

can de�ne get task result().

int get_task_result(void *result, void *task)

{ if (result == NULL) return NO_ACTION;

if (! is_up_to_date()) return REDO;

else return UPDATE; }

Two other enhancements are the continuation, which allows an arbitrary

conversation between the master and slave before a result is returned by the

slave, and raw master slave(), which is useful for parallelizing sequential code

in which the task is generated inside several nested loops.

3 Gaussian elimination

We �rst consider a simple, sequential implementation of Gaussian elimination

that we wish to parallelize. Naturally, there are many sophisticated optimiza-

tions that could be applied both to the sequential and parallel versions. We

omit such considerations for simplicity of exposition.

In particular, we even ignore issues of partial pivoting and numerical sta-

bility. To avoid partial pivoting, we may assume that the matrix of interest

is column-wise diagonally dominant (ja

jj

j >

P

i 6=j

ja

ij

j), and note that Gaus-

sian elimination preserves such a property. Such matrices are common in PDE

solvers. Even so, the fact that slaves must operate in parallel may lead to e�ects

similar to partial pivoting. If the principles of parallelization are clear, then it

will also be clear to the reader how to add appropriate partial pivoting to the

model, afterwards.

int n; /* n = matrix dimension */

float *matrix; /* matrix cast to type: float matrix[n][n] */

6

int main()

{ int row;

for (row = 0; row < n; row++)

for (i = row + 1; i < n; i++)

reduce_row(matrix, i, row, row); /* row already reduced */

}

void reduce_row(float *matrix, int row_to_red, int row, int pivot)

{ int j;

float scalar = matrix[row_to_red*n+pivot] / matrix[row*n+pivot];

float *row1 = &(matrix[row_to_red*n]);

float *row2 = &(matrix[row*n]);

row1[pivot] = 0.0;

for (j = pivot+1; j < n; j++)

row1[j] = row1[j] - scalar * row2[j];

}

3.1 Natural formulation

We now consider an implementation of Gaussian elimination based on TOP-C.

Consider a n� n matrix. The idea for parallelization is developed in a natural

manner. One would like to consider a row operation (�v � a�u, for scalar a and

row vectors �u and �v) as the basic task. A master would then generate such

tasks for each slave, and the environment, or current status of the Gaussian

elimination would be known only to the master. However, this approach does

not provide su�ciently coarse granularity. A single row operation typically

takes very little time, and the computation time would be dominated by the

associated communication time.

3.2 Coarser granularity

So, we consider a formulation of Gaussian elimination with larger tasks (coarser

granularity). We imagine that the matrix is divided into b bands, consisting of

n=b adjacent, horizontal rows. (For simplicity of exposition, we assume that

b divides n, although this is clearly not a requirement of the method.) Given

p processors, we further assume that n=b � 1 and b � p. (The term, band, is

used here only in its english meaning, and should not be confused with its use

in banded matrices.)

This approach provides a coarser granularity. But it also requires larger

messages. If one wishes to do row operations involving two bands, one must

send 2bn numbers. While the coarser granularity may solve the problem of

message latency, the communication bandwidth becomes a problem.

7

3.3 Lowering communication bandwidth: the environment

In order to reduce communication bandwidth, one must also make use of the

TOP-C environment. The obvious candidate for the environment is the current

state of the n � n matrix, and we do make that choice. We take a greedy ap-

proach, and so we de�ne the basic task to be to reduce the band of row vectors

to the maximum extent possible in the current environment. The greedy ap-

proach has clear bene�ts if one assumes that the communication time (including

any latency) of a message dominates the time for the computation.

We take the approach of blocked Gaussian elimination. We view the matrix

as a b� b matrix of n=b� n=b blocks. We de�ne the i-th band to be reduced if

blocks (i; 1) through (i; i� 1) are all zero and block (i; i) is in upper triangular

form. Our goal is for all b bands to be reduced. The master process will �nd

the next band that is not reduced and send it as the task input to a slave a be

reduced. The slave process will carry out as much reduction as possible, and

then return the result. If the band was further reduced by the slave, then the

master process will call update environment() and re-distribute that band to

all processors. In order to assist in the bookkeeping, we include a global integer,

first unred band, and a vector, first unred col, in the environment.

We will de�ne the task input to be an integer that indicates the band that

we will attempt to reduce for this task. We defer the de�nition of get task()

and state only that it will return an integer indicating a particular band. We

assume global variables, n and b for the dimension and number of bands. For

simplicity of exposition, we assume that b divides n. The routine do task()

can be de�ned as follows:

/* Compile with mas-slave.h and linking with TOP-C library */

int n, b; /* n = matrix dimension; b = number of bands */

float *matrix; /* matrix cast to type: float matrix[n][n] */

int band_size = (n+b-1)/b; /* For b | n, this is just n/b */

/* Columns 0 up to first_unred_col[b] of band b are 0 */

int first_unred_col[b];

int first_unred_band = 0; /* Done when first_unred_band = b */

int band_is_busy[b];

struct band {

int band_no;

int first_unred_band;

int first_unred_col;

float band[band_size*n];

};

void *do_task(void *band_ptr) /* 0 <= band_no <= b - 1 */

8

{ int band_no = *(int *)band_ptr;

int row_start = band_no * band_size;

int row_end = (band_no + 1) * band_size;

int row, i;

int pivot = max(first_unred_col[max(first_unred_band-1,0)], 0);

static struct band result;

/* This will always be true: get_task() satisfied this condition */

if (first_unred_col[band_no] <= first_unred_col[max(first_unred_band-1,0)]) {

for (row = max(first_unred_col[band_no], 0);

row < first_unred_band * band_size; row++)

for (i = row_start; i < row_end; i++)

reduce_row(matrix, i, row, row);

/* This is non-zero block at or below first unreduced,

on-diagonal block; Upper triangularize it in place */

for (row = row_start; row < row_end; row++, pivot++)

for (i = row + 1; i < row_end; i++)

reduce_row(matrix, i, row, pivot);

if (band_no == first_unred_band) first_unred_band++;

first_unred_col[band_no] = first_unred_band * band_size; }

result.band_no = band_no;

result.first_unred_band = first_unred_band;

result.first_unred_col = first_unred_col[band_no];

for (i = 0; i < n * band_size; i++) /* copy band */

result.band[i] = matrix[band_no*band_size*n + i];

return MSG(&result, sizeof(result));

}

int get_task_result(void *res_ptr, void *band_ptr)

{ return UPDATE;

}

void update_environment(void *res_ptr, void *band_ptr)

{ struct band *result_ptr = res_ptr;

float *mat_ptr = result_ptr->band;

int i, band_no = *(int *)band_ptr;

if (result_ptr->first_unred_band > first_unred_band)

first_unred_band = result_ptr->first_unred_band;

first_unred_col[result_ptr->band_no]

= result_ptr->first_unred_col;

for (i = band_no*band_size*n; i < (band_no+1)*band_size*n; i++)

matrix[i] = *(mat_ptr++);

band_is_busy[band_no] = 0; /* (Only master needs this) */

}

9

int main()

{ int i;

n = 100; /* set dimension */

b = 20; /* number of bands */

band_size = (n+b-1)/b; /* For b | n, this is just n/b */

for (i = 0; i < b; i++) {

/* Columns 0 until first_unred_col[i] of band i are 0 cols and

next block is upper triangularized; -1 means not triangularized */

first_unred_col[i] = -1;

band_is_busy[i] = 0; }

matrix = malloc(n*n*sizeof(*matrix));

master_slave(get_task, do_task, get_task_result,

update_environment);

}

3.4 Load balancing

Load balancing is a typical problem in any algorithm for Gaussian elimination.

In our software architecture, load balancing reduces to the control strategy used

by the get task() on the master process to decide which band to send out for

reduction to the next available slave.

In the area of control strategy, there is room for experimentation. However,

we suggest a control strategy which we have found successful. In TOP-C, it is

easy to inspect the detailed load balancing, since setting a single
ag causes a

trace to be displayed for all messages, both to and from the master process.

We are assuming that the communication time dominates the computation

time for each task. We still see an overall speedup, since there can be an overlap

of communication by some processors with communication by other processors.

(In section 3.5, techniques are discussed for further improving this overlap of

communication and computation.) Hence, the bottleneck for Gaussian elimi-

nation tends to be the number of bands that have already been reduced and

broadcast to the slave processors. Accordingly, we choose a control strategy in

which get task() sends out to the next available slave the �rst band that is

not yet reduced and that is not currently being worked on by another slave.

Hence, we have the following pseudo-code for get task().

/* Copyright (c) 1997, Gene Cooperman; free use is granted */

void *get_task() {

static int i;

if (first_unred_band >= b) return NOTASK;

for (i = first_unred_band; i < b ; i++)

if (first_unred_col[i] < first_unred_col[first_unred_band - 1]

&& band_is_busy[i] == 0) {

10

band_is_busy[i] = 1;

return MSG(&i, sizeof(i)); } }

Note that this strategy provides work for additional slaves even while the

�rst slave is working on the �rst band. If one recalls that first_unred_col[i]

is initially -1 for all i and if one reviews the logic of do_task(), one sees that

initially each slave will be upper triangularizing the �rst block in a distinct

band. Such advance \pre-triangularization" of a block, B, in the lower left

triangle saves half the work that will be required later when one will have

upper triangularized the on-diagonal block above B and will need to \zero out"

block B.

3.5 Fine tuning

The success of this methodology depends on having tasks of su�cient granular-

ity. There are several considerations by which one can overcome problems of

too �ne a granularity of parallelism. First of all, one may choose to have fewer

bands, each of larger band size. However, one is restricted by the requirement

that the number of bands should be signi�cantly larger than the number of

processors, so that processors are not idle for most of the computation.

A second technique is to set up more than one slave process on each slave

processor. Thus, one is better able to overlap computation and communication,

since while a slave process is communicating with the master, a second slave

process on the same processor may be computing at the same time.

This type of overlapping of computation and communication is sometimes

known as latency hiding, since the processors remain occupied with useful com-

putation during the communication phase. However, one should be warned that

because most operating systems were designed primarily with sequential com-

putation in mind, the operating systems may allow less than the full amount of

such overlapped computation and communication. Nevertheless, there should

be a tendency for this situation to improve with future operating system up-

grades.

4 Comments on e�ciency

See [15, Chapter 6] for an excellent introduction to practical issues of e�cient,

parallel matrix computations. For one of the most e�cient parallel implemen-

tations of linear algebra, see the ScaLAPACK [6, 5, 21] distribution, which is

part of the LAPACK [1] series. The currently most e�cient implementations of

Gaussian elimination do not send entire bands within a single message. As is

well known, the decomposition of the matrix into blocks and the order in which

the block matrix multiplications are performed allows one to lower the com-

munication overhead and improve load balancing. Such considerations are also

11

important in improving the cache performance, even in sequential implementa-

tions [18]. The purpose of this article is to describe a general methodology of

parallelization, which can apply to novel problems in linear algebra, while yield-

ing good (although less than optimal) performance with relatively little e�ort

on the part of the programmer.

One of the advantages of the current methodology, as compared to more

standard methods, is that dynamic load balancing is accomplished implicity.

There are no barriers and no critical sections of code. Typically, no processors

are starved for work, except for a short time at the end. Hence, if one processor

is slow (perhaps due to external e�ects of a time-sharing environment), then the

other processors do not usually wait for the slow processor to �nish.

Further, all data transfers take place a band at a time. In architectures for

which there is a signi�cant start-up time to transfer data between processors,

this can be an important consideration. However, a disadvantage of the current

method is that the total amount of data transferred may be larger than other

methods. This frequently happens, for example, near the beginning of the com-

putation, when processors begin to \pre-triangularize" a band (see section 3.4)

while the �rst slave process is still upper triangularizing the �rst band of the ma-

trix. These additional bands must still be sent out and returned to the master,

only to be sent out again after the �rst band has been upper triangularized.

It is possible to alleviate this additional communication overhead by having

a slave check with the master before returning a band whose diagonal block has

not been upper triangularized. If the master has received updates from other

slaves in the interim, then it may be possible for the current slave to receive

the update and to then make continued progress on its current band before

returning from the task. TOP-C supports a CONTINUE action that can be used

to easily implement such an optimization. If necessary, a modi�ed algorithm

that worked directly with blocks instead of bands would further alleviate this

situation of starvation.

As the ratio of the matrix dimension to the number of processors grows, the

total time dominates the time for the idle phase. As a practical matter Gregorio

Quintana has observed in a personal communication that his own experiments

with QR factorization routines using MPI seem to yield good results for band

sizes between 10 and 50.

Others are welcome to experiment with this approach to linear algebra by

ftp'ing the distribution from ftp://ftp.ccs.neu.edu/pub/people/gene/top-c/.

The distribution includes its own MPI subset, so as to be self-contained. The

Gaussian elimination example is included. Libraries are provided so that the

same application code can be run as a single, sequential program, as a dis-

tributed memory program using MPI, or as a shared memory program using

threads.

12

5 Acknowledgements

The author thanks Gregorio Quintana and Xiaobai Sun for their comments on

this paper. The author also thanks Gregorio Quintana, Reiner Staszewski and

Xiaobai Sun for valuable discussions.

References

[1] E.C. Anderson and J. Dongarra, \Performance of LAPACK: A Portable

Library of Numerical Linear Algebra Routines", Proceedings of the

IEEE 81(8), 1993, pp. 1094{.

[2] A. Baratloo, P. Dasgupta, and Z. Kedem. \Calypso: A Novel Software

System for Fault-Tolerant Parallel Processing on Distributed Platforms",

Proc. 4th IEEE Intl. Symp. on High Performance Distributed Computing,

1995.

[3] K.M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng, \In-

tegrated Support for Task and Data Parallelism", Intl. J. Supercomputer

Applications 8(2), 1994, pp. 80-98.

[4] K.M. Chandy and C. Kesselman, \Compositional C++: Compositional

Programming", Proceedings of the Fourth Workshop on Parallel Program-

ming and Compilers, Springer Verlag.

[5] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov,

A. Petitet, K. Stanley, D. Walker and R.C. Whaley, ScaLA-

PACK: A Portable Linear Algebra Library for Distributed Memory

Computers-Design Issues and Performance, LAPACK Working Note 95,

http://www.netlib.org/lapack/lawns/lawn95.ps

[6] J. Choi, J.J. Dongarra and R.C. Whaley, \Design and Implementation of

the ScaLAPACK LU, QR, and Cholesky Factorization Routines", Scienti�c

programming 5(3), Fall, 1996, pp. 173{.

[7] G. Cooperman, \GAP/MPI: Facilitating Parallelism", Proc. of DIMACS

Workshop on Groups and Computation II 28, DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science, L. Finkelstein and

W.M. Kantor (eds.), AMS, Providence, RI, 1997, pp. 69{84.

[8] G. Cooperman, \STAR/MPI: Binding a Parallel Library to Interactive

Symbolic Algebra Systems", Proc. of International Symposium on Sym-

bolic and Algebraic Computation (ISSAC '95), ACM Press, pp. 126{132.

[9] G. Cooperman, \TOP-C: A Task-Oriented Parallel C Interface", 5

th

Inter-

national Symposium on High Performance Distributed Computing (HPDC-

5), 1996, IEEE Press, pp. 141{150.

13

[10] G. Cooperman, L.Finkelstein, M.Tselman and B.York, Constructing Per-

mutation Representations for Matrix Groups, J. Symb. Comp., to appear.

[11] G. Cooperman and G. Havas, \Practical parallel coset enumeration", Proc.

Workshop on High Performance Computing and Gigabit Local Area Net-

works, Lecture Notes in Control and Information Sciences, Springer-Verlag,

to appear.

[12] G. Cooperman, G. Hiss, K. Lux, and J�urgen M�uller, \The Brauer tree of

the principal 19-block of the sporadic simple Thompson group", J. of Ex-

perimental Mathematics, to appear.

[13] G. Cooperman and M. Tselman, \New Sequential and Parallel Algorithms

for Generating High Dimension Hecke Algebras using the Condensation

Technique", Proc. of International Symposium on Symbolic and Algebraic

Computation (ISSAC '96), ACM Press, pp. 155{160.

[14] I. Foster and K.M. Chandy, \Fortran M: A Language for Modular Parallel

Programming", J. Parallel and Dist. Comput. 1994 (to appear)

[15] G.H. Golub and C.F. Van Loan,Matrix Computations, third edition, Johns

Hopkins University Press, 1996.

[16] A.S. Grimshaw, A. Ferrari and E. West, \Mentat", in: Parallel Program-

ming Using C++, G.V. Wilson and P. Lu (eds.), MIT Press, 1996, pp. 383{

427.

[17] W. Gropp, E. Lusk and A. Skjellum, Using MPI, MIT Press, 1994.

[18] M.S. Lam, E.E. Rothberg, and M.E. Wolf, \The cache performance and

optimizations of blocked algorithms", Fourth International Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems

(April 8{11, 1991), SIGPLAN Notices 26:4 (April, 1991), pp. 63{74.

[19] Message Passing Interface Forum (author), \MPI: A Message-Passing Inter-

face Standard", International Journal of Supercomputing Applications 8,

Number 3/4, 1994.

[20] Y. Robert, The impact of vector and parallel architectures on the gaus-

sian elimination algorithm, Manchester University Press and John Wiley

& Sons, 1990.

[21] ScaLAPACK Home Page,

http://www.netlib.org/scalapack/scalapack home.html

14

