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(3) 
Third order nonlinear optical susceptibilities X of GaAs/Gal_xAiAs 

superlattices have been predicted which are two orders of magnitude 
larger than those of bulk GaAs. This enhancement is due to the band 
nonparabolicity arising from the additional periodicity of the super- 
lattice. These predictions, based on a tight-binding model of the 
superlattice dispersion, are here extended to the more realistic 
Kronig-Penney (KP) model. Corrections to tight-binding are non- 
negligible; however, enhancements of X (3) are still large but reduced 
approximately 30%-50% over previous estimates. The KiP model is also 
here applied to superlattices employing InSb as the quantum well 
material. Because of the smaller effective mass of InSb, and taking 
account of its bulk nonparabolicity, the minibands move to higher 
energy, enhancing the interwell overlap and increasing X TM by about 
one order of magnitude over that of bulk InSb. The role of the barrier 
material in this case is important and is discussed. The interplay be- 
tween the bulk nonparabolicity and that arising from the superlattice 
is also addressed. 

Introduction 

In two earlier communications, I'2 large en- 
hancements of the third order nonlinear optical 

susceptibility x (3)" were predicted for GaAs/ 
GaAIAs superlattices due to the band nonparabol- 
icities introduced by the additional periodicity 
of the superlattice. These earlier predictions 
were based on a tight-binding model of the 
electron's energy dispersion in the direction 
perpendicular to the layers. In the present pa- 
per, the validity of the tight-binding (TB) 
approximation is investigated and corrections 
are found to it. Assuming the validity of ef- 
fective mass theory within the layers and abrupt 
conduction band discontinuities, the electron's 
dispersion is given by the Kronig-Penney (KP) 
model. A Taylor series expansion of the KP dis- 
persion relation is developed which gives TB in 
lowest order and correction terms in higher or- 
der. These are found for the energy E(k), and 

(3) v ' X ~ (k). (The velocity v = E'(k) and 

effective mass ~ E''(k) -I can also be found by 

this procedure.) Corrections to X (3) depend, of 
course, on the superlattice parameters (well 
size, barrier width, conduction band discontinu- 
ity>, are not negligible , and for the 

GaAs/Gal_xAlxAS superlattices, reduce X (3) typi- 

cally by 30%-50%. Since the original enhance- 
ment of the GaAs/Gal_xAlxAS superlattice with 

respect to bulk GaAs was by a factor = 102 , the 
net enhancement is still appreciable. 

The KP model is also applied in the present 
paper to InSb-based superlattices. The motiva- 
tion for this is twofold. First, the component 
of electric field in the plane of the layers 
will yield a nonlinear contribution, in view of 
the bulk nonparabolicity of InSb; this was not 
true for GaAs, whose lower conduction band is 
quite parabolic. Secondly, the smaller band ef- 
fective mass m* of InSb as compared to GaAs 
(0.013 me vs. 0.068 me) causes the minibands to 

move to higher energies, enhancing the interwell 
(3) 

overlap and, hence, X ~ v ~'' . However, for 
the recently investigated InSb/CdTe system, the 
conduction band discontinuity is - 450 meV 

(320 meV for GaAs/Ga0.7AI0.3As ) and 

m*(CdTe) = 0.14 m . These two effects, espe- 
e 

cially the latter, result in a more rapid spa- 
tial decay of the electron envelope function in 
the CdTe barrier region, reducing the interwell 
overlap and largely cancelling the enhancement 
effect of the smaller m* of InSb. However, for 
superlattices in which the effective mass of the 
barrier material is comparable to that of InSb 
(InSb/HgCdTe, InSbl_xBex/InSb , InSb/PbTe, 

InSbAs/InSb are possible superlattice combina- 
(3) 

tions), the enhancement in x is about an or- 
der of magnitude larger than for bulk InSb. In 
all these applications, the bulk nonparabolicity 
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of InSb must be taken into account in the 
Kronig-Penney solution for the superlattice. 
This is shown in the present paper, and the ef- 
fect of the bulk nonparabolicity on superlattice 
behavior is discussed. 

Physical Model and Formulation 

As pointed out previously, the enhancement 

in X i3)" " is due to mobile electrons in nonpara- 
bolic (dispersive) energy bands, which in turn 
arise from the additional periodicity of the su- 
perlattice. This converts the bulk band struc- 
ture into a series of minibands, each extending 
over only a small fraction of the original Bril- 
louin zone. In the lowest miniband (the only 
one relevant at realistic doping levels), the 
nonparabolicity results in the Bloch velocity of 
the electron being a nonlinear function of its 
momentum, and it is this feature, in the pres- 
ence of impressed laser fields, which causes the 
optical mixing. In the case of the 
GaAs/Gal_xAlxAS superlattice, a large, third or- 

der nonlinear susceptibility X (3) is obtained 

which is comparable to that of bulk InSb, 3 and 
approximately two orders of magnitude larger 
than that of bulk GaAs. In performing this cal- 
culation, the electron's energy-momentum rela- 
tion in the direction perpendicular to the 
layers was initially taken to be of tight- 
binding form (sinisordal approximation): 

E(k) : t(l-cos kd), 
with 2t the (lowest) minibandwidth, d the super- 
lattice period, anJ k the quasi-momentum perpen- 
dicular to the layers. 

However, the tight-binding form is only an 
approximation valid for weakly interacting quan- 
tum wells, i.e., wide barriers and large conduc- 
tion band discontinuities. If it is assumed 
that the layers are sufficiently wide for the 
(bulk) effective mass approximation to be valid 
within the layers, and if it is further assumed 
that the conduction band discontinuities are 
abrupt, then the electronic motion perpendicular 
to the layers is given by the Kronig-Penney (KP) 

2 
model. In an earlier paper, the KP model was 

used to estimate X (3) ~ , which is proportional to 
the third derivative of the electron's group ve- 
locity with respect to k or, equivalently, to 
the fourth derivative of the energy dispersion. 
These quantities are given as a power series ex- 
pansion, the leading term of which is of tight- 
binding form, while higher order terms represent 
corrections to tight-binding. Specifically, the 
dispersion relation of the electron is written 
as a sum of the energy in the plane of the lay- 
ers (momentum K) and perpendicular to the layers 
(momentum k): 

E(K,k) = ~2K2/2m* + E(k) (i) 

where a parabolic effective mass approximation 
is made for electron motion parallel to the lay- 
ers, while E = E(k) is a solution of the one- 
dimensional Kronig-Penney problem 

cos(kd) : cosh(2k,a)cos(2k2b) 

+ (E/2)sinh(2k,a)sin(2k2b), (2) 

where L 1 = 2b is the well width, L 2 : 2a is the 

barrier width (d : 2a + 2b), 

kl + [2m, I (Vo_E) / ~2]i/z, 
k 2 = [2m* 2 E/J2] I/2, 

= (kl/k 2 - k2/kl), (3) 

and V 0 is the conduction-band energy discontinu- 

ity. 
The procedure used to solve Eq.(2) for E(k) 

and its higher derivatives is to expand its 
right-hand side f(E) in a power series about 
E = E 0 corresponding to the bottom of the band 

k = 0 (though the expansion can be done about 
any point in the band), 

cos(kd) = c O + of(E-E0) + c2/2! (E-E0)~ +.., (41> 

where, in this case, c O = 1 and 

= (~kf/~E k) I E=E0. The justification for c k 

this procedure is given in some detail in 
ref.(2). Solving for E(k) by the method of suc- 
cessive substitution (i.e., iteratively), the 
quantities of specific interest are 

1 [cos(kd)-l] - c2 [cos kd-l] 2 E=Eo+~I 

E ..... __i cos(kd) + c2 [cos(kd)-4 cos(kd)] 
,.,. cl 

+ E (5) 
c 

where the prime denotes differentiation with re- 
spect to (kd). The correction term E c' '' rig- 

orously vanishes if the expansion is at k = 0, 
though not elsewhere. For details, see ref.(2). 
Thus, 

E .... (k = 0) = ~i i -3 (6) 

Before proceeding to our results, we indi- 
cate the generalization of Eq.(2) and Eq.(3) to 
the case in which the quantum well material 
possesses intrinsic bulk nonparabolicities. The 
modification is simply to replace k 2 of Eq.(3) 

by 

k 2 =t~m*2~2 + E ' E ~  (7) 
mg / 

where E is the bulk bandgap of InSb (taken to 
g 

be 160 meV). The parabolic case [Eq.(3)] may be 
recovered by taking Eg ~ = (Eg>>E), and this 

test was used to study the effect of the bulk 
nonparabolicity on the superlattice dispersion 

and X (3) 
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d (A) L 1 (A) L 2 (A) 

GaAs/Ga3AI7As 75 50 25 

InSb/CdTe 

75 50 25 

55 50 5 

75 50 25 

55 50 5 

(-i/c I) 

14.8 

'InSb/InSb' 

(99.4) 

11.6 

(192) 

57.5 

(101.6) 

54 

(194) 

140 

60 50 i0 102.5 

75 70 5 80.5 

c 2 
1-3 --y 

c I 

0.3 

(0.03) 

0.511 

(0.0076) 

0.64 

(0.03) 

0.906 

(7.5xi0 -4) 

3.49 

2.08 

2.19 

c21 

4.4 

(3) 

6 

(1.46) 

37 

(3) 

49 

(0.145) 

489 

213 

176.6 

X (3) (SL) 

(3) 
X (InSb) 

0.19 

(0.13) 

0.26 

0.45 

(0.13) 

2.18 

195 

Entries for Nonlinear Susceptibility Ratios 

Results and Discussion 

Table 1 displays (-i/cl), the effective half- 

bandwidth in the KP model [of. Eq.(5)], the KP 

correction factor (i - 3 c2/c12), their product 

given by Eq.(6), and the susceptibility ratio 

X(3)(SL) / X(3)(InSb). These are given for two 
superlattice configurations specified by 
L 1 = well width, and L 2 = barrier width 

(d = L 1 + L 2 is the superlattice period). Sev- 

eral other configurations were investigated, but 
the results given are sufficiently illustrative. 

For the GaAs/Ga0.7AI0.3As superlattice, 

m* 1 = m* 2 = 0.068 me, and the conduction band 

discontinuity (barrier height) is V 0 = 320 meV. 

The same results are shown for the InSb/CdTe su- 

perlattice, where V 0 = 450 meV 4, m* 1 = 0.14 me, 

and m* 2 = 0.013 m e (i denotes the barrier re- 

gion, 2 the well). Here, the bulk bandgap of 

InSb is taken to be E = 160 meV, while the en- 
g 

tries in parentheses refer to the case 
E ~ ~ , where the bulk nonparabolicity is re- 
g 

moved [of. Eq.(7)]. Finally, the same results 
are shown for a superlattice comprised of InSb 
and a second barrier/well material having the 
same effective mass m* 1 = m* 2 = 0.013 m e • 

= Again, V 0 = 450 meV, Eg 160 meV and the limit 

E ~ ~ is taken. 
g 

For the GaAs/GaAIAs superlattices, the 
(3) 

50 A - 25 A superlattice has a × 0.19 that of 
(3) 

bulk InSb. The × of bulk InSb is ~ 102 

larger than that of bulk GaAs 3, so an enhance- 
ment by a factor ~ 20 is realized over bulk GaAs 
for this case. It is seen that the role of KP 
correction factors, which represent departures 
from tight-binding theory, is crucial in this 
and the following two cases. 

For the InSb/CdTe system, the susceptibil- 
ity ratios are small and are not enhanced. The 
reason for this is the relatively large effec- 
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tive mass of the CdTe barrier region, 0.14 me, a 

factor of i0 larger than that of InSb. This re- 
sults in a more rapid spatial decay of the elec- 
tronic wavefunction in the barrier region, de- 

creasing the overlap and X (3)." For the two 
cases presented, it is seen that the bulk non- 

parabolicity acts to enhance x (3)" of the super- 
lattice, though this is not true in all cases 
examined. The interplay between the two nonpar- 
abolicities involves subtleties that are 
parameter-dependent and must be handled with 
caution. Further study of this feature is re- 
quired. 

Finally, the susceptibility enhancements 
are given for InSb superlattices in which the 
barrier material has a small effective mass com- 
parable to that of InSb. Possible candidates 
are InSb/PbTe, InSb/InSbl_xBix, InSb/InAsSb, and 

InSb/InGaSb, the latter two being strained- 
layer-superlattices. Specifically, we consider 
the InSb/InSbl_xBi x superlattice where the addi- 

tion of Bi results in a shrinkage 4 of the bulk 
bandgap Eg (from 160 meV for x = 0 to 125 meV 

for x = 0.03). This results in a decrease in m e 
since, according to the Kane band theory, 
m* = A E . However, not knowing m* for the al- 

g 
loy, we take it to be the same as for InSb. 
Also, we take the conduction band offset to be 
the same as for the InSb-CdTe superlattice, 
450 meV, From the table, it is seen that en- 
hancements approaching one order of magnitude 

are obtained. Again, the bulk nonparabolicity 
(3) 

enhances x for the cases presented. Although 
the 5 ~ and i0 ~ barriers are perhaps unrealis- 
tically small (effective mass theory is ques- 
tionable here), they have the unique feature 
that c 2 is negative. This means that KP correc- 

tions to TB act to enhance X (3), and this occurs 
only when the bulk nonparabolicity is included. 
We want to understand this interplay better, and 
to extend the calculations to other configura- 
tions and/or semiconductor combinations in a 
search for larger enhancements. It is pointed 
out that only the (semiclassical) contribution 

from the lowest subband to x (3)" has been consid- 
ered; intersubband transitions which would occur 
at higher frequencies would require extension of 
the theory. 
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