
A Semantic Matcher
for Computer Algebra

Gene Cooperman
GTE Laboratories, Incorporated

40 Sylvan Road
Waltham, MA 02254

1. Introduction

An experimental semantic matcher for computer algebra
systems has been developed. Certain new features make it pas-
sible to use a rule-based system for tasks which could not pre-
viously have been done with traditional rule-based matchers.
The new system is also easier and faster to write for many
problems than hard-wired code. As an experimental program,
little attention has been paid to speed, subject to the require-
ment of human patience that at least several rules per second
be executed.

As a demonstration of its power, a differentiation package
has been written for both partial and total differentiation. The
emphasis was on functionality, rather than convenient user dis-
plays. The rules and predicate functions required three pages
of code.

Future tests will include an attempt to emulate the higher
methods of the PRESS system. [l] A working system would
make available to other computer algebra systems the equation-
solving abilities of PRESS.

The current implementation runs either as a stand-alone
package or as a package in MACSYMA [6]. It contains no
parser or display package aside from LISP’s own. However, it
is hoped that the internal representation is sufficiently simple,
so that it can be easily interfaced to other LISP-based systems
to take advantage of their parser, display, and built-in algebraic
routines.

2. Features of Matcher and Comparison with Some
Existing Systems

Features of the matcher include:
1) individually user-declarable attributes for all functions.

Current attributes correspond to the abelian group axioms:
commutativity, associativity, identity, and inverse. The first
three attributes are the same as discussed by McIsaac (71, where
commutativity is called symmetry in that article. The matching
algorithms for handling attributes here are also similar to [7].
This is similar to SMP’s [2] properties on symbols. However,
the attributes in this matcher affect only whether a match

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

occurs. They do not cause the arguments to be reordered or
expressions altered in the absence of any rules, as does SMP.
Michael Genesereth described, a matcher with such attributes
in an unpublished manuscript [5], but it was not included in
MACSYMA.

2) restriction of pattern variables to match expressions
according to user-defined predicates. For example, the state-
ment matchvariable(even. (lambda (x), numberp(x) and
is(x mod 2 - 0))) might be used in conjunction with the
rule cos (even*var> + 1, where var matches arbitrary expres-
sion. This is similar to MACSYMA’s matchdeclare property, or
SMP’s conditions on generic symbols used in patterns.

3) restriction of function pattern variables to match
functions according to user-defined predicates. This is

necessary for such rules as diff(fnc(expr) ,x)+ par-
tialdiff (fnc (expr)) *diff (expr.x). “fnc” can be declared
a function pattern variable, which matches any symbol in func-
tional position, subject to a user-defined matchfunction pred-
icate similar to the matchvariable predicate in item 2, above.
This feature does not seem to exist in current matchers.

4) the ability to define predicates of more than one argu-
ment associated with more than one pattern variable. These
are associational predicates. Evaluation of the associational
predicate is delayed until all pertinent pattern variables are in-
stantiated. If the matchvariable predicates on the individual
variables have been satisfied, and the associational predicate
fails, then the last instantiation of a pattern variable of the as-
sociational predicate is rejected, and the matcher proceeds as if
that pattern variable’s matchvariable predicate had failed. For
example, diff (no-has-var ,var) -+ 0, where an associational
predicate waits until both nohas-var and var have been instan-
tiated, and then tests if no-has-var contains var with a custom
LISP function. Moses’s SCHATCHEN matcher [8] (used inter-
nally in MACSYMA) has a similar facility, “loop”. By declaring
the appropriate functions such as ‘+” to be commutative, and
declaring its identity, 0, the associational predicate will exhibit
the same behavior as “loop” facility in testing the associational
predicate on all combinations of instantiations of terms which
satisfy the individual matchvariable predicates. MACSYMA’s
user-level pattern matchers do not support this delayed eval-
uation. The manual on SMP is unclear as to whether this is
supported.

5) evaluation of subexpressions in the replacement of the
pattern within the environment existing at the time of the
match, including pattern variable bindings. For example,
a + a+1 and a -B match-eval(a+l) would differ in that 4
would transform to 4+1 under the former rule, and 5 under
the latter rule. A second construct, match-evalllplicing acts
similarly, but splices a list into a list of arguments. For ex-

0 1986 ACM 0-89791-199-7/86/0700-0132 7% 132

ample, if “+” had not been declared associative, one might
want a rule: ‘+‘(‘+’ (restafargs) , rest_ofargsZ) +

‘+‘(match-eval-splicing(rest-ofargs. rest-ofargs2)).
The pattern variables rest-ofargs are rest pattern variables dis
cussed in item 6. match-eval can be especially important to
manually control resimplification on a rule by rule basis if full
resimplification of expressions after every rule application is not
desired. The facility, match~val, is also provided in Moses’s
SCHATCHEN matcher (81 under the name eval.

6) “rest” pattern variables able to match several argu-
ments, similarly to the &rest lambda-list keyword in COM-
MON LISP and SMP’s multi-generic symbols for patterns. A
rest pattern variable matches a sublist of the list of arguments
of a function. By creating a new list to which the rest pattern
variable is instantiated, this facility can be thought of as a par-
tial inverse to matchevalsplicing, which splices out one list.
For an example, see the discussion of the previous item. A con-
cept similar to rest pattern variables is discussed by Mclsaac [7]
under the name, Uellipsis”.

7) association of flags with every expression and subex-
pression. This allows information to be cached, allowing more
efficient rule-based systems. In Backus-Naur form, the internal
form of an expression operated on by the matcher, is:
expression : : -

LISPAtom 1 ((function {flag}‘) {expression}*)
The {...}’ indicates zero or more of the item in braces. This
is similar to MACSYMA’s internal form for general represen-
tation. An example of its use might be to cache information
about an expression. For example, the expression matched to
nohas-var in item number 4, above, might have that infor-
mation cached so that it could be retested later, if the same
instantiation was attempted later.

8) grouping of rules into rule-sets which can be separately
enabled, disabled, traced, and untraced.

9) utilities for easily defining, obtaining, and removing
rules, attributes, and match predicates for variables and func-

3. Example: Partial and Total Differentiation

The package for partial and total derivatives requires about
30 rules and 80 lines of code in Franz LISP. The code defines
the matchvariable, matchfunction, and associational predicates.
The package was completed in less than two days. This was
facilitated by the availability of tracing of rules for debugging.

The code embodies partial and total differentiation, user-
defined derivatives (similar to “gradef’ in MACSYMA), and
handling of dependencies of variables (similar to ‘depends” in
MACSYMA). It handles both explicit functions such as f(x),

and implicit functional dependencies declared by such state-
ments ae depends(y,x). The package wss used with MAC-
SYMA to take advantage of MACSYMA’s parsing, display, and
simplification of expressions. Simplification of expressions can
also be handled in a rule-based manner, but for reasons of ef-
ficiency, one might prefer to carry out low-level simplifications
with hard-wired code.

Its use is shown below in a mode in which a single rule
at a time is applied by the match function. The functions, pd
and td, symbolize partial and total differentiation, respectively.
The symbol ‘%” refers to the expression on the immediately
preceding line, beginning with “(d<number>)“.

(~71) grader (f (xl, iprime(;
/* user-defined gradient of inc.. f is iprime */

(d71) f (xl

(~72) matchftdff (y**2) .y)) :
a

cd791 2 y fprime(y 1

(~81) match(pd(f (y**2>)) ;
/* pd(f(y**2)) is different from tdff(y**2).y) */

2

cd811 fprimefy 1

(~82) depends(y,[eps.kl,k2],eps.[kl,k2l,kl.3);
/* y depends on eps, kl. and k2; etc. */

Cd821 Cyfeps, kl, k2). epsfkl, k2), kI(311

(c89> match(td(y.e)) ;
/* chain rule for partial derivatives */

dkl dy deps dkl dy
(dQ2) --- --- + --_- --- ----

de dkl dkl de deps

(~93) match(pd(y,kl));
/* single partial derivative */

(d93)
W
_-a

dkl

4. Previous Work

The matchvariable concept used here is inspired by the
matchdeclare concept in Fateman’s matcher for general MAC-
SYMA expressions. [3] Many newer features have been added in
order to allow more complicated bodies of mathematical knowl-
edge to be easily expressed in a rule-based manner. The previ-
ous examples are some cases in point.

Michael Genesereth [g] had previously written a matcher
using Fateman’s matchdeclare concept in which one could de-
clare addition and multiplication to have any combination of
the properties commutative, associative, identity, and general
field axioms. This is similar to our attributes, but they were
not extended to apply to arbitrary functions. The previous
examples stand here, also, as caees where the newer features
described in this paper would be desirable.

SMP [2] and Mclsaac [7] use properties that perform some
of the same functions es our attributes. Their properties include
Flat, Comm, and Dist (associative/symmetric, commutative,
and distributive). Some of SMP’s properties, such as dist, are
implemented as rules in our system. Mclsaac contains ellipsis
and SMP contains multi-generic symbols of the form $$var, that
serve a similar purpose to our rest arguments. Certain of our
features (e.g.: matchfunction, matcheval, rule-sets) have no
analogue in those systems.

An early rule-based computer algebra system had been de-
signed by J. Fenichel. [4] He used a purely syntactic matcher
and rules for commutativity, associativity, and more com-
plex axioms, in order to algebraically simplify expressions.
Fenichel’s system performed correctly but slowly, because the
basic axioms (our attributes) were expressed by rules. Thus
simplifying (a+(b+(c+d))) to (((a+b)+c)+d) required several
applications of the associative rule, possibly including back-
tracking. The philosophy of this matcher differs in incorpo-
rating the commonly used axioms in our system as separate
attributes, and leaving only the “special-case” rules for the
matcher.

A more recent example of a rule-based computer algebra
program is Bundy’s PRESS program for elementary algebra.
[l] This is of special interest since it also has the goal of

133

expressing a large body of mathematical knowledge in a man-
ner depending heavily on rules. Some of the rules of PRESS
are being implemented in this matcher to gain experience on
the strengths and weaknesses of using this matcher. The more
important test, to be carried out, is to emulate in this matcher
some of PRESS’s higher level methods, which had not been
implemented in rule-based form. The tendency of PRESS has
been to use rules at the lower levels, and nse hard-wired code
at the higher levels which are able to use the lower level rules.
The interest in this work is to incorporate Ihigher constructs in
the rule-based matcher, so as to directly express higher-level
knowledge in a rule-based form.

5. A Matcher aa a Programming Language

The combination of the rule-based and procedural style can
be more advantageous than either one alone for programming
mathematical algorithms. Where the rule-based paradigm is
natural, its extreme modularity causes the resulting program
to be easier to understand, debug, and maintain. By making
use of the matcher, a rule-based program will often be shorter
than its procedural counterpart. Yet procedural programs are
more natural in contexts where the algorithm is most naturally
expressed in a procedural manner, or the greater efficiency of
direct coding is required.

The coexistence of the two styles is especially important
for low-level manipulations which are more efficiently done by
standard LISP code. Any LISP program may call the matcher,
and the matcher may call any LISP program. An example fol-
lows to demonstrate how a LISP program may be incorporated
in the rule-based system.

defrule(univorsal_expr. match-eval(replacement))

(matchvariable ‘$universal-expr #‘universal-program)
(declare (special replacement))
(defun universal-program (arg)

(cond ((eq *total-target* arg)
(setq replacement

(arbitrary-program arg)> t)
(t nil))>

The condition (eq *total-target* arg) is required to
guarantee that the subexpression being matched by univer-
salsxpr is the full top-level expression. With that sole condi-
tion satisfied, arbitrary-program is applied to the target and
the result bound to the special variable, replacement. The
match-eval then returns the value of replacement.

The effect of subroutines can be obtained by the matcher
changing the active rule-set, and declaring a rule in the new

active rule-set which deactivates it, and reactivates the old rule-
set when no more matches apply in the new rule-set. An al-
ternative technique is for the matcher to recursively call itself.
Procedural algorithms with several steps can also be emulated
by having each rule-set deactivate itself, and activate the next
rule-set when no more rule applications are possible.

6. Future Work and Conclusions

Experience with incorporating other bodies of mathemati-
cal knowledge will determine the strengths and the limitations
of this style of programming. The two days to program and
debug the differentiation package discussed here, demonstrates
the usefulness of the matcher for a domain in which the rule-
based paradigm is natural. One would ultimately like to use the
matcher to create large mathematical expert systems to accom-
plish some of the same tasks for mathematics that traditional

expert systems have accomplished for other domains. One is
not restricted to using only the rule-based approach since the
two programming paradigms can coexist.

Certain restrictions are in effect in the current matcher.
The interaction of multiple rest arguments with matchvariable
properties of the rest arguments can be ill-defined. Matchvari-
ableassoc has not been fully tested with commutative and as-
sociative functions. These restrictions may be lifted in future
versions.

A possible future application involves keeping a subset of
the rules in restricted form so as to allow automatic derivation of
useful, new rules to be installed. The Knuth-Bendix completion
algorithm is one such technique which has been used for rewrite
rules. The feature of interchangeability of program and data is
already familiar to users of LISP and PROLOG.

In line with the expert systems paradigm, this matcher
is expected to be most useful in mathematical domains with
numerous algorithms, heuristics, or rules-of-thumb, which are
not expressed easily in the language of an existing computer
algebra system. Examples might include asymptotic analysis,
transforming expressions to self-adjoint form, transformation
of differential equations to numerical FORTRAN programs, or
specialized domains for which the effort of writing a full com-
puter algebra package is not worthwhile.

7. Acknowledgements

The author gratefully acknowledges the programming as-
sistance of Jeffrey Higginson and Bradley Turner. He also
wishes to thank Jeffrey Golden for many helpful discussions
on the design of a matcher for computer algebra. He wishes to
thank Bernard Silver for fruitful discussions on the techniques
and architecture used by PRESS. Finally, he wishes to thank
the reviewers for their helpful suggestions.

References

[I] A. Bundy and B. Welham, “Using Meta-Level Inference for
Selective Application of Multiple Rewrite Rules in Al-
gebraic Manipulation”, Artificial Intelligence 16, #2,
1981

(21 C. Cole, S. Wolfram, et. al., SMP: a Symbolic Manipulation
Program (Manual, Version one), Cal. Inst. Technology,
1981

[3] R. Fateman, “The User-Level Semantic Matching Capabil-
ity in MACSYMA”, A.C.M. Proceedings of the Second
Symposium on Symbolic and Algebraic Manipulation,
Los Angeles, Cal., March, 1971

[4] 12. Fenichel, FAMOUS, M.I.T. Ph.D. Thesis, Cambridge,
Mass., 1969

[5] M. Genesereth, no title (unpublished manuscript), M.I.T.,
1979

[6] MACSYMA Reference Manual, (Version lo), The Math-
lab Group, Laboratory for Computer Science, M.I.T.,
Jan., 1983

[7] K. McIsaac, “Pattern Matching Algebraic Identities”, SIG-
SAh4 Bulletin, 19, #2, May, 1985

[8] J. Moses, “Symbolic Integration”, Chapter 3, MAC-TR-
47, Project MAC, Dec., 1967 (available from Defense
Document. Center, AD # 662666)

134

