
Parallel and High Performance Computing

Gene Cooperman

Northeastern University
Boston, MA / USA

Copyright (c) Gene Cooperman, 2007; Right to freely copy
is given as long as this copyright notice remains.

No warranty is implied.

Organization of Course on Parallel Computing

1. History

2. Hardware

3. Assembly Language

4. Operating Systems

5. High Level Languages

6. Meta-Computing

7. ... special topics, as time permits ...

History

Those who cannot learn from history are doomed to repeat it.

— George Santayana

History (abridged)

As soon as computers and networks were invented, many people
started experimenting with parallel computing. We begin our history
at the point when companies began building dedicated parallel
computers. The standard wisdom at that time (before the PC), was
that anybody could write a parallel program, but one needed to build
specialized parallel hardware in order to get good price-performance.

History: Thinking Machines: CM-1 and CM-2

• CM = “Connection Machine”

• goal was massive parallelism: thousands of CPUs (processing nodes)

• Thinking Machines founded in 1983

• Danny Hillis: co-founder of Thinking Machines; based on his research at
MIT

• Up to 65,536 processors

• Specialized processors: Many relatively slow processors

• in order to produce so many CPUs at that time, each CPU was a 1-bit
CPU (a competitor, MasPar, later produced a 4-bit variation)

• initial languages: StarLisp and StarC

• SIMD parallelism

• Hypercube interconnection network (few hops between processors)

Terminology: SIMD/MIMD

• “It’s all in the name.”

• SIMD = “Single Instruction, Multiple Data”, as opposed to
MIMD = “Multiple Instruction, Multiple Data”

1. Front-End (FE) feeds single instruction stream to all processors

2. Each processor contains a certain number of 1-bit registers (mecha-
nisms existed to transparently create larger words)

3. Condition register on each processor determined whether the next few
instructions would or would not be executed

• Marketing: Using commodity computers meant multiple instructions and
multiple data: hard to program

• (The word SIMD was later reused by Intel in a different context for SIMD
assembly instructions.)

History: KSR (Kendall Square Research)

• Kendall Square Research founded in 1986

• Kendall Square was a location near MIT

• co-founder: Henry Burkhardt III (who had helped found Data General,
Encore Computer)

• Fewer extremely fast processors

• specialized ring network: extremely fast network to keep up

• expansion: rings of rings

History: CM-5: announced in 1991

• fat-tree network, NUMA architecture

• upper paths have higher bandwidth

• highly local computations seldom need to use upper branches

• somewhat local computations seldom need to use the highest branch

• SPMD software model (not SIMD or MIMD)

Terminology: SPMD

• Marketing: CM-5 looked a lot like MIMD; but Thinking Machines had
been selling SIMD

• Solution: Call it SPMD: Single Program Multiple Data

• Write one program with “if” statements to indicate if the particular
processor should execute some portion of the program

It was argued that the earliest parallel programs had been MIMD,
and that SPMD programs are easier to write, because one maintains
a single program. In fact, almost all parallel programs today would
be considered SPMD.

Terminology: NUMA

• NUMA: Non-Uniform Memory Architecture

• Local memory could be accessed faster

• Distant memory took longer to reach

IBM SP-2: commodity hardware (IBM CPUs)

• developed in early 1990s

• fast, custom network

• fast, commodity CPU (IBM POWER chip)

• commodity software: AIX (IBM dialect of UNIX)

History: Beowulf cluster: commodity computing

• Co-developed in mid-1990s at NASA and NIH by Brooks and Billings;
Operating in 1997

• IDEA: It’s not how many processors (CM-2), or the speed of the
processors (KSR), but the price of the processor. Cheap commodity
processors yield better price-performance ratio. Cheap commodity
network is good enough. Linux provides commodity software.

TODAY: Commodity Hardware; Looking for Commodity Software

• Hardware: Distributed software; commodity networks

• “Assembly” Level: MPI/sockets, OpenMP/POSIX threads

• High-Level Parallel Languages (still looking for a standard)

• Wide Area Computing: Grid

• Meta-Computing: Legion, etc. (no standard)

Hardware

Hardware: the part of the computer that you can kick.

Why are CPU vendors selling multi-core instead of faster CPUs?

• Speed of electrical signal: ≈109 cm/s

• 1 GHz clock rate

• Distance travelled by electrical signal in one clock cycle: ≈ 1 cm

• Chip linear dimension: ≈ 1 cm

Moore’s Law (every 18 months)

• Twice as many gates/mm2

• Twice the clock speed

• Half the distance travelled by electrical signal per clock cycle

2000: New millenium

Define a chip unit as a chip rectangle such that an electrical signal can cross
the diagonal in one clock cycle.

	�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

←→: distance travelled by eletrical signal in one clock cycle

mid-2001: 1.5 years later

.

	�
�

�
�

�
�

�
�

�
�

�
�
��

.

	�
�

�
�

�
�

�
�

�
�

�
�
��

.

	�
�

�
�

�
�

�
�

�
�

�
�
��

.

	�
�

�
�

�
�

�
�

�
�

�
�
��

1) 4 times as many units

2) Twice as many total gates⇒ 1/2 as many gates/unit

2009: 9 years later

1) 4,096 times as many units

2) 64 times as many total gates⇒ 1/64 as many gates/unit

Common sense check

• 1985 – 1995: pipelining

• 1990 – 2000: superscalar CPU’s, ILP (Instruction Level Parallelism)

• 2000: Intel/H-P Itanium, EPIC (Explicitly Parallel Instruction Computer)

• 2002: Simultaneous MultiThreading: Intel Xeon Pentium-4 (Hyper-
Threading)

• 2002: Dual Core Chips: IBM Power4

• 2005: Mainstream Dual Core: AMD/Intel, IBM Power5 (dual core +
simultaneous multithreading = 4 processors)

• 2006: Cell Architecture (Playstation 3): Sony/Toshiba/IBM (1 core + 8
vector processors — on-chip pipelined parallelism support)

• 2010: IRAM (?), CRAM (?)

Memory Wall

CPU/RAM New, Two-Pass Traditional
Algorithm Algorithm

2.66 GHz Pentium 4
DDR-266 RAM 0.042 s 0.159 s
0.6 GHz Pentium III
PC-100 RAM 0.131 s 0.097 s

Two-Pass Permutation Multiplication versus Traditional Algorithm (joint
work: X. Ma, V.H. Nguyen and C.)

Object Z[N], Y[N]; // Object is ‘‘int’’ in above experiments
int X[N];
for (i=0; i<N; i++)

Z[i]=Y[X[i]];

Why is Two-Pass Permutation Now Faster?

Two Large Reasons:

1. The Pentium 4 has a longer cache line.

The Pentium 4 has a 128 byte cache line: four times longer than the
32 byte cache line of the Pentium III.

2. The bandwidth of DDR-266 (PC-2100) RAM is higher, but the latency is
not faster.

• DDR-266/PC-2100 has a bandwidth of 2.2 GHz, as compared to
1.1 GHz for older PC-100 RAM.

• The latency of DDR-266 RAM and PC-100 RAM are both about 25 ns.

Future Trends:

1. Higher bandwidth memory

• Evidence: Today, we see dual-channel memory offering effective
800 MHz system busses (seven times faster than DDR-266)

• Evidence: Some scientific applications, such as matrix multiplication,
FFT, etc., are now being programmed to use the high-bandwidth
memory (and greater parallelism) of video boards. (Some applications
are even using dual video boards to double this speed.)

• Side Effect: Possibly even longer CPU cache lines, in order to keep
up with the high bandwidth)

2. Latency mostly unchanged

• The time to precharge the external buffer of a DRAM chip is
increasing slightly, as lower on-chip voltages must be raised to the
higher voltage levels of the motherboard. This is a long-term problem,
for as long as DRAM and CPU are on different chips!

Relative Speeds: CPU, RAM, Disk and Network

CPU bandwidth 2,400 MB/s (3 GHz × 8 byte words)
Network bandwidth 100 MB/s (1 Gb/s theoretical max
(point-to-point) for Gigabit Ethernet)
Network bandwidth 1,000 MB/s (varies by vendor)
(aggregate)
RAM bandwidth (DDR-400) 3,300 MB/s (maximum)
Disk bandwidth (per disk) 50 MB/s (typical)

Aggregate bandwidth of 50 disks: 50×50 = 2,500 MB/s

Hardware vs. Software

Software: Distributed Memory DSM Shared Memory
(message passing)

Assembly: Sockets/MPI POSIX threads (pthreads)

Hardware: Distributed Computers hardware-supported Shared Memory/SMP
lin. addr. space

(However, implementations can support message passing model on shared
memory hardware (each process has mailbox with mutex lock);
or shared memory software on distributed hardware (see DSM).

Shared Memory and Protocols

1. DSM: (next slide)

2. Cache Coherency

3. Memory Consistency

4. Relaxed Consistency

Hardware: DSM

• Linear address space

• Generalizes idea of page faults

– If virtual page is not in RAM, fetch it from disk.

– If DSM page is not in local RAM, then fetch it from owner of page.

• Hardware Support: e.g. SCI: Scalable Coherent Interface

• ISSUE: heavy sharing of pages by many CPUs

• ISSUE: ping-pong: (two processes both want to write to variable x)

• ISSUE: false sharing: (Process A continually writes to variable x, and
process B continually writes to variable y. Unfortunately, variable x and
variable y are located on the same DSM page.)

DSM Protocol

1. Each “virtual page” is owned by some process or node. (For example, the
upper bits of the address determine the page number, and the upper bits
of the page number determine the owner node.)

2. Example: Node A owns pages 0→ 1,023; Node B owns pages 1,024→
2,047; etc.

3. Owner can “lend” the page to other processes. Owner can lend out:

(a) multiple read-only copies, or

(b) a single read-write copy

Hardware: SMP architecture

• SMP: Symmetric MultiProcessing

• Protocol: bus snooping

L1/L2 cache:
system bus:

RAM

L3 cache:

CPUs:

Shared Memory and Protocols

1. DSM

2. Cache Coherency

(a) Problem: CPU A writes to address 0x10a34c in L1 cache; CPU B
reads from address 0x10a34c

(b) Solution: Bus snooping:

i. CPU has modified address 0x10a34c, but only in cache.
ii. CPU A snoops (spies) on a common bus.

iii. When CPU A detects a read request on bus by CPU B, CPU A
raises hardware signal.

iv. The hardware signal suspends the read request.
v. CPU A writes 0x10a34c from L1 cache to RAM.

vi. CPU A lowers hardware signal and CPU B continues its read
request.

3. Memory Consistency

4. Relaxed Consistency

Volatile keyword

1. Problem: CPU A writes to variable x; New value is stored in a register;
CPU B reads variable x; But the new value of variable x is only in a
register in CPU A

2. Solution 1: Declare variable x to be volatile.
(The volatile keyword in C developed for sake of device drivers talking
to external peripherals. But it’s also useful for multi-threaded programs.)

3. Solution 2: C99 requires that the compiler arrange for variables in
registers be written out to cache before any function call.

Summary: Cache coherency protocols

1. If a common bus is present, implement bus snooping in hardware,

2. Else implement DSM-style cache coherency protocol.

While the use of the volatile keyword is not formerly part of a cache
coherency protocol, it often serves a similar purpose.

Memory Consistency

1. DSM

2. Cache Coherency

3. Memory Consistency:

Process A Process B
x = 0; [initially] y = 0; [initially]
... ...
x = 1; y = 1;
if (y == 0) {..} if (x == 0) {..}

4. Relaxed Consistency Models: Sequential Consistency; total store order,
partial store order; release consistency
Concept of memory barrier

Software

“The box said, Win95 or better required... so I used a Mac !”

[REPLACE Mac BY YOUR FAVORITE OPERATING SYSTEM.]

— Tim Scoff

Software: 8 Parallel Languages as Models

1. MPI/sockets (message abstraction on top of network ”packets” of
sockets)

2. OpenMP/POSIX Threads

3. High Performance Fortran (data parallelism)

4. Unified Parallel C (UPC) (linear address space)

5. Cilk (work-stealing, shared memory)

6. Linda / Jini/javaspaces (tuple space)

7. TOP-C (Task Oriented Parallel C/C++) (task-oriented parallelism /
master-worker)

8. Legion (meta-computing)

Cilk: Work-Stealing

Two Primitive Operations:

• spawn, sync

Example: Fibonacci numbers: fn = fn−1 + fn−2

cilk int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y)

}
}

Linda: Tuple space

Three (plus two) Primitive Operations:

1. in (blocking read and delete), out (insert), rd (blocking read)

2. non-blocking versions: inp, rdp

Example: http://heather.cs.ucdavis.edu/˜matloff/Linda/NotesLinda.NM.html

if (NodeNumber == 0) out("sum of all Ys",0);
in("sum of all Ys", ? Tmp);
Tmp += Y;
out("sum of all Ys",Tmp);
/* barrier code would go here */
if (NodeNumber == 0) {

in("sum of all Ys", ? Tmp);
printf("%d\n",Tmp);

}

http://heather.cs.ucdavis.edu/~matloff/Linda/NotesLinda.NM.html

Assembly Language: MPI

1. MPI: Message Passing Interface

The difference between MPI and sockets is that sockets support
network packets, and MPI supports messages. MPI guarantees to
process the full message. Sockets do not.

2. Note that “man 2 read” and “man 2 write” say that read and write may
fail with the error EAGAIN or EINTR.

3. Calls to MPI Send and MPI Recv should not fail, and if they do fail (e.g.
for reasons of hardware failure), then MPI is entitled to kill your entire
application.

MPI Quick Reference

http://www.cslab.ntua.gr/courses/common/mpi-quick-ref.pdf

http://www.cslab.ntua.gr/courses/common/mpi-quick-ref.pdf

MPI Design

Along with reading the general overview of MPI below, you may want to
look over some of the enrichment material listed here.

• History (comparison with PVM): standards, versus reference implemen-
tation

• MPI Quick Reference

• MPI is a standard:
MPI 1.1: http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
MPI 2.0: http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

MPI Design: seven layer model

The original MPI defines seven layers.

1. Point-to-point communication (send, receive, probe)

2. Collective communication (broadcast, scatter, gather, reduce)

3. Derived data types (support for describing struct, and other more complex
data types for messages)

4. Groups (subset of nodes participating in MPI computation

5. Communicators (like a namespace; necessary for parallel libraries calling
MPI simultaneously with main application; otherwise, what would
happen if the application receives a message destined for the library)

6. Topology (define network topology to MPI; for example, how many hops
between nodes)

7. Environment and Miscellaneous

MPI Design: standard

MPI is a standard. The MPI standard does not guarantee:

1. Interoperation (compatibility of two MPI dialects talking to each other)

2. Heterogeneous computation (distinct architectures, software or hardware,
on the nodes of the computation)

3. Thread-safety (if two threads call MPI routines at the same time, MPI is
allowed to crash)

4. Fault-tolerance (if a node or link fails, MPI is allowed to crash)

Unlike sockets, MPI views a message as atomic (similar to a packet in
networking).

MPI Design: hello, world!

First, the obligatory ”Hello, world!” example:

#include <string.h>
#include "mpi.h"
int main(int argc, char **argv) {
int myrank, num_processes, rank;
char buf[100];
char send_msg[] "Hello, world!";
MPI_Init(&argc, &argv); /* Allow MPI to see and modify the command line */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &num_processes);
if (myrank == 0) /* If I’m the first process (often the console) */

for (rank = 1; rank <= num_processes, rank++)
MPI_Send(send_msg, strlen(send_msg)+1, MPI_CHAR, rank, 0, MPI_COMM_WORLD); /* to dest _rank_, tag _0_ */

else /* See [below|#ReceiveArray] for variation when length of received string is unknown a priori */
MPI_Recv(buf, strlen(send_msg)+1, MPI_CHAR, 0, 0, MPI_COMM_WORLD); /* from source _0_, tag _0_ */

MPI_Finalize();
}

MPI Design: message organization

MPICH provides a reference implementation for MPI. MPI can be under-
stood according to the type of message that it sends across a network. A
typical implementation would implement a message as follows.

--
| Communicator | Tag | Source | Destination | Size | ... DATA ... |
--

Compare the internal form above to a typical MPI call:

MPI_Send(void *buf, int count, MPI_Datatype dtype, int dest,
int tag, MPI_Comm comm)

MPI Design: Count

Note that the message refers to

• Size (bytes); as opposed to

• Count (number of elements in array)

At the application level, one wishes to work with Count. This is important,
because a double on one machine may have different size than a double
on another machine. By having the application specify that the message
contains two doubles, one delegates to a lower layer the problem of
translating, if, for example, the first machine uses 8 bytes for a double, and
the second machine uses 10 bytes for a double.

Hence, the potential for heterogeneous computing has driven the MPI stan-
dard. The application specifies a count, which is architecture independent.
When sending messages across the network, MPI is forced to instead use a
size, since most networking system calls require knowledge of size, rather
than count.

MPI Design: rank

The source and destination of the message are specified as a rank. This is a
unique integer, similar to a process id. Generally, the process started at the
console is rank 0, and the remaining processes are numbered consecutively.

MPI Design: communicator

The Communicator is initially one of MPI COMM WORLD or MPI COMM NULL.
MPI COMM WORLD is a namespace in which all processes participate, while
no process participates in MPI COMM NULL. One can construct a new group
(subset of processes in the computation), and associate it with a new
communicator.

MPI Design: tags

Tags are integers specified by the user. Tags are generally used to:

1. distinguish different application-defined message formats (e.g. struct
int x; int y vs. struct char x; double y);

2. distinguish different array lengths (e.g. int x[27] vs. int x[43])

3. distinguish different tasks (e.g. taskA, taskB, taskC, exitComputation)

MPI Design: Non-overtaking

If two messages have the same source, communicator and tag, then MPI
guarantees that they will be received in order. This is sometimes called the
non-overtaking property.

MPI Design: Pattern 1

Here are three common patterns for receiving a message, corresponding to
the three common patterns above for use of tags. Note that these patterns
depend heavily on the non-overtaking property:

/* Receive any of several types of struct, depending on tag: */
MPI_Status *status;
char *buf[10000]; /* large enough for any message format */
MPI_probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
tag = status->MPI_TAG;
switch(tag) {
case 0: /* We assume that tag 0 implies that there were

two calls to MPI_Send: int first, and then float */
MPI_Recv(buf, 4, MPI_INT, status->MPI_SOURCE, status->MPI_TAG, MPI_COMM_WORLD);
MPI_Recv(buf, 2, MPI_FLOAT, status->MPI_SOURCE, status->MPI_TAG, MPI_COMM_WORLD);
break;

case 1: MPI_Recv(buf, 3, MPI_DOUBLE, status->MPI_SOURCE, status->MPI_TAG, MPI_COMM_WORLD);
break;

default: fprintf(stderr, "ERROR: unexpected tag: %d.\n", status->MPI_TAG);
}

MPI Design: Pattern 2

/* [Receive array of arbitrary length|ReceiveArray], with using the tag
(assume tag indicates number of ints being sent): */

MPI_Status status;
int count;
char *buf [10000]; /* large enough for any array to be received */
MPI_probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
MPI_Get_count(status, MPI_INT, &count);
buf = malloc(count * sizeof(int));
MPI_Recv(buf, count, MPI_INT, status->MPI_SOURCE, status->MPI_TAG, MPI_COMM_WORLD);

MPI Design: Pattern 2 (cont.)

/* ALTERNATIVE: Receive array of arbitrary length, _without_ needing to use tag: */
MPI_Status status;
char *buf[10000]; /* large enough for any array to be received */
int count;
MPI_probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
/* MPI equivalent of doing sizeof() computations in C */
MPI_Get_count(status, MPI_INT, &count);
buf = malloc(count * sizeof(int));
MPI_Recv(buf, count, MPI_INT, status->MPI_SOURCE, status->MPI_TAG, MPI_COMM_WORLD);

MPI Design: Pattern 3

/* Execute any of several tasks, according to tags: */
MPI_Status status;
MPI_probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
tag = status->MPI_TAG;
switch(tag) {
case 0: doTaskA();

break;
case 1: doTaskB();

break;
case 2: MPI_Finalize(); /* Exit computation */
default: fprintf(stderr, "ERROR: unexpected tag: %d.\n", status->MPI_TAG);

}

MPI Design: Common Bug 1

Note that when we use both MPI Probe and MPI Recv, we are careful to
use the arguments status->MPI SOURCE and status->MPI TAG, and not
MPI ANY SOURCE and MPI ANY TAG. This is important for avoiding bugs.
If, for example, MPI Recv uses MPI ANY SOURCE, then it may receive a
completely different message from that analyzed in MPI Probe. This negates
the purpose of MPI Probe and is responsible for many bugs.

MPI Design: Common Bug 2

Another bug to be aware of is when the total number of receives does not
match the total number of sends, or if each of two processes with rank 0 and
rank 1 execute the following.

MPI_Send(buf, count, MPI_INT, 1 - myrank, tag, MPI_COMM_WORLD);
MPI_Recv(buf, count, MPI_INT, 1 - myrank, tag, MPI_COMM_WORLD,
&status);

Since MPI Send is a blocking call, for larger messages, this can lead to a
traditional deadly embrace (deadlock).

MPI Design: Seven Layers Revisited

1. Many MPI calls in the point-to-point layer also have non-blocking
alternatives (e.g. MPI Isend, MPI Iprobe, MPI Irecv).

2. Beyond this, there is the collective communication layer, which adds
another argument, root.

As an example,
MPI Bcast(void buf, int count, MPI Datatype datatype, int
root, MPI Comm comm)
will broadcast buf from the process with rank root to all processes
(including itself). Other collective communications allow for scatter, gather,
reductions to a scalar (e.g. sum over all ranks), and barrier (proceed when
all other processes have called the caller).

MPI Design: Further Observations

1. Since MPI is designed with the possibility of heterogeneous computing,
MPI allows a user to declare new data structures (similar to struct), which
can then be translated from host format to network format to the data
format of a host with a different architecture. This facility is called
derived datatypes.

2. A group is simply a subset of the participating processes. MPI provides
MPI GROUP EMPTY and access to a group of all initially participating
processes, and the ability to do unions and intersections of these groups
and the current process. This is needed to support communicators in
which only a subset of the processes participate.

3. A communicator is similar to the concept of a namespace in C++. Two
messages with the same source and tag are distinguished if they have
different communicators. A communicator is based on a group. The
communicators MPI COMM WORLD and MPI COMM EMPTY are
predefined. Communicators are useful to allow a library built with MPI to
carry out a concurrent computation without confusing messages among
processes on behalf of the library and messages among processes on
behalf of a simultaneously ongoing main computation.

4. One can also declare a topology to MPI with concepts of “nearness”,

number of hops, etc.

5. Finally, environment utilities allow for things like startup and finish
(MPI Init, MPI Finalize) and implementation limits (e.g. MPI TAG UB
is an upper bound on the value of a tag).

Assembly Language: OpenMP

• http://www.llnl.gov/computing/tutorials/openMP/

http://www.llnl.gov/computing/tutorials/openMP/

Operating System Issues

1. resource discovery

2. task scheduling

3. dynamic load balancing

4. process migration

5. virtualization

6. checkpointing

7. fault tolerance

8. there are other issues ...

Cilk: Work-Stealing

Two Primitive Operations:

• spawn, sync

Example: Fibonacci numbers: fn = fn−1 + fn−2

cilk int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y)

}
}

Linda: Tuple space

Three (plus two) Primitive Operations:

1. in (blocking read and delete), out (insert), rd (blocking read)

2. non-blocking versions: inp, rdp

Example: http://heather.cs.ucdavis.edu/˜matloff/Linda/NotesLinda.NM.html

if (NodeNumber == 0) out("sum of all Ys",0);
in("sum of all Ys", ? Tmp);
Tmp += Y;
out("sum of all Ys",Tmp);
/* barrier code would go here */
if (NodeNumber == 0) {

in("sum of all Ys", ? Tmp);
printf("%d\n",Tmp);

}

http://heather.cs.ucdavis.edu/~matloff/Linda/NotesLinda.NM.html

TOP-C: Task Oriented Parallel C/C++

A package for easily writing applications for both distributed and
shared memory architectures

http://www.ccs.neu.edu/home/gene/topc.html
http://www.ccs.neu.edu/home/gene/topc-aux/topc-overview.pdf

http://www.ccs.neu.edu/home/gene/topc.html
http://www.ccs.neu.edu/home/gene/topc-aux/topc-overview.pdf

Meta-Computing: Legion

”The Core Legion Object Model”, Proceedings of the Fifth
IEEE International Symposium on High Performance Dis-
tributed Computing, August 1996 Legion technical papers:
http://legion.virginia.edu/papers.html

http://legion.virginia.edu/papers.html

Performance Estimates and Effect of RAM

Models for predicting the time of a program tend to be of two forms.

1. There are theoretical asymptotic formulas with unknown asymptotic
coefficients

2. There are instrumentations or simulations of existing code to estimate the
running time of components

The MBRAM model is distinguished from both. It estimates the running
time of a program based on pseudo-code and on architectural parameters of
the target architecture.

It does not require code on the target architecture, and yet there are no
asymptotic coefficients!!!

CAVEAT: The MBRAM model is valid only for memory-bound programs.

ACCURACY: The MBRAM model consistently underestimates the running
time in a range from 10% to 44% in our test suite. By adding a bias of 22%,
the MBRAM model has an accuracy of ±22%.

MBRAM Model Parameters

• the sequential bandwidth of RAM (β1);

• the random access bandwidth of RAM (β2: the bandwidth, assuming that
a cache block is loaded from RAM with each successive cache block
coming from a random location in RAM);

• the cache size (C) and cache block size (B) for the largest level of cache;
and

• the size of the branch misprediction pipeline.

Experimental Results (Perm. Mult. and Integer Matrix Mult.)

CPU/RAM Time (new Fast alg., s) Time (traditional alg., s)
Experiment Predicted Experiment Predicted

2.66 GHz Pentium 4 / DDR-266 RAM 0.042 0.042 0.159 0.147
1.7 GHz Pentium 4 / PC-133 RAM 0.060 0.047 0.176 0.158
0.6 GHz Pentium III / PC-100 RAM 0.131 0.087 0.097 0.083
0.35 GHz Pentium II / PC-66 RAM 0.222 0.151 0.148 0.143

1: Fast multiplication of two random permutations on 1,048,576 points (4 MB per permutation)
for (i=0; i<1048576; i++) Z[i]=Y[X[i]];

CPU/RAM Time (Mat. Dim. n = 500) Time (Mat. Dim. n = 4000))
Experiment Predicted Experiment Predicted

2.66 GHz Pentium 4 / DDR-266 RAM 1.67∗ 0.53 (1) 11,241.23 8,743.91 (2)
1.7 GHz Pentium 4 / PC-133 RAM 1.47∗ 0.59 (1) 11,306.00 9,879.16 (2)

2: Matrix Multiplication over Integers (word size w = 4); Predictions according to
MBRAM formula (1) wn3/β2 (when wn > B, Bn < C)); or (2) wn3/β1 +Bn3/β2 (when Bn≥C)
∗Computation is CPU-bound

Experimental Results (Sorting using 7 O(n logn) algorithms)

Sorting Algorithm Exper. (s) Pred. (s) MBRAM formula
Quicksort 2.40 1.51 2wN

β1
(log2 N− log2C +1)+ N

2 m log2 N
Mergesort 3.14 1.75 (wN

β2
+ 2wN

β1
)(log2 N− log2C +1)

+N
2 m log2 N

Heapsort 24.88 16.83 B
β2

N(log2 N− log2(C/w)+ log2 log2 N)

+mN log2 N
[Input data uniformly distributed between 0 and N = 8 Meg]
Simple Bucket Sort

(b = 64) 0.62 0.47 3wN
β2

(dlogb Ne−blogb(C/2)c+1)

Distribution-count Bucket Sort 3wN
β2

(dlogb Ne−blogb(C/2)c+1)

(b = 64) 0.92 0.57 +wN
β1

(dlogb Ne−blogbCc+1)

Simple Radix Sort
(b = 64) 0.77 0.47 3wN

β2
dlogb Ne

Distribution-count Radix Sort
(b = 64) 1.01 0.60 (wN

β1
+ 3wN

β2
)dlogb Ne

Prediction and Experiment for Various Sorting Algorithms;
1.7 MHz Pentium 4 with PC-133 RAM; input data is uniformly distributed

array size N = 8 Meg (Nw = 32 MB); cache size C = 256 KB; integer
word size w = 4 bytes

And Now for Something Completely Different: Effect of RAM, Network and Disk

Some Personal Experiences from High Performance Computing

Whatever women must do, they must do twice as well as men to be
thought half as good. Luckily, this is not difficult.

— Charlotte Whitton
(born 1896), Canadas first woman mayor; elected in 1951, mayor of Ottawa

History of Rubik’s Cube

• Invented in late 1970s in Hungary.

• In 1982, in Cubik Math, Singmaster and Frey conjectured:

No one knows how many moves would be needed for “God’s
Algorithm” assuming he always used the fewest moves required
to restore the cube. It has been proven that some patterns must
exist that require at least seventeen moves to restore but no one
knows what those patterns may be. Experienced group theorists
have conjectured that the smallest number of moves which would
be sufficient to restore any scrambled pattern — that is, the number
of moves required for “God’s Algorithm” — is probably in the low
twenties.

• Current Best Guess: 20 moves suffice

– States needing 20 moves are known

History of Rubik’s Cube (cont.)

• Invented in late 1970s in Hungary.

• 1982: “God’s Number” (number of moves needed) was known by authors
of conjecture to be between 17 and 52.

• 1990: C., Finkelstein, and Sarawagi showed 11 moves suffice for Rubik’s
2×2×2 cube (corner cubies only)

• 1995: Reid showed 29 moves suffice (lower bound of 20 already known)

• 2006: Radu showed 27 moves suffice

• 2007 Kunkle and C. showed 26 moves suffice (and computation is still
proceeding)

• http://news.google.com/news?hl=en&ned=&q=rubik\%27s+cube&btnG=Search+News

• D. Kunkle and G. Cooperman, “Twenty-Size Moves Suffice for Rubik’s
Cube”, International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC-07), 2007, to appear

http://news.google.com/news?hl=en&ned=&q=rubik%27s+cube&btnG=Search+News

Ideal Algorithm to Bound Moves Needed for Rubik’s Cube

Breadth-First Search
1: Create hash array with several times 4.3×1019 entries
2: Add trivial (solved) state to open list and to hash array
3: Set level← 0
4: while Open list not empty do
5: Increment level; move open list to frontier; and set open list to empty

set
6: while Frontier not empty do
7: Remove first element of frontier and find its neighbors
8: If a neighbor is not in hash array, then add it both to hash array and

to open list
9: Return level (number of moves needed in worst case)

Two Primary Techniques Used

1. Use of Large amounts of intermediate disk space (7 TB) for hash array
(for duplicate elimination)

2. Fast multiplication of symmetrized cosets (> 10,000,000 multiplies per
second)

Fast Multiplication: > 10,000,000 mults/second

• Table-based multiplication; Form smaller subgroups, factor each group
element into the smaller subgroups; Use tables for fast multiplication
among the small subgroups

• Tables are kept mostly in L1 cache; Most subgroups have less than 100
elements; Multiplication table has < (100)2 elements, or < 10,000.

• Group of Rubik’s cube

– Group of permutations acting only on corner cubies

– Group of permutations acting only on edge cubies

∗ Flips of the two faces of each edge cubies (while holding location
of edge cubie fixed)
∗ Moving edge cubies (while ignoring fips of the two faces)

Fast Multiplication (cont.)

• Moving edge cubies (while ignoring fips of the two faces)

– Moving edge cubies using half-twists (180 degrees) only:

∗ Half-twists split the 12 edge cubies into three invariant subsets, each
containing 4 edge cubies (can’t move edge cubie from one subset
to the other using only half-twists)

– Moving edge cubies using quarter-twists (but “divided by” half-twists:
using the group theory concept of cosets and normal subgroups)

Divide and Conquer: Groups, Subgroups and Cosets

GROUP:
COSETS:

SUBGRP:

Groups, Subgroups and Cosets

1. Rubik’s cube forms a natural mathematical group

(a) Identity transformation (do nothing)

(b) Inverse transformation (do opposite of previous move)

(c) Associativity (do first two moves, then third; or do first move; then
next two)

2. The set of all transformations generated by quarter- or half-turn twists is
a group.

3. A subgroup is a subset of transformations, such that composition of
transformations stays within the subgroup (example: all transformations
achievable by half twists (180 degrees))

4. If a group G of size |G| has a subgroup H of size |H|, then there are
|G|/|H| cosets. Given a transformation g ∈ G, each coset Hg is a set of
transformations given by:

an arbitrary transformation from H followed by the transforma-
tion g

Symmetries and Fast Multiplication

1. Rubik’s cube has 48 symmetries that take quarter-twist moves to quarter-
twist moves:

(a) 24 of them correspond to physically turning the cube to show a
different face

(b) There is also an inversion symmetry (take each cubie to its opposite
one).

(c) Combining inversion with the original 24 yields 48 symmetries.

2. A symmetrized coset is a collection of cosets that are equivalent under
symmetries.

3. The advantage of symmetrized cosets is that if a given coset is n moves
away from the trivial coset (original subgroup), then so is every other
coset of the symmetrized coset.

Fast Multiplication

Using the idea of a small normal subgroup of the given subgroup, one can
derive a fast table-based lookup of the product of a symmetrized coset by a
generator. The key idea is that the small normal subgroup and the number
of cosets of the normal subgroup are both small enough to fit in L2 cache
(modulo some mathematical manipulations). The details are outside the

scope of this talk.

Sizes of Subgroups, Numbers of Cosets

The theory is clear enough, but what systems techniques are needed to make
it work?

1. A subgroup based on 180 degree twists (only 663,552 states: only 15,752
states after symmetries)

2. An efficient perfect hash function on cosets (based on ideas of mixed
radix)

3. Only 2.8×1012 cosets (and a hash array that’s not much larger)

4. Storing only 4 bits per state for each coset: level of coset in breadth-first
spanning tree.

Bottom line: hash array is small multiple of 1.4× 1012 bytes; how to store
and access it?

Algorithm to Bound Number of Moves Needed for Rubik’s Cube

1: Initialize array of symmetrized cosets with all levels set to unknown (four
bits per coset).

2: Add trivial coset to array; set level ` to 0.
3: while previous level had produced new neighbors, at next level do
4: {Generate new elements from the current level}
5: Let a segment be those nodes at level ` among N consecutive elements

of the array.
6: Scan array starting at beginning.
7: while we are not at the end of the array, extract next segment of array

and do
8: for each node at level ` (representing a symmetrized coset) do
9: for each generator do

10: Compute product by fast multiplication.
11: Compute hash index of product.
12: Save hash index in bucket b, where b is the high bits of the

hash index. Note, we only save the low order bits of the hash
index not encoded by the bucket number. (This value fits in
four bytes.)

13: If bucket b is full, transfer it (write it) to a disk file for bucket b.
14: Transfer all buckets to corresponding disk files.
15: {Now merge buckets into array of symmetrized cosets.}
16: for each bucket b on disk do
17: Load portion of level array corresponding to bucket b into main

memory.
18: for each buffered element on disk for this bucket (read in large

chunks) do
19: Look up corresponding level value in array.
20: If a value already exists for the element, it is a duplicate.

Otherwise, set its level to `.
21: Write portion of level array back to disk.
22: Increment level `.

PART II: Disk-Based Parallel Computing

Disk as the New RAM

Bandwidth of RAM: 3.2 GB/s (PC-3200 RAM, single channel)
Bandwidth of Disk: ˜ 50 MB/s
Bandwidth of Cluster of 64 nodes: 3.2 GB/s

Issues: Bandwidth of Network, ability of CPU to keep up

Disk: the New RAM (example)

Initial Testbed: large search and enumeration

• Key data structure: sorted array

• Key algorithm: sorting⇒ merge, union, intersection
(sorting on disk done as external sort: 4 passes in practice; fewer
passes when there are opportunities to pipeline it with previous phase
of computation)

Problem: Insertion of new elements

Solution: Defer insertions; sort elements to insert; and merge them into
sorted array in large batch

Space-Time Tradeoffs using Additional Disk

Application: Search and Enumeration Problems

Branch-and-Bound, A∗ search

Given a state, and a generator/operation, produce a new state
This gives rise to a natural graph in which nodes correspond to states,
and edges are labelled by generators or operations. A search/enumeration
proceeds by breadth-first search, developing a spanning tree.
Potential applications (some of it is future work):

• Enumeration of Orbit Elements

• Orderly Generation of Brendan McKay (symmetry and search)

• Gröbner bases, Knuth-Bendix, similar “completion algorithms”

• SAT (satisfiability) Example use: VLSI circuit verification

• Integer Programming
Example use: Travelling Salesman Problem, Airline schedules

Outline

Disk-Based Computation
General Philosophy in case of Search:

Two-Bit Trick

• Assumes dense, perfect hash function w/ inverses (no hash collisions)

• Breadth-first search, storing level of node modulo 3 of spanning tree in
hash table (2 bits/node)

• Given a node, can now find minimal length path to origin:

1. Look up level of current state in hash table

2. Given state, use operators to find all neighbors of node

3. Look up levels of all neighboring states in hash table

4. Choose a state whose level is one less than the current level, modulo 3

5. Repeat on the newly chosen state

Showed Rubik’s 2×2×2 cube (corners, only) always solvable in 11 moves.
Used 1 MB on a SUN-3 workstation having only 4 MB of RAM. G. Cooperman,

L. Finkelstein, and N. Sarawagi, Applications of Cayley Graphs, Algebra, Algebraic Algorithms and Error-

Correcting Codes (AAECC-8), Springer-Verlag Lecture Notes in Computer Science 508, pp. 367–378, 1990.

(Also in G. Cooperman and L. Finkelstein. “New methods for using Cayley graphs in interconnection

networks”, Discrete Applied Mathematics, 37/38, pp. 95–118, 1992.)

Outline

Disk-Based Computation

1. Data Structure: Distributed Database of Key-Value Pairs

2. Building Blocks: Algorithmic Subroutines

3. Integration into General Search Routines

4. Example Large Computations: Baby Monster; Rubik’s Cube

5. Other Applications

6. Natural API (in progress)

Outline

Disk-Based Computation

1. Data Structure: Distributed Database of Key-Value Pairs

(a) Goals

i. Key-Values: Set(key, value); Get(key); Delete(key)
ii. Duplicate Elimination

(b) Data Structures for Database

i. Distributed Hash Array
ii. Distributed Sorted Array

iii. Double Hashed Array: (hybrid of above two data structures)

2. Building Blocks: Algorithmic Subroutines

3. . . .

Outline

Disk-Based Computation

1. Data Structure: Distributed Database of Key-Value Pairs

(a) Goals

(b) Data Structures for Database

2. Building Blocks: Algorithmic Subroutines
distributed hashing, sorting, duplicate elimination, binary search, batch-
ing of queries, pipelining of computations, striped access to distributed
data structures, on-the-fly compression and expansion of data structures,
Bloom filters, two-phase commit in support of persistent data, structures,
. . .

3. . . .

Outline

Disk-Based Computation

1. Data Structure: Distributed Database of Key-Value Pairs

(a) Goals

(b) Data Structures for Database

2. Building Blocks: Algorithmic Subroutines

(a) EXAMPLE: Bloom filters: Use hash array with only one bit per hash
entry; We wish only to record if key is present or not present in hash
table; Use k hash functions, and for a given key, set k bits of hash table
(one bit for each hash function); To test presence of key, test all k bits;
This greatly reduces hash collisions.

3. . . .

Outline

Disk-Based Computation

1. Data Structure: Distributed Database of Key-Value Pairs

ii. Data Structures for Database

i. Distributed Hash Array: Good for key-value database
Batching of queries important for efficiency

ii. Distributed Sorted Array: Good for duplicate elimination
Given source of new key-values, externally sort it, and compare
with original sorted array; Merge on the fly

iii. Doubly Hashed Array: Good for duplicate elimination
Key-value pairs stored in buckets, based on high bits of hash index;
High bits also determines node to hold bucket;
Key-value pair stored unsorted in bucket; For duplicate elimination,
sort elements of bucket in RAM

2. Building Blocks: Algorithmic Subroutines

3. . . .

Outline

Disk-Based Computation

4. Example Large Computations:

(a) Construction of Permutation Representation of Baby Monster
GOAL: enumerate al 13,571,955,000 “points”
Each point given as a vector of dimension 4,370 over GF(2) (547 bytes
per “point”)
STORAGE: about 7 terabytes (13, 571, 955, 000×547 bytes)
TIME: About 750 hours BOTTLENECK: RAM: limited by speed of
reading vectors/matrices from RAM for matrix-vector multiplication

(b) Rubik’s Cube

Outline

Disk-Based Computation

4. Example Large Computations:

(a) Construction of Permutation Representation of Baby Monster

(b) Rubik’s Cube
˜4.3×1019 states
Square subgroup of about 6.6×105 elements
SUBGOAL: enumerate all 6.5×1013 cosets (4.3×1019/(6.6×105))
Reduction: Only enumerate cosets up to symmetries of cube
About 1.5×1012 symmetrized cosets
STORAGE: 1 byte per symmetrized coset (1.5 terabytes) times a
factor of at least two for frontier expansion in search

Outline

Disk-Based Computation

5. Other Applications:

(a) Integer Programming
Example use: Travelling Salesman Problem, Airline schedules

(b) SAT (satisfiability) Example use: VLSI circuit verification

(c) Applications to distributed linear algebra

1. Natural API (in progress)

Relative Speeds: CPU, RAM, Disk and Network

CPU bandwidth 2,400 MB/s (3 GHz × 8 byte words)
Network bandwidth 100 MB/s (1 Gb/s theoretical max
(point-to-point) for Gigabit Ethernet)
Network bandwidth 1,000 MB/s (varies by vendor)
(aggregate)
RAM bandwidth (DDR-400) 3,300 MB/s (maximum)
Disk bandwidth (per disk) 50 MB/s (typical)

Aggregate bandwidth of 50 disks: 50×50 = 2,500 MB/s

Duplicate Elimination

Optimization: eliminate duplicate insertions before merge; Use a new hash
array in RAM to accumulate elements to insert. Need only store one bit per
hash element: 1 = present; 0 = not present

Example: AI search: enumeration of states via open queue, as in breadth-
first search

1. If element to insert hashes to 0, it is new; add to open queue on disk

2. If element to insert hashes to 1, it is either a hash collision or a duplicate:
add to collision queue on disk

3. Continue to read from open queue and hash its neighbors: neighbors will
also be stored in open queue or collision queue

4. sort collision queue and eliminate duplicates

5. sort open queue

6. merge collision queue, open queue and original sorted array on disk

7. elements of collision queue that are determined to be new become the
next open queue, and we repeat step 1.

Duplicate Elimination (case 2)

• Hash array too large for RAM; must be stored on disk

1. All new elements to insert are saved on disk in open queue

2. As neighbors of elements in open queue are expanded, portions of the
open queue are transferred into a closed set

3. The closed set is then externally sorted according to hash index

4. The closed set is then merged into the existing hash array

NOTE: Both RAM-based and disk-based hash arrays adapt easily to
distributed computing. Each node is responsible for a contiguous sequence
of hash indexes.

Optimization: Bloom Filters

Recall in-RAM hash array with one bit per hash element: 1 = present; 0 =
not present; Idea of Bloom filters:

1. Make hash array k times larger (retain same load factor for hash array)

2. Define k distinct hash functions

3. For each new element, apply all of the k hash functions, and set each
corresponding entry of the hash array to 1

4. If any entry of the hash array was formerly 0, then this element is new:
add to open queue

5. Else, add to collision queue

Example: Assume for simplicity that no duplicates are generated.
if the original hash array had a load factor of 1/2, then the new hash array
will be k times larger, but the the size of the collision queue will be reduced
by a factor of 1/2k.

Computation for Rubik’s Cube

(joint work, Daniel Kunkle and C.)

Rubik’s cube has approximately 4.3×1019 states

20-year conjecture: all states of Rubik’s cube can be solved in at most
20 moves (known as “God’s number”)

How close can we get?

Standard strategy: partition 4.3×1019 states into cosets of equal size

Previously (Reid, 1993): Each coset has approximately 1010 states;
approximately 5×108 such cosets to check;
all states solved in 29 moves (recently shaved to 27 moves)

Planned: Each coset has approximately 104 states;
after symmetries, only 1014 cosets to check; (required data structure fills
about 6 terabytes of aggregate disk);
small cosets imply that each can be checked fully.

Space-Time Tradeoffs Again

Why is Larger Memory Important?

1. Devil’s Advocate: Problems are mostly in P or NP. Problems in P are
doable. Problems in NP blow up so fast, that very few problems will be
solvable just because we have 100 times as much memory.

2. Answer: Why are faster CPUs important? Problems in P are doable.
Problems in NP blow up so fast, that very few problems will be solvable
just because CPUs are 100 times faster.

How do we Use Very Large Memory?

Question: What does a program want from large memory?
Answer: Fast, large look-up table for key-value pairs. Question: What does

one want from key-value tables?

1. Dictionary Operations (à la Cormen, Leiserson, Rivest, Stein): Add,
Delete, Next Value, Random Value, etc.

2. Convert table format to more efficient format among:

(a) Convert to larger hash table (or smaller one)

(b) Convert to sorted array

(c) Convert to binary tree

(d) . . .

Richness of Algorithmic Techniques

• Based on:
E. Robinson, D. Kunkle, and G. Cooperman,
“A Comparative Analysis of Parallel Disk-Based Methods for Enumerat-
ing Implicit Graphs”,
Proc. of PASCO-07 (Parallel Algebraic and Symbolic Computation,
2007, to appear

Richness of Algorithmic Techniques

1. Landmarks: Instead of storing all states in the graph, store only a small
fraction (the landmarks)

(a) Non-landmark states can be stored more compactly as a shortest path
to a landmark.

(b) Non-landmark states can simply not be stored. (Riskier, but by starting
from each landmark, one can recreate all other states. When we
approach a second landmark, we halt the expansion from the first
landmark.)

Richness of Algorithmic Techniques (cont.)

2. Two-bit trick: (reviewed earlier)

(a) Requires perfect, reasonably dense hash function

(b) Can be combined with ideas from Bloom Filters

(c) Added benefit of finding levels within breadth-first spanning tree

Algorithms: Delayed Duplicate Detection

3. Delayed Duplicate Detection

(a) Sorting-Based DDD

(b) Hash-Based DDD

(c) Tiered Duplicate Detection

Algorithms: Sorting-Based Duplicate Detection

3. Delayed Duplicate Detection

(a) Sorting-Based DDD:

i. Save all frontier states on disk, and externally sort it.
ii. Then compare with list of known states.

(b) Hash-Based DDD

(c) Tiered Duplicate Detection

Algorithms: Hash-Based Duplicate Detection

3. Delayed Duplicate Detection

(a) Sorting-Based DDD

(b) Hash-Based DDD:

i. Hash states.
ii. Use upper hash bits to determine a bucket of states on disk.

iii. Save frontier states in appropriate bucket.
iv. Lower hash bits can be used to compare against known states in a

corresponding bucket.
v. Tiered Duplicate Detection

Algorithms: Tiered Duplicate Detection

3. Delayed Duplicate Detection

(a) Sorting-Based DDD

(b) Hash-Based DDD

(c) Tiered Duplicate Detection: Use frontier queue, and collision queue;
along with a hash array of 1-bit slots.

i. If hash slot is 0, it must be new: add to frontier.
ii. If hash slot is 1, it may be old or it may be new (hash collision with

another state): add to collision queue.
iii. Later, sort and process (relatively small) collision queue.
iv. Note: Can stop and process collision queue at any time: either

before current frontier level is complete, or after completing several
levels.

Algorithms: Structured Duplicate Detection

4. Structured Duplicate Detection: Use structural information about the
state space. (more specialized to problem)

Algorithms: Frontier Search

5. Frontier Search (Korf)

(a) Normally, need only check against duplicates in the current level, next
level, or previous level.

(b) Frontier search eliminates the need to check against duplicates in the
previous level.

(c) Upon processing a state from the current level, find neighbors and
at each neighbor, store a bit indicating the inverse generator/move
compared to the current one used

Algorithms: Implicit Open Search

6. Implicit Open Search

(a) Used for Rubik’s cube

(b) Open List exceeds available disk space

(c) Relies on 2-bit trick, and delayed duplicate detection

(d) Scans entire hash array stopping at frontier states

