
So Why Can’t I Checkpoint That?

Gene Cooperman∗

gene@ccs.neu.edu

Khoury College of Computer Sciences
Northeastern University, Boston, USA

February 5, 2021
(Keynote talk: SuperCheck’21)

∗
Partially supported by NSF Grant OAC-1740218, and by grants from Intel Corporation, MemVerge, NERSC and Raytheon.

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 1 / 27



Table of Contents

1 A DMTCPer’s View of the World

2 Challenge: Checkpointing the Hardware

3 Challenges for the Future of Checkpointing: Boundaries and Plumbing

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 2 / 27



Outline

1 A DMTCPer’s View of the World

2 Challenge: Checkpointing the Hardware

3 Challenges for the Future of Checkpointing: Boundaries and Plumbing

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 3 / 27



DMTCP: Distributed MultiThreaded CheckPointing

The speaker has led the DMTCP project for 15 years:

The DMTCP project is currently supported by:

*

CAVEAT: The remaining slides attempt to present a broader view of some of
the highlights in the history of checkpointing, as informed by the history of
DMTCP. Any such undertaking is dangerous, due to accidental omissions of
important past results. The speaker apologizes in advance for such omissions.

∗Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 4 / 27



Brief History of Transparent Checkpointing in
Supercomputing

https://checkpointing.org/ : 19 checkpointing packages listed
from before 2010, including Condor’s landmark checkpointing

2006: BLCR: https://crd.lbl.gov/departments/
computer-science/class/research/past-projects/BLCR/ ;
“Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clusters”, J. of
Physics: Conf. Ser. 46(067), 2006 (forerunner as tech. report in 2003)

And several MPI packages incorporated BLCR to checkpoint MPI:
MPICH, MVAPICH, Open MPI

2006: MVAPICH (incorporating BLCR): Gao et al.,
“Application-Transparent Checkpoint/Restart for MPI Programs over
InfiniBand”, Int. Conf. on Parallel Processing (ICPP’06) (team of
DK Panda)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 5 / 27

https://checkpointing.org/
https://crd.lbl.gov/departments/computer-science/class/research/past-projects/BLCR/
https://crd.lbl.gov/departments/computer-science/class/research/past-projects/BLCR/


Brief History of Transparent Checkpointing in
Supercomputing (cont.)

2009: DMTCP: Ansel et al., “DMTCP: Transparent Checkpointing for
Cluster Computations and the Desktop”, Int. Parallel and Distributed
Processing Symp. (IPDPS’09) (forerunner by Rieker et al., PDPTA’06)
(team of G. Cooperman)

2009: Open MPI: (incorporating BLCR):
https://www.open-mpi.org/faq/?category=ft#cr-support

(based on Hursey et al., “Interconnect agnostic checkpoint/restart in
Open MPI”, Proc. of ACM Int. Symp. on High Performance Distributed
Computing (HPDC’09) )

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 6 / 27

https://www.open-mpi.org/faq/?category=ft#cr-support


Some Highlights of Application-Specific Checkpointing in
Supercomputing

2003: Stewart and Edwards, “The SIERRA Framework for Developing
Advanced Parallel Mechanics Applications”, Large-Scale
PDE-Constrained Optimization, LNCSE 30 (2003) (checkpointing
added later) (and note, in general save-workspace features of Matlab and
other very high-level languages)

2003: Bronevetsky et al., “Automated Application-level Checkpointing
of MPI Programs”, Proc. of Ninth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’03) (based on:
CCIFT (Cornell Compiler for Inserting Fault-Tolerance))

2013: Zheng et al., “FlexIO: I/O Middleware for Location-Flexible
Scientific Data Analytics”, Int. Parallel and Distributed Processing
Symp. (IPDPS’13) (team of 12 co-authors)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 7 / 27



Some Highlights of Application-Specific Checkpointing in
Supercomputing (cont.)

2016: Di and Cappello, “Fast Error-Bounded Lossy HPC Data
Compression with SZ”, IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS’16)

2019: CRAFT (supporting SCR and ULFM): “CRAFT: A Library for
Easier Application-Level Checkpoint/Restart and Automatic Fault
Tolerance”, IEEE Trans. on Parallel and Distributed Systems 30(3)
(2019)

2019: VeloC: Bogdan et al., “Veloc: Towards High Performance
Adaptive Asynchronous Checkpointing at Large Scale”, IEEE Int.
Parallel and Distributed Processing Symp. (IPDPS’19)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 8 / 27



Outline

1 A DMTCPer’s View of the World

2 Challenge: Checkpointing the Hardware

3 Challenges for the Future of Checkpointing: Boundaries and Plumbing

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 9 / 27



Raising the Sights for DMTCP (and other projects)

In the earliest days of the DMTCP project for transparent checkpointing, we
checkpointed a single process on a single computer on a single computer, and
we announced that we’re done.
“Once you try to checkpoint the network, you no longer have a closed system.
Any process can reach out to anywhere on the Internet. We’re done now.”
OUR EARLY SLOGAN (We don’t use it much nowadays.): “You can’t
checkpoint the world!”

But then:
“Well, we can try to include MPI on a cluster, but you have to promise that it
will just be the process and TCP/IP. So, we’re done now.”

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 10 / 27



Raising the Sights for DMTCP (and other projects): cont.

But then:
“Okay, we can try to checkpoint InfiniBand. It’s a network interconnect. But
you have to promise that it will just be the process and the network
interconnect. So, we’re done now.”

But then:
“Okay, some of those nodes are using CUDA with GPU accelerators. And it’s
sort of a co-processor to the CPU. But you have to promise that it will just be
the process, the network interconnect, and any co-processors. So, we’re done
now.”

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 11 / 27



But Why Can’t I Also Checkpoint the Hardware?

So far, the history so far has been one of meeting the needs of scaling up:
more CPU cores; bigger and better network interconnects; etc.
But with the rising adoption of compute accelerators, we also need to grow in
a different direction.

VNC trick (It’s been with us almost since the days of the cavemen. As
soon as VNC was invented, some nameless person from the depths of
history must have asked, “Can I use that for checkpointing”)
[Don’t worry. We’ll explain the VNC trick later.]

CUDA for GPUs

Tensor Processing Units (TPU), AI chips, FPGAs, big data (Hadoop and
Spark), future networks on a chip(?), etc.

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 12 / 27



But Why Can’t I Also Checkpoint the Hardware? (cont.)

Cray GNI network interconnect: support for HPC interconnects other
than InfiniBand (see talk in this Symposium on MANA: Chouhan et al.)

OpenGL on GPUs: support for OpenGL for rendering farms for CGI in
Hollywood (see talk on OpenGL: Hou (Li presenting))

possible hybrid of application-specific and transparent checkpointing
(see talk in this Symposium on VeloC: Bogdan et al.)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 13 / 27



Outline

1 A DMTCPer’s View of the World

2 Challenge: Checkpointing the Hardware

3 Challenges for the Future of Checkpointing: Boundaries and Plumbing

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 14 / 27



Challenges for the Future of Checkpointing: Boundaries
and Plumbing

Here, I hypothesize the central challenge for the future of checkpointing.
THESIS: Checkpointing the hardware is difficult. In the past,
SOLUTION 1, below, was popular. In the future, SOLUTION
2 will be more popular.

(Constructive criticism are welcome.)

1 SOLUTION 1: If something is difficult to checkpoint, then disconnect
it, checkpoint what’s left over, and then reconnect it.

2 SOLUTION 2: If something is difficult to checkpoint, then isolate it as
a separate proxy process, separate address space, or whatever.
Advantage: Checkpoint without disconnecting

Also, see an early inspiration for boundaries from process virtualization: Kapil Arya,
User-Space Process Virtualization in the Context of Checkpoint-Restart and Virtual
Machines, PhD thesis, Northeastern U., 2014 (Section 1.3: “Process Virtualization”)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 15 / 27



SOLUTION 1: The VNC Trick

X Application

GPU (& drivers)VNC Server

Start X Application

Checkpoint

Kill VNC viewer:

vncviewer localhost:1

X Application

1. vncserver :1

2.

3.

VNC Viewer GPU (& drivers)VNC Server

# This recreates the VNC viewer.vncviewer localhost:1Restore:

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 16 / 27



SOLUTION 2: The Condor Trick

Descriptors
File

Proxy (stub)
process

Computer Host 1

Application

Computer Host 2 Local Filesystem

Descriptors
File

Application

Computer Host 1
Local Filesystem

Checkpoint

Migrate Application from Host 1 to Host 2

Restore:

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 17 / 27



SOLUTION 2: The VMGL Trick

(Lagar-Cavilla et al., “VMM-Independent Graphics Acceleration”, VEE’07)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 18 / 27



SOLUTION 1: Notable Examples

1 If something is difficult to checkpoint, then disconnect it, checkpoint
what’s left over, and then reconnect it.

VNC (disconnect the VNC server, checkpoint, and reconnect);
2006: MVAPICH (Gao et al.) (disconnect the InfiniBand network,
checkpoint, and reconnect)
2009: Open MPI (Hursey et al.) (disconnect the current network (TCP,
InfiniBand, . . .), checkpoint, and reconnect with a new network)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 19 / 27



SOLUTION 2: Notable Examples

2 If something is difficult to checkpoint, then isolate it as a separate proxy
process, separate address space, or whatever.
Advantage: Checkpoint without disconnecting

1999: Condor: Zandy et al., “Process Hijacking”, HPDC’99 Checkpoint
on one host, but restart on another host: stub process on original host
remains available for local files
2007: OpenGL: Lagar-Cavilla et al., VMGL: “VMM-independent
Graphics Acceleration”, VEE’07
2011: OpenCL for GPUs: Takizawa et al., “CheCL: Transparent
Checkpointing and Process Migration of OpenCL Applications”,
IPDPS’11
2018: CUDA for GPUs: Garg et al., “CRUM: Checkpoint-Restart Support
for CUDA’s Unified Memory”, Cluster’18
2019: MPI: Garg et al., “MANA for MPI: MPI-Agnostic
Network-Agnostic Transparent Checkpointing”, HPDC’19
2020: CUDA for GPUs: Jain et al., “CRAC: Checkpoint-Restart
Architecture for CUDA with Streams and UVM”, SC’20
2021: ?? OpenGL ?? (collaboration between MemVerge and DMTCP)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 20 / 27



SOLUTION 2: Proxies, Split Processes and User-Space
Kernel Loaders

SOLUTION 2a (Proxies)
1999: Condor: Zandy et al., “Process Hijacking”, HPDC’99
2007: VMGL: Lagar-Cavilla et al., “VMM-independent Graphics
Acceleration”, VEE’07
2011: OpenCL for GPUs: Takizawa et al., “CheCL: Transparent
Checkpointing and Process Migration of OpenCL Applications”,
IPDPS’11
2018: CUDA for GPUs: Garg et al., “CRUM: Checkpoint-Restart Support
for CUDA’s Unified Memory”, Cluster’18

SOLUTION 2b (Split Processes)
2019: MPI: Garg et al., “MANA for MPI: MPI-Agnostic
Network-Agnostic Transparent Checkpointing”, HPDC’19
2020: CUDA for GPUs: Jain et al., “CRAC: Checkpoint-Restart
Architecture for CUDA with Streams and UVM”, SC’20
2021: ?? OpenGL ?? (collaboration between MemVerge and DMTCP)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 21 / 27



SOLUTION 2b: The “MANA for MPI” Trick

MPI Application

MPI Library

MPI Proxy Library
MPI Library

Terminology

Isolation -  The “Split-Process” Approach

Upper-Half program Checkpoint and Restore

Lower-Half program Discard and Re-initialize

Single Memory Space

Standard C Calling Conventions
No RPC involved

LIBC

Network Libraries

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 22 / 27



SOLUTION 2b: Split Processes: “CRAC for CUDA”

LOWER HALF

      HELPER

libcCUDA APPLICATION

libcuda libc

GNU link map (doubly linked list) of dynamic libraries

GNU link map (doubly linked list) of dynamic libraries

GPU and kernel
device drivers

UPPER HALF:

LOWER HALF:

Array of function pointers into libcuda

(CRAC)

libcuda
stub

(from Jain et al., “CRAC: Checkpoint-Restart Architecture for CUDA with
Streams and UVM”, SC’20)

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 23 / 27



SOLUTION 2b: Split Processes:
the User-Space Kernel Loader

In both MANA for MPI and CRAC for CUDA, an essential ingredient is our
user-space kernel loader. We need to load two programs into a single
address space (for a single process — and maybe with just one thread).

1 Launch the application
Step 1: Launch a small lower-half program as a stub or helper process, but
linked to all libraries to access the kernel drivers and the hardware.
Step 2: The initial process (running lower half) calls our kernel loader to
load the end-user application as the upper half in the single address space.
Step 3: On checkpoint save only the upper half.

2 Restart the application
Step 1: Launch the small lower-half program as before.
Step 2: The initial process (running lower half) calls a restart routine to
load ckpt image file as the restored upper half of the single address space.

Detail: On Intel x86-64 CPUs only, the upper half and lower half inherit different values of the

Intel FS register. Setting the FS register in Linux is a privileged operation requiring a system

call (and associated overhead). This restriction is to be removed with the FSGSBASE Linux

patch. (v13 of this patch is now under review.)
Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 24 / 27



Conclusion: Boundaries and Plumbing

In this tour of checkpointing, we have seen a recurring theme:
Boundaries and Plumbing

1 “Newer and different hardware in supercomputing is inevitable.”
But we can’t checkpoint the hardware. (Exception: some hardware has
save- and restore-machine-state, for debugging. We can leverage that!)

2 “Boundaries are good.” They imply that we don’t need to checkpoint
what’s on the other side of the boundary. Boundaries are even better
when they approximate a well-established standard. (In SOLUTION 1
(proxies), recall Condor’s use of the POSIX API to the C runtime library,
VMGL’s use of the OpenGL standard, CRUM’s use of the CUDA
de facto standard.)

3 “And Boundaries are bad.” Crossing the boundary can impose high
overhead. If it’s a proxy process (SOLUTION 1), then we must often
copy large buffers from the application process to a proxy process.

4 “The cure for larger boundaries is better plumbing.”
In SOLUTION 2 (split processes), the buffer is not copied. Only a
simple pointer needs to be passed across the boundary.

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 25 / 27



Checkpoints ‘R’ Us: We in Supercomputing know Ckpting;
Who Else Can Use Our Technology?

1 Big data: The HFS (Hadoop FileSystem) or GFS (Google FileSystem)
is the boundary. But we can save our large intermediate files at
checkpoint time, and return to them during restart.

2 Fuzzing in cyber-security: extend fuzzing deeper into the execution;
return to interesting intermediate states

3 Model checking for formal verification: Return to interesting
intermediate states for deeper exploration

4 “Deep Debugging” (of MPI, threads, distributed applications): Run
deeper into the execution, while taking periodic checkpoints; return to
last checkpoint before a crash

5 Higher quality software: Checkpoint periodically; On a crash, ask
user’s permission to nclude the last checkpoint in the bug report (not just
the state information at the time of the crash).

Moral: A checkpoint can be a first-class object. Let’s use it.
Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 26 / 27



Thank you

Thank you.

Gene Cooperman So Why Can’t I Checkpoint That? February 5, 2021 (Keynote talk: SuperCheck’21) 27 / 27


	A DMTCPer's View of the World
	Challenge: Checkpointing the Hardware
	Challenges for the Future of Checkpointing: Boundaries and Plumbing

