
Transparent User-Level Checkpointing for the
Native POSIX Thread Library for Linux

Michael Rieker Jason Ansel
College of Computer and Information Science

Northeastern University
Boston, MA 02115

Email: {mrieker,jansel,gene}@ccs.neu.edu

Gene Cooperman

Abstract— Checkpointing of single-threaded applications has
been long studied [3], [6], [8], [12], [15]. Much less research has
been done for user-level checkpointing of multithreaded applica-
tions. Dieter and Lumpp studied the issue for LinuxThreads in
Linux 2.2. However, that solution does not work on later versions
of Linux. We present an updated solution for Linux 2.6, which
uses the more recent NPTL (Native POSIX Thread Library).
Unlike the earlier solution, we do not need to patch glibc.
Additionally, the new implementation can take advantage of
the ELF architecture to eliminate the earlier requirement to
patch the user’s main routine. This fills in the missing link
for full transparency. As one demonstration of the robustness,
we checkpoint the Kaffe Java Virtual Machine including any of
several multithreaded Java programs running on top of it.

Index Terms— checkpointing, user-level checkpointing, multi-
threaded, Linux, NPTL, NAS Parallel Benchmark

I. INTRODUCTION

SMP computers are becoming more prevalent through com-
modity dual-core chips, and the roadmap of at least one
prominent vendor calls for quad-core commodity chips. This
makes imperative the need for checkpointing of multithreaded
programs. Kernel-level checkpointing packages such as [7]
require modifications to the kernel (or in some cases, kernel
modules that must be updated along with new kernel versions).
Application-level checkpointing packages such as [2] require
the end user to add code for checkpointing.

We present a user-level checkpointing method that provides
transparent library-based checkpointing of multithreaded pro-
cesses. Dieter and Lumpp demonstrated an initial implemen-
tation for LinuxThreads for Linux 2.2 [5]. Unfortunately, that
version does not work beyond the Linux kernel 2.2. The user-
level checkpointing of multithreaded programs we present runs
with NPTL (Native POSIX Thread Library) on Linux 2.6. We
describe the issues encountered in this implementation.

The package checkpoints user address space (including
libraries, data, stack, heap, etc.), threads, open file descriptors,
signal state, mutexes, and process environment. It does not
support checkpointing of shared memory, process ids, and
sockets, since those are related to a collection of processes.
As a demonstration, we checkpoint and restart an entire Java
Virtual Machine including a running Java program.

a) Portability: This implementation is known to run on
Linux 2.6 systems. We wrap the clone system call in order

to maintain a list of threads in the process being checkpointed.
Note that in Linux, pthread create calls clone. Writing
a wrapper for clone instead of pthread create allows us
to capture the location of the stack (an argument of clone), and
therefore we can specify the location of the stack on restart.
We also use the proc filesystem to retrieve the memory layout
and open file descriptor list at checkpoint time.

b) Full transparency: Currently we require the user to
link against a library and add one initialization call. In future
even this will not be needed. It is possible to add an additional
section to an ELF binary containing a wrapper for main and
then modify the entry point of the binary to refer to that new
code.

c) Layout of paper: Section II describes the implemen-
tation. At the time of checkpoint, all memory segments (as
read from /proc) are saved to disk, along with their original
address in memory.

Section II-A describes the checkpointing process. The sys-
tem checkpoints a process by first, at program startup, spawn-
ing a checkpointing control thread. This thread will checkpoint
the program on a user defined interval. To checkpoint, this
checkpointing thread gains control of all other threads by using
signals and then writes out all state to disk, after which it
resumes the suspended threads then hibernates until time for
another checkpoint.

Section II-B describes the restart process. Restart is done by
calling an independent application mtcp_restart. This first
munmaps all of its own memory segments outside of program
code. It then rebuilds the original process by first remapping
the checkpoint library mtcp.so from the checkpoint file.
Control is transferred to that routine, which then continues
reading the checkpoint file into memory to restore remaining
addresses that were in use at the time the checkpoint was
taken. Finally, all threads are restarted.

By checkpointing all memory segments (instead of just
read/write segments), we avoid the difficulty of the random-
ized address space feature of Linux 2.6, where it will load
libraries at randomly selected addresses each time a particular
program is loaded. The kernel developers do this to slow down
the progress of remote, automated vulnerability attacks. See
Section III for details of how this is handled.

We demonstrate scalability by checkpointing NAS Parallel



Benchmarks, both the C version that uses OpenMP and the
Java version under Kaffe. This has the potential to checkpoint
all Java programs simply by checkpointing the Java Virtual
Machine. For details on this see Section IV.

A. Related Work

Transparent checkpointing refers to checkpointing tech-
niques that can be applied directly to application binaries.
This can be a convenience (no source code transformations
needed) or a necessity (vendor-provided software in binary-
only format). There are two forms of such checkpointing:
kernel-level (modifications to the kernel or use of kernel
modules); and user-level (no kernel modifications). (A third
checkpointing style, application-level, requires end users to
make possibly non-trivial modifications to the source code.)

User-level checkpointing was implemented by Libckpt [12],
followed by variations [3], [6], [8]. Variations have been
introduced for more recent architectures, such as the Intel
IA-64 under Linux [15].

Much less work has been done on transparent, user-level
checkpointing. Dieter and Lumpp were the first to produce
a user-level checkpointing program for multi-threaded pro-
cesses in Linux [5]. Unfortunately, that work is based on
LinuxThreads and runs only on Linux 2.2, which is now
obsolete. Abdel-Shafi et al. present user-level thread migration
and checkpointing on Windows NT by taking advantage of
the Brazos run-time parallel system [1]. The current work
describes the issues for Linux 2.6, which uses the NPTL
(Native POSIX Thread Library), instead of LinuxThreads.

Other work on transparent checkpointing of multithreaded
programs includes the application-level checkpointing of
OpenMP applications [2], and a kernel-level checkpointing
package with the additional advantage of checkpointing mul-
tiple processes on a network [7]. SafetyNet [14] provides a
hardware-assisted solution for shared memory multiproces-
sors. See [11] for a web page listing other checkpointing
packages. The work of this paper grew out of earlier work [4]
on single-threaded checkpointing to efficiently support master-
worker parallelism.

II. IMPLEMENTATION

The acronym MTCP stands for MultiThreaded Check-
Pointing. The checkpointing implementation relies on two
binaries: mtcp.so and mtcp_restart. The main idea
is that mtcp.so periodically saves the state of all threads,
memory and list of open files to a checkpoint file. The
mtcp_restart utility can reconstruct the process on de-
mand from that checkpoint file. mtcp.so is the runtime
library added to the users application. mtcp_restart is the
command line utility used to restart a checkpoint.

Currently, to add checkpointing to an existing application,
the user needs only to link against our mtcp.so and add a
call to our initialization routine, mtcp_init, at the beginning
of their main routine. In the next version (in progress), we
eliminate even this minor lack of transparency. This is done
by providing a utility to modify the user binary by adding an

additional ELF section containing our initialization routine.
The new section is made the entry point. It uses dlopen and
dlsym to load and call mtcp_init, after which it calls the
original entry function (main) of the user’s binary.

Section II-A describes how mtcp.so saves the state of the
user’s program to disk. Section II-B describes how the restart
utility, mtcp_restart, reconstructs and restarts the user’s
process. Section II-D discusses the more technical issue of how
to make system calls during restart, when even libc.so is
not yet resident.

A. Initialization and Checkpointing

The initialization and checkpointing is summarized in Fig-
ure 1.

The initial routine registers a signal handler for some signal
(configurable) that is not used by the application. A wrapper
function around clone can modify the input and output
of clone, while using dlopen/dlsym to call the actual
clone library code. It then sets up internal data structures
so that these wrappers can track creation and deletion of
threads. Finally, it spawns a checkpointing control thread,
which arranges for periodic checkpoints.

Periodically, when it is time for a checkpoint, the check-
point control thread signals all other application threads. The
signal handlers cause those target threads to save their integer
registers to their stack through setjmp/longjmp. In addition to
setjmp/longjmp, an assembly routine writes the floating point
registers to the stack. The target threads then wait on a futex
(Linux native condition variable). The checkpoint thread then
writes the state to disk. The state consists of:

1) the contents of all memory regions, including stacks,
code, heap, any dynamically loaded libraries (via dlopen,
etc), mmap’ed regions, etc. This also includes the regis-
ter sets for each thread, since they were saved on their
respective stacks.

2) a list of open file descriptors and the position within the
file they are pointing to. Only “regular” files and ttys
are saved.

3) and per-thread storage area descriptors and per-thread
signal masks.

The details of saved thread state can be found in sec-
tion II-C.

When the checkpoint file is written, the threads are released
from waiting, and the checkpoint thread sleeps until it is time
to write a new checkpoint.

The checkpoint control thread executes this loop:

Loop:
Wait for a few seconds
Signal all known threads to suspend

and check for exited threads
Wait for those threads to all suspend

also check for exited threads
If all known threads have exited,

then this thread exits, too
Write the checkpoint file



Fig. 1. Internals of MTCP (Multi-Threaded CheckPointing)

Resume the suspended threads

The wait operation consists of a simple nanosleep call.
Nanosleep was preferred to sleep because it does not
depend on SIGALRM, which may be in use by the application.

We loop through our internal list of known threads and
use the Linux-specific system call, tkill, to send a user-
configurable signal (e.g. SIGUSR1 or other signal not con-
flicting with the program logic). The Linux-specific clone
wrapper sets up a signal handler for the threads that, when
called, will:

1) save the thread’s state (registers, tls parameters);
2) sets a flag in its state structure indicating that its state

is saved;
3) wake the checkpoint control thread;
4) and then suspend by waiting on a futex cell.

To prevent trouble in case of a crash during the writing of a
checkpoint file, the checkpoint is first written to a temporary
file. Then, when the temporary file is complete, the temporary
file is renamed to the permanent name, thus replacing the
previous checkpoint only with a complete checkpoint. If
desired, it is easy to extend this scheme to save the last “n”
checkpoints for added safety.

B. Restarting

To restart a process from a checkpoint file, the
mtcp_restart command is invoked with the name of the
checkpoint file as its argument. The contents of the address
range that was mmap’ed from mtcp.so at the time of the
checkpoint are written to the beginning of the checkpoint
file. The mtcp_restart routine directly reads this into
memory at the same address where it was found in the
original application. Thus the mtcp.so portion of memory
is restored. The mtcp_restart routine then calls a restart
routine within mtcp.so.

The above assumes that there is no clash between the
addresses used by mtcp_restart and those used by
mtcp.so. Due to address space randomization in future

versions of the Linux kernel, this may not always be true. If
there were a clash, it would be possible for mtcp_restart
to be linked at two widely separated addresses. Then if a
conflict occurs with one mtcp_restart image against the
mtcp.so being restored, the alternative mtcp_restart
can be automatically loaded and the restart can proceed.

The restart routine then performs the following steps.

1) Switch to an internal stack area contained within the
mtcp.so image’s address range.

2) Unmap everything in user address space except the
restored mtcp.so image. All of mtcp_restart,
libc.so, etc. are unmapped. Specifically, we call
munmap on two address ranges: from address 0 to the
beginning of mtcp.so; and from the end of mtcp.so
to the beginning of kernel space.

3) Read the rest of the memory contents from the check-
point file into exactly the same addresses from which
they were written. There can be no address clash,
since mtcp.so was read into memory from that same
checkpoint file.

4) Restore file descriptors and the offsets within files.
Restore signal handlers.

5) Create a new thread for each thread that existed at
the time of the checkpoint and have each thread again
wait on the original futex. (The thread is created
using the Linux-specific clone call, and the orig-
inal stack is passed to clone. The thread calls a
restart_thread routine, which calls longjmp to re-
enter the original signal handler routine and again wait
on the original futex.)

6) Resume all the threads. We call futex once for each
thread to unlock the thread. Each thread will then restore
its registers and signal masks from its own stack and
resume execution where the checkpoint was taken.

7) The checkpoint thread then sleeps until it is time to write
another checkpoint.

The restoration of memory associates the original mapped



files as much as possible, by saving the state indicated by
the filesystem information from /proc/self/maps. This
information consists of the memory address range, the ac-
cess permissions and a filename (if any). Thus, subsequent
checkpoints will have this information available. Also, by
using /proc/self/maps to determine the current memory
configuration, a program is free to mmap and munmap seg-
ments at will, and the checkpoint is able to save an accurate
memory image. Finally, by using /proc/self/maps, it is
not necessary to place wrappers around mmap and munmap.

We found it necessary to wrap the clone system call
to track the creation of threads (see section II-A). By in-
tercepting the child tidptr parameter and forcing the
CLONE CHILD CLEARTID flag, we are able to detect when
a thread has exited and thus we know we do not have to signal
it to suspend when it is time for a checkpoint.

There are some points about item 2, above, that are worth
noting. First, by unmapping all other addresses outside of
mtcp.so, it has also unmapped libc.so. Hence, it cannot
make calls, even system calls in libc.so, that are not part
of the mtcp.so image itself. The solution to this is described
in Section II-D, below.

Second, during the restart process, mtcp.so cannot ref-
erence any memory outside the mtcp.so image address
range, such as would be provided by malloc, as it might
interfere with restoring the restarted process’ memory areas.
This implies that some system calls, such as fopen, cannot
be used for restarting, because they call malloc.

C. Saved Thread State

We also save information about each thread in memory, so
that it will be checkpointed. This information includes:

1) tid — the thread-id as returned by gettid(). It
is used to determine which is the ’current’ thread. It
remains valid even after the thread has exited.

2) mtcp state — the state mtcp considers the thread
to be in. This is an int who’s possible values
are RUNDISABLED (running with checkpoint dis-
abled), RUNENABLED (running with checkpoint en-
abled), SIGDISABLED (has been signaled to suspend,
but checkpoints are disabled and so it continues to
run), SIGENABLED (has been signaled to suspend
with checkpoints enabled), SUSPINPROG (suspend in
progress), and SUSPENDED (state is saved, waiting to
resume). The state may be updated only via atomic
updates (in practice, by the thread itself or by the check-
point thread). The Linux futex system call is used by
threads to wait for a change of the mtcp state.

3) parent, children, siblings — these links are
used to keep track of the thread hierarchy. This is
necessary so that, upon restore, the threads are re-created
with the same hierarchy, in case the application depends
on that hierarchy.

4) clone_flags, parent_tidptr — these are the
values the application originally passed to the clone
through pthread_create. Mtcp detects these values

via a wrapper around clone. It saves the values in
order to recreate the clone with the original flags during
restart. See given_tidptr and actual_tidptr
for exceptions.

5) given_tidptr, actual_tidptr — these are nor-
mally copies of the child_tidptr parameter passed
to the wrapper for clone as its sixth argument. How-
ever, mtcp uses the child_tidptr functionality of
the clone system call to detect when a thread has exited.
The Linux system will clear (zero out) the location
pointed to by child_tidptr when the thread exits
(since Linux 2.5.49). Since the child_tidptr is an
optional parameter to the clone call, if the original call
from user code did not call this value, then the the mtcp
clone wrapper must fill in this parameter with a location
of its own before invoking the actual clone system call.

6) Sigblockmask, sigaction, jmpbuf, fs, gs,
gdtentrytls — these fields are used to save the
thread’s state while it is suspended. They are saved
and restored just like any other memory location in
the restored image. When a restart is performed, our
restartthread function will load these values into
the corresponding thread’s kernel context and the thread
will resume processing as before. Restartthread
does its work via the system calls set_thread_area
(for gdtentrytls), sigaction, sigprocmask
(for sigblockmask) and an assembler mov instruc-
tion to load the fs and gs registers. Finally, it calls
longjmp on jmpbuf to restore the stack pointer and
other registers.

D. Making System Calls during Restart

We need to have all references by the mtcp.so restart
routine resolved within the mtcp.so image itself, since, when
mtcp.so restart is running, it can only depend on addresses
within its own image mapped. Everything else, including
libc.so, has been unmapped. (See Section II-B.)

Simply performing a static link of mtcp.so with libc.a
presents a problem. Suppose a restart routine within mtcp.so
references a system call such as read. This leads to the
following problematic scenario.

1) Linking mtcp.so statically dutifully includes read.o
from libc.a in mtcp.so.

2) When the application, linked to mtcp.so, is run, how-
ever, the dynamic loader links the restart routine’s read
call to the external libc.so rather than to the internal
copy of read.o.

3) When the restart is attempted, the mtcp.so restart
routine points to the read within the application’s
libc.so. But it no longer has access to this dynam-
ically linked read, as it hasn’t been restored yet. The
internal, statically linked copy of read, though still
present, is not referenced.

To work around this problem, for each system call used by
the restart program, we:

1) extract the object file from libc.a;



2) disassemble to a source file; and
3) include that disassembled source as part of the assembly

of the restart module.

Since all sources for the restart module are assembled as
one source file, as far as the dynamic loader is concerned,
it has no external symbol references as they are all resolved
at assembly time. Thus the dynamic loader will not be able
to redirect any references to libc calls, such as read, to the
external libc.so. If the routines were simply extracted in
object form from libc.a and linked in the mtcp.so image,
the dynamic loader would see the ’external’ references and
direct them to an external libc.so image at runtime, thus
breaking the requirement that mtcp.so have all references
be internal to itself.

Currently, the system calls that are disassembled and
statically linked into mtcp.so are: close, dup, dup2,
getppid, lseek, mmap, mprotect, munmap, open,
read, and write.

The disassembly is done automatically by a utility we
provide that is invoked by the makefile, so any updates to
those system services in glibc will be taken into account by re-
making the mtcp.so image. Should a future change to glibc
make this method unworkable, another possibility would be to
link mtcp.so with a static libc.a, then post-process the
mtcp.so image with a utility that would resolve the linkages
internally to the mtcp.so image.

In fact, we use “nocancel” versions of the above system
calls, such as __close_nocancel. This is because the
standard version close refers to the tls (thread local
storage), which has not been restored yet. We don’t need to
refer to thread local storage, since we have not yet restored any
threads at the time that we make these system calls. We are
considering replacing the calls to __close_nocancel by a
direct system call, for example syscall(SYS_close, fd).
This avoids the unwanted glue code in libc.so. This has the
further advantage of removing the requirement to disassemble
routines from libc.a.

III. ADDRESS SPACE RANDOMIZATION

Address space randomization (since Linux 2.6.9) and the
exec-shield patch (commonly used in some versions of Red
Hat and Fedora Linux) are additions to the Linux kernel that
randomize the initial location of the stack and of the base load
address of dynamically loaded libraries such as libc.so.
This is an attempt to thwart attacks on a system by exploiting
bugs in coding, where the program will allow erroneous input
to corrupt the program stack. Such an exploit will cause a
return address on the stack to be overwritten thus causing the
program to execute code that will compromise the system,
allowing unauthorized access. These exploits rely on code and
data being at known positions. By randomizing them to some
degree, an attacker will need to try several possibilities before
succeeding, thus discouraging or delaying the attack. See [13]
for further analysis.

By using address space randomization, there will be no
fixed address for the address of a buffer on the stack (for the

buffer overrun) and no fixed address for the exploit code (in
some data segment). This makes the job of the attacker more
difficult. However, it also makes the job of the checkpointer
more difficult if the image loader will not guarantee to load
a code or data segment into the requested memory address
range. For this reason, we must query the kernel via the proc
filesystem to determine where libraries are actually loaded.
The details were discussed in Section II-B.

IV. EXPERIMENTAL RESULTS

In our first test (Figure 2) we attempted to see how
scaling memory usage would effect the time to checkpoint
a program. Here we checkpoint a single threaded program
using a variable amount of memory set to random values. The
memory is allocated in 1 MB chunks using malloc. The
results shows that, with our hardware, that time to checkpoint
scales linearly with memory usage at the rate of approximately
0.3 seconds per 100 MB of memory usage. There is also an
additional cost of checkpointing because the operating system
writes data to disk asynchronously. This leaves two timings
to report (a) interruption in execution of the users program,
(b) time for checkpoint data to asynchronously reach disk. We
approximately measure this “time to reach disk”, by timing the
command “sync”.

In our second test (Figure 3), we attempt to see how scaling
the number of threads would affect the time to checkpoint
a program. Here our test program creates a predetermined
number of threads using pthread_create. This test was
run on a single processor machine, but all threads wait on a
mutex so that the checkpointing routine will not be starved for
CPU cycles. These tests also show a linear increase in time
with the number of threads, but take longer than expected.

The extra time here is because we do not (yet) optimize for
zero-pages, which are not mapped to physical memory. When
a pthread is created approximately 8 MB of memory addresses
are reserved for that thread, but these pages are not actually
allocated until they are first written to. Our current code will
write all 8 MB of address space to disk. So the 100 thread
test, produced a checkpoint of approximately 800 MB. Not
handling zero-pages specially also has the disadvantage of
forcing the physical allocation of all pages of memory on
restore, thus increasing the memory usage of the restored
program. Optimizing the handling of zero-pages is planned
for a future version and will greatly increase the speed of
checkpointing programs with many threads.

To test our checkpointing solution with a real world ap-
plication we ran NAS Parallel Benchmark (NPB) [10], with
our checkpointing package. NPB has been ported to several
different programming languages, we chose the OpenMP
version because it provides an example of a multithreaded
process, for us to checkpoint.

As a more robust test, we checkpointed the entire Java
Virtual Machine (JVM) including the Java program on which
that virtual machine was running. Specifically, we check-
pointed the Kaffe implementation of the JVM. We successfully
checkpointed Kaffe running many small Java test programs



Fig. 2. Left: Delay in execution of user program to create checkpoint as the size of memory increases. Right: Time for checkpoint data to asynchronously
reach disk as the size of memory increases.

Fig. 3. Left: Delay in execution of users program as number of threads increases. Right: Time for checkpoint data to asynchronously reach disk as number
of threads increases.

NAS CLASS Size Checkpoint Restart
W 33x33x33 0.07 s 0.07 s
A 64x64x64 0.19 s 0.17 s
B 102x102x102 0.95 s 0.51 s

Fig. 4. Timings running the benchmark LU from NPB2.3-omp-C [9] (in C
/ OpenMP, derived from NAS Parallel Benchmark NPB-2.3-serial)

and the Java port of the classic NAS Parallel Benchmarks
(NPB) [10].

All timings, except for the last two were run on a Mobile
AMD Athlon 64 processor 3000+ with 512 MB RAM, running

NAS CLASS Size Checkpoint Restart
W 175 MB 0.7 s 0.6 s
A 632 MB 12.0 s 19.7 s

Fig. 5. Timings running the benchmark MG from NAS Parallel Benchmark
NPB-3.0-JAV (in Java, on top of the Kaffe Java Virtual Machine)

Linux 2.6.12. The last two timings, concerning Kaffe and
OpenMP, were run on a Pentium 4 2.4 GHz processor with
1 GB of RAM, running Linux 2.6.12.

Figure 6 demonstrates that the time for restarting a process
grows linearly with memory usage at the rate of approximately



Fig. 6. Time to restart a process with 4 threads as the size of memory
increases.

25 MB/second. Since this is a mobile hard disk (2-1/2” ATA
disk), we assume that the restart process is limited only by the
bandwidth of disk.

ACKNOWLEDGEMENT

This research was supported in part by the National Science
Foundation under grant number 0342555.

REFERENCES

[1] Hazim Abdel-Shafi, Evan Speight, and John K. Bennett. Efficient user-
level thread migration and checkpointing on Windows NT clusters. In
Usenix 1999 (3rd Windows NT Symposium), pages 1–10, 1999.

[2] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and
Martin Schulz. Application-level checkpointing for shared memory
programs. In ASPLOS-XI: Proceedings of the 11th international confer-
ence on Architectural support for programming languages and operating
systems, pages 235–247, New York, NY, USA, 2004. ACM Press.

[3] P. Emerald Chung, Woei-Jyh Lee, Yennun Huang, Deron Liang, and
Chung-Yih Wang. Winckp: A transparent checkpointing and rollback
recovery tool for Windows NT applications. In Proc. of 29th Annual
International Symposium on Fault-Tolerant Computing, pages 220–223,
1999.

[4] Gene Cooperman, Jason Ansel, and Xiaoqin Ma. Transparent adaptive
library-based checkpointing for master-worker style parallelism. In
Proceedings of the 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid06), Singapore, 2006. IEEE Press.
to appear.

[5] William R. Dieter and James E. Lumpp Jr. User-level checkpointing
for LinuxThreads programs. In USENIX Annual Technical Conference
(FREENIX Track), pages 81–92, 2001.

[6] K.A. Iskra, F. van der Linden, Z.W. Hendrikse, B.J. Overeinder, G.D.
van Albada, and P.M.A. Sloot. The implementation of dynamite —
an environment for migrating PVM tasks. Operating Systems Review,
34:40–55, July 2000.

[7] Oren Laadan, Dan Phung, and Jason Nieh. Transparent networked
checkpoint-restart for commodity clusters. In 2005 IEEE International
Conference on Cluster Computing. IEEE Press, 2005.

[8] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny.
Checkpoint and migration of UNIX processes in the Condor distributed
processing system. Technical report 1346, University of Wisconsin,
Madison, Wisconsin, April 1997.

[9] NAS parallel benchmarks in OpenMP.
[10] The NAS parallel benchmarks, 1994.
[11] The Home of Checkpointing Packages. http://www.

checkpointing.org/.
[12] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt:

Transparent checkpointing under unix. In Proc. of the USENIX Winter
1995 Technical Conference, pages 213–323, 1995.

[13] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM conference on Computer
and communications security, pages 298–307, 2004.

[14] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood.
Safetynet: improving the availability of shared memory multiprocessors
with global checkpoint/recovery. In ISCA ’02: Proceedings of the 29th
annual international symposium on Computer architecture, pages 123–
134, Washington, DC, USA, 2002. IEEE Computer Society.

[15] Weimin Zheng, Wenguang Chen, Youhui Zhang, and Ruini Xue. Thckpt:
Transparent checkpointing of Linux processes under IA-64. In Proc. of
PDPTA-05, pages 325–331, 2005.


