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Abstract— We present the MBRAM model for static evaluation
of the performance of memory-bound programs. The MBRAM
model predicts the actual running time of a memory-bound
program directly from pseudo-code. This means that the final
running time can be predicted even before the program has been
developed and benchmarked.

In contrast to the “Big Oh” complexity model, which mea-
sures the time solely by counting the number of instructions
executed, the MBRAM model predicts running times based on
memory accesses, cache parameters, RAM bandwidth, and other
important architectural parameters. As a result, the MBRAM
model correctly ranks orders the actual running times for
implementations of seven different O(n log n) sorting algorithms.
In our suite of benchmarks, the MBRAM model consistently
underestimates the actual running times, with errors ranging
from 10% to 44%.

I. Introduction

We describe a model for static evaluation of the perfor-
mance of memory-bound programs. Such a model implicitly
assumes that the CPU is operating in parallel with the RAM.
Furthermore, one has limited data parallelism, in that all of the
bytes of a cache line are read or written in parallel. A memory-
bound program is a program in which most of the time is spent
waiting for memory operations to complete. By concentrating
on memory-bound programs, we are able to demonstrate a
surprisingly accurate, yet simple model of the running time.
The model has the added advantage of statically predicting the
running times.

By static prediction, we mean evaluation based solely on
the code and knowledge of architectural parameters of the
target computer. This assumes that the structure of the program
is sufficiently transparent, so that for a given data input, the
number of times that an instruction is executed can be directly
estimated without recourse to running the program. This is
true for many common subroutines. This is demonstrated for
permutation multiplication, matrix multiplication and sorting.
Note also that in this situation, the running time can be
estimated directly from pseudo-code, prior to implementing
an algorithm.

1This work was partially supported by the National Science Foundation
under Grant CCR-0204113, and by the Institute for Complex Scientific
Software (ICSS, http://www.icss.neu.edu/).

An evaluation model that is both simple and static is
important in:

• compiler optimization through program transformation;
and

• algorithm tuning by implementors.

The model is also important for diagnosing performance bugs,
by noting when the time for an implementation differs too
much from the predicted time.

The new MBRAM model (Memory Bound Realistic Analyt-
ical Model) determines a lower bound on the running time of
implementations of memory-bound programs. The MBRAM
model can be understood in a rough way as counting the total
number of memory cycles over the life of the process. This
is in contrast to the traditional “big Oh” or “RAM model
of computation” (not to be confused with RAM memory) as
taught to undergraduates, in which one counts the number of
dynamic instructions executed. More precisely, the primary
architectural parameters of the MBRAM model are

• the sequential bandwidth of RAM (β1);
• the random access bandwidth of RAM (β2: the band-

width, assuming that a cache block is loaded from RAM
with each successive cache block coming from a random
location in RAM);

• the cache size (C) and cache block size (B) for the largest
level of cache; and

• the branch misprediction pipeline.

For the suite of memory-bound applications on which the
model was tested, the experimental running times were always
within 44% of predictions and usually much closer. Since
the prediction is always a lower bound, this error range is
equivalent to ±22%. For some cases, such as permutation
multiplication on newer Pentiums, the model was accurate to
within 5%. The test suite covers a broad variety of data access
patterns. They include permutation multiplication (for random
permutations), matrix multiplication, and seven variations of
sorting. This suite covers random word access, stride access,
a heap data structure, merging of multiple streams of sorted
data, and other access patterns.

The issue can be seen starkly in the comparison in Figure 1,
below. A novel, faster, two-pass algorithm for permutation



multiplication is compared with the traditional algorithm. An
analysis using the RAM model (unit time per operation) would
predict the running time of the two-pass model to be twice
as long as the standard one-pass implementation. While this
is roughly true on the Pentium III, the opposite is true on
the Pentium 4. The RAM model fails to account for the high
bandwidth and longer latency of DDR-RAM.

The rest of this paper is organized to: describe the MBRAM
model in Section II; apply the MBRAM model to permuta-
tion multiplication in Section III; apply the model to matrix
multiplication in Section IV; and apply the MBRAM model
to sorting of integers V. Each of these three applications show
excellent agreement between experimental running times and
the MBRAM model. This indicates that each of them are
memory-bound.

A. Related Work

There are several examples of newer complexity models
more accurately taking into account architectural features.
These include the LogP model of Culler et al. [1], the BSP
model of Valiant [2], and the disk latency model for parallel
disks by Vitter [3]. Like the MBRAM model, These models
are used as a guide toward algorithm design in their domains,
but they are not usually used to predict actual running times.

LaMarca and Ladner [4], [5] moved a step closer to an
analytical model by quantifying the number of cache misses
for a variety of sorting algorithms, and comparing those
numbers to experimentally acquired data. They also present
experimental data for the number of instructions and for CPU
time for each algorithm. Although they can predict the number
of cache misses and correlate it to running times, they do not
predict the running time itself.

The concept of a “memory wall” was introduced by Wulf
and McKee [6]. The algorithm for faster permutation mul-
tiplication of Section III is described in a research note
by Cooperman and Ma [7]. The work of Cooperman and
Robinson [8] uses the idea of fast disk-based permutation
multiplication to develop a disk-based membership algorithm
for mathematical groups. The work of this paper is motivated
by the prior results of Cooperman and Grinberg [9], who found
the parallel shared memory performance of coset enumeration
to be strongly dependent on memory speed rather than CPU
speed.

II. Definition of MBRAM Model
We group the parameters of the MBRAM model according

to memory access, cache, and branch misprediction. We then
present the Model Rules for calculating the running times.

a) Memory access.

First we define a sequential stream as a sequential pattern of
reads from or writes to main memory (either in the forward or
backward direction). The sequence must be of length at least
twice the size of cache block.

β1 (bytes/second): memory bandwidth for one of at most
µ1 concurrent streams in a region of code, with no other

concurrent memory accesses.
β2 (bytes/second): memory bandwidth for all other mem-
ory accesses.
µ1 (typically µ1 = 2): number of concurrent sequential
streams allowed.

On current memory architectures, β2 is experimentally
found to be the same for both read and write accesses. Further
developments in memory chip design may create a situation
requiring separate values for β

(read)
2 and β

(write)
2 .

The motivation for µ1 is that most RAM chips have multiple
independent memory banks. Current PC-133 and DDR-266
RAM have four memory banks. Hence, an extended burst of
consecutive reads or writes will access a single page of RAM.
Access to a new page of RAM not currently associated with
some memory bank incurs a delay. Since the memory bank
addresses are mapped in advance, it is difficult to predict how
the application data will be mapped to distinct memory banks.
Hence, we conservatively suggest µ1 = 2 as an average value.

b) Cache.

Next, we introduce three cache-related parameters. The
three parameters are important for the restrictions they add
to the model.

C: cache size
B: cache line (or cache block) size
µ2 = C/B: the maximum number of cache buffers

In applying branch misprediction to the model, we will
assume the best possible branch prediction based on the history
all previous branch sites in the code. For example, in a
comparison-based sort, one would expect a branch mispredic-
tion after a comparison exactly half of the time. In that case,
if there are n log n comparisons, then the model would charge
m(n log n)/2 due to branch misprediction.

c) Branch misprediction.

Finally, we add one more parameter.

m (seconds): penalty charged for a branch mispredic-
tion.

Strictly speaking, branch misprediction is not a major
component of the time of memory-bound programs, since
it does not involve waiting on access to main memory. We
take the branch misprediction as a parameter but ignore the
CPU clock rates and the number of CPU instructions for two
reasons: (1) in some comparison-intensive applications such
as comparison-based sorts, the branch misprediction penalty
accounts for a large part of the running time of the CPU;
and (2) the number of branches can be easily estimated from
pseudo-code.

d) Model Rules.

1) A read from memory to cache or a write from cache to
memory (whether associated with β1 or β2) is charged
for reading or writing data in multiples of the cache
block size B. If less data is accessed, one rounds up to
the next multiple. In particular, a read of a single random



CPU/RAM New, Two-Pass Algorithm Traditional Algorithm
2.66 GHz Pentium 4 / DDR-266 RAM 0.042 s 0.159 s
0.6 GHz Pentium III / PC-100 RAM 0.131 s 0.097 s

Fig. 1. Two-Pass Permutation Multiplication versus Traditional Algorithm: for (i=0; i<1048576; i++) Z[i]=Y[X[i]];

word in main memory is charged B/β2. An access to
c cache blocks is charged cB/β1 or cB/β2.

2) One may apply β1 to a region of code for with at most
µ1 sequential streams and no other memory accesses.
(This rule is subject to revision, as the architectures
evolve both for hardware prefetch of streams by the
CPU, and for the ability to maintain separate memory
banks with fast sequential access by the DRAM.)

3) For each branch instruction, one predicts whether the
branch is taken, based on the static program, and also
based on the dynamic history for all branch instructions
of taking a branch. (This is the same decision made by
the CPU’s branch predictor.) From this, one determines
the probability π that the prediction will be wrong.
Each execution of the branch is then charged πm. (This
prediction is often very simple. For example, if a loop
contains many iterations, one predicts that the branch
that tests continuation of the loop is always taken. Then
the probability of error is π ≈ 0. So, one is charged
0m = 0. In a second example, suppose a branch is taken
1/10 of the time. If the program provides no clues, then
the branch predictor will predict that the branch is never
taken, for lack of other knowledge. Then π = 1/10 and
one is charged πm = m/10. Note that one is never
charged more than m/2.)

4) The cache initially holds no data.
5) Each read causes the associated data to be brought into

cache.
6) Data in the cache may not grow beyond C. If data does

grow beyond C, some data is ejected from the cache
on an LRU (Least Recently Used) basis. (In fact, cache
associativity could modify this rule, but for the sake of
simplicity of the model, we ignore such issues.)

7) Any write to main memory requires the corresponding
address to be previously loaded to cache. (This rule
reflects current hardware implementations, but future
implementations may relax this rule.)

8) One may not have more than µ2 cache buffers. If
the program is accessing memory in a pattern with
more than µ2 concurrent streams, then each access to
memory is considered a random access. Each access
to memory is then charged B/β2. For example, if
the number of concurrent streams is smaller or equal
to µ2, the cost for accessing N 4-byte integers will
be 4N/β1 or 4N/β2 (according to whether the stream
is supported by hardware-prefetch or not). But if the
number of concurrent streams exceeds µ2, then the cost
for accessing N 4-byte integers will BN/β2 .

III. Permutation Multiplication
The traditional permutation multiplication is expressed by

the simple formula below, with the X and Y arrays as input,
and the Z array as output.

int X[N], Y[N], Z[N];
for (i = 0; i < N; i++) Z[i] =
Y[X[i]];

A. Determination of MBRAM Parameters

For the Pentium 4, we use the MBRAM model parameters
of Figure 2. We were able to derive all numbers based purely
on the cache block size, the length of the branch misprediction
pipeline [?, page 4 in URL], and the memory specifica-
tions [?], [?]. The PC-66, PC-100 and PC-133 RAM all use
SDRAM with timing parameters of 2-2-2. This corresponds to
a latency of four memory cycles. For example, PC-133 RAM
has a latency of 4/(133 MHz)=30 ns.

DDR-266 RAM (also known as PC-2100) uses RAM
with 2.5-3-3 timing parameters. For DDR-266, a latency of
10 memory cycles (75 ns) on the 133 MHz bus was assumed.
This is needed to handle the worst case latency, occuring for
a WRITE memory page miss occuring after a WRITE burst
of length four.

In each case, the latency λ was found as the number of clock
cycles divided by the memory bus speed. The time t to access
a cache block is the time for B/8 memory bus cycles, since
the Pentiums use an 8-byte bus. Taking f as the frequency
yields t = B/(8f), this yields:

β1 = B/t = 8f

β2 = B/(λ + t) = B/(λ + B/β1)

The parameters β1 and β2 based on specifications agree to
within 5% with benchmarks on the Pentiums. The benchmarks
access each cache block once, either in sequence (for β1) or at
random (for β2). For some other processors, the benchmarks of
β1 and β2 were up to 50% slower, indicating a less optimized
CPU. In those other processors, benchmarks on the individual
CPUs are needed to estimate β1 and β2.

Over time, we expect all CPUs to be sufficiently optimized
to directly use the memory specifications for β1 and β2.
Some of these optimizations include a non-blocking cache,
hardware prefetch, dynamic instruction re-ordering, high in-
struction throughput (ILP and high CPU clock rate), and other
optimizations to allow CPU execution to to be overlapped
with main memory access. Offloading video traffic from the
memory bus, as is done with the Pentium AGP bus, is also
important.

The branch misprediction penalties are also estimated based
on vendor specifications. In the case of the Pentium, Intel



CPU/RAM bandwidth bandwidth branch L2 cache block
(β1, GB/s) (β2, GB/s) misprediction (B bytes) /

(m, ns) cache (C KB)
2.66 GHz Pentium 4 / DDR-266 RAM 2.12 0.95 7.52 (20 cycles) 128 B / 512 KB
1.7 GHz Pentium 4 / PC-133 RAM 1.06 0.85 11.76 (20 cycles) 128 B / 256 KB
0.6 GHz Pentium III / PC-100 RAM 0.80 0.46 16.67 (10 cycles) 32 B / 512 KB
0.35 GHz Pentium II / PC-66 RAM 0.53 0.26 28.57 (10 cycles) 32 B / 512 KB

Fig. 2. MBRAM Parameters for Different Generations of Pentiums

reports that the P6 core (Pentium II and III) have a 10 stage
branch misprediction pipeline and the Pentium 4 has a 20 stage
branch misprediction pipeline [?, page 4 in URL].

B. Memory-Aware Permutation Multiplication

The model of Section II leads naturally to the following new,
two-pass algorithm, described in [7], [8]. The constraint is that
each block of the D array fits in half the cache. Furthermore,
the number of blocks of the D array must be less than the
number of cache blocks (less than C/B). A later remark of
this section describes how to extend the algorithm by using
more passes when these constraints cannot be met.

The key to the algorithm is that if each block of the
D array contains S entries, then the first block of the D array
will ultimately contain the first S entries of the Y array, but
permuted according to the order in which they will be written
into Z. The second block of D will similarly contain the next S
entries of Y, and so on. Phase I determines how to permute
each block. Phase II locally permutes the data from each
segment of Y to the corresponding block of D (and the segment
of Y and block of D both fit in cache). Phase III copies the
permuted data from the different blocks of D to Z, merging
the blocks according to the desired permutation.
#define BLOCK_LENGTH \
(CACHE_SIZE/2/sizeof(int))

#define NUMBER_OF_BLOCKS \
(ARRAY_LENGTH / BLOCK_LENGTH)

int X[ARRAY_LENGTH], Y[ARRAY_LENGTH],
Z[ARRAY_LENGTH];

int D[ARRAY_LENGTH];
int *D_ptr[NUMBER_OF_BLOCKS];

// Phase I: distribute value, X[a],
// into block given by D_ptr[block_num]
int block_num, i, j;
for (block_num= 0; block_num <

NUMBER_OF_BLOCKS; block_num++)
D_ptr[block_num] =

& D[block_num * BLOCK_LENGTH];
for (i = 0; i < ARRAY_LENGTH; i++){
block_num = X[i] / BLOCK_LENGTH;
*(D_ptr[block_num]) = X[i];
D_ptr[block_num]++;

}

// Phase II: for D[i] == X[a],
// replace the value X[a] by Y[X[a]]
for (i = 0; i < ARRAY_LENGTH; i++)
D[i] = Y[ D[i] ];

// Phase III: copy value Y[X[a]]
// from D_ptr[block_num] to Z[a]
for (block_num = 0; block_num <

NUMBER_OF_BLOCKS; block_num++)
D_ptr[block_num] =

& D[block_num * BLOCK_LENGTH];
for (i = 0; i < ARRAY_LENGTH; i++) {
block_num = X[i] / BLOCK_LENGTH;
Z[i] = *(D_ptr[block_num]);
D_ptr[block_num]++;

}

Figure 3 shows the experimental results across Pentium
generations. Note the close agreement of experiment and
prediction across CPU generations.

With each new generation of the Pentium and memory,
the new algorithm has become progressively faster relative
to straightforward permutation multiplication. This is due to
the growing CPU/memory latency gap of newer generations
of the Pentium CPU/memory subsystem, The accuracy of
the MBRAM model rises to within 5% on later generations,
corresponding to the rise in the CPU-memory gap.

The data of Figure 3 for the new algorithm represents an
optimized version of the straightforward code. Memory layout
of the D blocks was altered to avoid cache-aliasing, and zero-
mapped pages of the operating system were first instantiated.
The unoptimized version was about 20% longer.

C. Analysis and Experimental Results

In Figure 3, we have seen the experimental and predicted
results. The implementation uses optimizations to avoid cache
aliasing and to instantiate zero-mapped pages in advance.
Without those optimizations, the experimental times are about
20% higher.

We analyze the traditional permutation multiplication. We
assume 4 byte integers and that X array is a random permu-
tation. Since X is read consecutively, it costs 4 N

β1

to read X.
By Model Rule 1 of Section II, the random accesses to the
Y array cost B

β2

n. The Z array must be read into cache before
being written (Model Rule 7), costing 2·4 N

β1

. So, the predicted
total cost is

(

12

β1
+

B

β2

)

N.

For the new permutation algorithm, Phase I is charged
3 · 4 N

β2

. (X is a read stream, while each stream corre-
sponding to D[Cursor[block_num]] is a write stream
requiring a read-modify-write operation.) Note that we require



CPU/RAM Time (new Fast alg., s) Time (traditional alg., s)
Experiment Predicted Experiment Predicted

2.66 GHz Pentium 4 / DDR-266 RAM 0.042 0.042 0.159 0.147
1.7 GHz Pentium 4 / PC-133 RAM 0.060 0.047 0.176 0.158
0.6 GHz Pentium III / PC-100 RAM 0.131 0.087 0.097 0.083
0.35 GHz Pentium II / PC-66 RAM 0.222 0.151 0.148 0.143

Fig. 3. Fast multiplication of two random permutations on 1,048,576 points (4 MB per permutation)
for (i=0; i<1048576; i++) Z[i]=Y[X[i]];

number_of_blocks+1 ≤ µ2 by Model Rule 8 of Sec-
tion II. Phase II is charged 3 · 4 N

β2

for reading D and Y and
writing to D. Phase III is charged 4 · 4 N

β2

for reading X and D
and executing a read-modify-write on Z. Thus, the total cost
is

40
N

β2
.

IV. Matrix Multiplication
Matrix multiplication is demonstrated as an example with

stride access, and with the more CPU-intensive operation
of matrix multiplication. Such issues are common in many
numerical analysis programs. The straightforward row major
integer matrix multiplication algorithm is implemented with
the results shown in Figure 4. (Blocked matrix multiplication
routines are more efficient, but they also tend further toward
the CPU-bound domain, and hence further away from appli-
cability for the MBRAM model.)

The Pentium II and Pentium III cases were omitted because
our Pentium III did not have enough memory for the large
matrix multiplication, and the shorter cache block size of
Pentium II and III imply that the formula (2) would not be
valid for those cases.

After doubling the number of scalar multiplications in the
inner loop on the 1.7 GHz Pentium 4, the CPU time was found
to increase by 20% for n = 500. Hence, the program is only
partially CPU-bound. The remaining inaccuracy is accounted
for by the frequent accesses to L2 cache and by the TLB
misses. The MBRAM model charges nothing for either case.

We next derive the MBRAM formulas for the time to
execute PQ for matrices P and Q stored in row major order,
of dimension n, and with each entry of size w bytes. We
analyze only the n3 terms. Consider first the case when a
matrix row is larger than a cache block (wn > B), and
one matrix row and two matrix columns fit inside the cache
(wn + 2Bn < C), but the entire matrix does not fit inside
the cache (wn2 > C). (Note that for row major order, each
entry of a matrix column lies in a separate cache block, and
so a column requires Bn space.) After multiplying by the
first column, the second column will be contained in the same
cache blocks as the first column, and so on. Each entry of Q,
and therefore each cache block corresponding to Q, is loaded
into cache n times, and there are n2 entries or wn2/B cache
blocks. So, the MBRAM formula is wn3/β2 + O(n2).

Next, consider the case when a matrix column is larger than
the entire cache (Bn ≥ C). In this case, each inner product

of a row and column requires one to load both the row and
the column. This costs wn/β1 + Bn/β2 seconds. A matrix
multiplication computes n2 inner products. So, the MBRAM
formula is wn3/β1 + Bn3/β2 + O(n2).

V. Sorting Algorithms
In Figure 5, we compare several well-known sorting al-

gorithms to show agreement of theory and experiment. The
MBRAM predictions tend to be about 2/3 of the measured
running times, and always serves as a lower bound. Further-
more, the ordering of the times of the MBRAM formulas
reflects the ordering of the measured running times. Thus, the
MBRAM model serves as an excellent guide for improved
sorting implementations.

The MBRAM formulas are based on estimates of the
number of accesses to main memory and the number of branch
mispredictions. While there is not room for the derivation in
this note, the full derivation can be found in Appendix A.
For mergesort and quicksort, the times are dominated by the
branch mispredictions, while the data access dominates the
time for heapsort. The non-comparison-based sorts eliminate
the cost of branch misprediction entirely.

As always, the MBRAM prediction is a lower bound. The
predicted times are approximately 2/3 of the experimental
times. We hypothesize that the additional experimental time
is due to intensive use of the L2 cache at the lower levels of
the recursion (for which the MBRAM model charges nothing),
along with the fact that no attempt was made to optimize the
code over the straightforward implementations. This points
up the opportunity for further optimizations by overlapping
the CPU-intensive lower recursion levels with the memory-
intensive upper recursion levels.

The results are shown in Figure 5. The derivations of the
MBRAM formulas are contained in Appendix A. The non-
comparison-based sorts (bucket sort and radix sort) diverge
further from the predictions because a portion is CPU-bound,
and it is not overlapped by branch mispredictions or by mem-
ory accesses. Specifically, they use the L2 cache intensively,
and tend to have many TLB misses. (There are only 64 TLB
entries on the Pentium 4.)

Quicksort is of special interest. One can split the total
time of 1.51 = 0.38 + 1.13, where the first term accounts
for data movement, and the second term accounts for branch
mispredictions (comparisons). The given formula assumes that
the input array is partitioned in half at each level. As shown
in the appendix, the time (N/2)m log2 N is a lower bound for



CPU/RAM Time (Mat. Dim. n = 500) Time (Mat. Dim. n = 4000))
Experiment Predicted Experiment Predicted

2.66 GHz Pentium 4 / DDR-266 RAM 1.67∗ 0.53 (1) 11,241.23 8,743.91 (2)
1.7 GHz Pentium 4 / PC-133 RAM 1.47∗ 0.59 (1) 11,306.00 9,879.16 (2)

Fig. 4. Matrix Multiplication over Integers (word size w = 4); Predictions according to
MBRAM formula (1) wn3/β2 (when wn > B, Bn < C)); or (2) wn3/β1 + Bn3/β2 (when Bn ≥ C)
∗Computation is CPU-bound

Sorting Algorithm Exper. (s) Pred. (s) MBRAM formula

Quicksort 2.40 1.51 2wN
β1

(log2 N − log2 C + 1) + N
2 m log2 N

Mergesort 3.14 1.75 (wN
β2

+ 2wN
β1

) (log2 N − log2 C + 1)

+N
2 m log2 N

Heapsort 24.88 16.83 B
β2

N(log2 N − log2(C/w) + log2 log2 N)

+mN log2 N
[Input data uniformly distributed between 0 and N = 8 Meg]
Simple Bucket Sort

(b = 64) 0.62 0.47 3wN
β2

(dlogb Ne − blogb(C/2)c + 1)

Distribution-count Bucket Sort 3wN
β2

(dlogb Ne − blogb(C/2)c + 1)

(b = 64) 0.92 0.57 +wN
β1

(dlogb Ne − blogb Cc + 1)

Simple Radix Sort
(b = 64) 0.77 0.47 3wN

β2

dlogb Ne

Distribution-count Radix Sort
(b = 64) 1.01 0.60 (wN

β1

+ 3wN
β2

)dlogb Ne

Fig. 5. Prediction and Experiment for Various Sorting Algorithms; 1.7 MHz Pentium 4 with PC-133 RAM; input data is uniformly distributed
array size N = 8 Meg (Nw = 32 MB); cache size C = 256 KB; integer word size w = 4 bytes

the time due to branch mispredictions, and (N/2)m(log2 N +
log2(4/5)) is an upper bound. For the N in the table, the
upper bound is only 1.4% larger than the lower bound.

Hence, the MBRAM formula predicts that the cost of
branch mispredictions (or comparisons) is highly insensitive
to good or bad pivots. This leaves only the small time for
data movement (0.38) to be improved by a better choice of
pivots.

The above analysis implies that the well-known median-
of-three optimization for choosing pivots will have very little
effect for implementations on the 1.7 MHz Pentium 4 with
PC-133 RAM. (The pivot is chosen as the median of the array
values at the middle of the array and at the two extremes.) This
is borne out by our tests. The median-of-three optimization
resulted in a time of 2.38 s, or only 1% improvement.
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APPENDIX

a) Quicksort.

Consider sorting N integers (w bytes each) using quicksort.
We analyze the time as if the input array is always partitioned
exactly in half. This is justified in the following paragraphs.

We will recurse log2 N times. Each time of recursion will
read through all N elements and perform the partitioning
process. The cost for reading/writing through N elements in
one pass of partition is 2 · wN

β1

. In each pass, there will be
N comparisons to be performed on average. The probability
that the branch-prediction is correct for those comparisons
is a half (since the values to be compared are completely



random and have no pattern to predict). So there will be N
2

times of branch-misprediction and the total cost for it in one
pass is N

2 m. We have totally log2 N passes, log2 C − 1 (C
is the cache size) passes of which are performed in cache.
The cost of partitioning in cache does not include the cost
for reading/writing data but the branch misprediction cost. So
we need 2wN

β1

+ N
2 m for one pass in RAM and N

2 m for one
pass in cache. Therefore, the total cost for sorting N integers
according to our model is

(
2wN

β1
+

N

2
m)(log2 N − log2 C + 1) +

N

2
m(log2 C − 1).

We next analyze the error in this approximation by consider-
ing the time when the pivot does not partition the input array in
half. The total predicted time splits as 1.51 = 0.38 + 1.13, with
0.38 s for data movement and 1.13 s for branch mispredictions.
We will show that the second term, 1.13 s, changes almost not
at all under the assumption that the partition does not split the
input array in half. Therefore any change in the first term,
0.38 s, will make a small contribution to the overall time.

In analyzing the second term, recall that Model Rule 3 says
to count a branch misprediction only to the extent that it differs
from the best prediction based on the history. If the partition
splits the array into fractions f and 1 − f for 0 ≤ f ≤ 1/2,
then branch prediction will always predict that data is sent to
the larger half. So, an array of length n will have nf branch
mispredictions instead of n/2.

Let C(n) be the number of branch mispredictions for an
array of length n. We show that the MBRAM term for
branch mispredictions is bounded by C(n) ≤ (n/2) (log2 n+
log2(4/5)), where log2(4/5) ≈ −0.32. To see this, we apply
the recurrence for branch mispredictions

C(n) = fn + C(fn) + C((1 − f)n).

We prove that

C ′(n) = (n/2) (log2 n + log2(4/5))

is an upper bound for the previous recurrence. Note that
C ′(n) = 0. We show that C ′(n) ≥ fn + C ′(fn) + C ′((1 −
f)n), to prove that C ′(n) is an upper bound for the recurrence.
Note that fn+C ′(fn)+C ′((1−f)n) = (n/2) (log n+2f +
f log f + (1 − f) log(1 − f) + log2(4/5)). If f = 0, then
fn + C ′(fn) + C ′((1 − f)n) = (n/2) (log2 n + log2(4/5)).
We note that 2f + f log f + (1 − f) log(1 − f) is minimized
when f = 1/5, and by plugging in f = 4/5, we deduce
that 2f + f log f + (1 − f) log(1 − f) ≥ log2(4/5). So,
fn+C ′(fn)+C ′((1− f)n) ≥ (n/2) (log n+2f + f log f +
(1 − f) log(1 − f)) = fn + C ′(fn) + C ′((1 − f)n).

For large n, C ′(n) = (n/2) (log2 n + log2(4/5)) ≈
(n/2) log2 n). Since (n/2) log2 n is also a lower bound for
C(n), we can take C(n) = (n/2) log2 n, with very small
error.

b) Mergesort.

Unlike the case of quicksort, the data array in mergesort
is always divided into two equal small arrays. Therefore,

mergesort has totally log2 N passes, log2 C−1 passes of which
are performed in cache. The cost for one pass in RAM is
wN
β2

+ 2wN
β1

+ N
2 m, and for one pass in cache is N

2 m . Hence,
the total cost is

(

wN

β2
+

2wN

β1

)

(log2 N − log2 C + 1) +
N

2
m log2 N.

c) Heapsort.

A more detailed analysis of HeapSort is provided by
LaMarca and Ladner [10]. In the spirit of a simple estimate,
we make some simplifying approximations. A complete binary
tree with N vertices has a depth of at most log2 N . Assume
that procedure downheap requires log2 N steps. Since the
number of nodes of a binary tree per level grows exponentially,
this is likely to be a reasonable estimate.

As a further simplifying approximation, assume that the
cache holds only the nodes closest to the root. We wish to
find the largest level L for which many nodes are held in
cache. Specifically, if a node is at level L, then there are 2L

nodes at that level. When a step of downheap touches a node
at level L, it will also touch log2 N − L nodes from lower
levels, bringing them into cache. Further, there are 2L−1 − 1
nodes above level L. So, we require that 2L−1 − 1 + 2L +
2L(log2 N − L) ≈ C/w, for w the size of a node in bytes.
This yields L ≈ log2(C/w) − log2(log2 N − L + 1.5) ≈
log2(C/w) − log2 log2 N . Hence, log2(C/w) − log2 log2 N
of the steps of downheap will access nodes from cache.

Each step will compare the left child, right child and the
parent node to determine the largest node, and swap nodes if
necessary. On average, each step of downheap requires two
comparisons with probability 50% of misprediction for each
one, and probability 50% for node swapping. The cost of each
step is either m (for the first L steps in cache) or m + 1

2
2B
β2

(for the remaining steps).
Procedure buildheap builds a heap of size N from the

bottom up. Hence, it calls procedure downheap N/2 times,
with later calls to downheap containing more steps than earlier
calls. The total number of steps will be N/2 + N/4 + N/8 +
· · · = N . Of those steps, at most C steps will involve the
nodes closest to the root, and hence access to cache. Since
C � N , we assume no accesses to cache.

Procedure heapsort calls procedure downheap N times.
Due to the exponential growth in the number of nodes per
level, we again assume log N steps per call to downheap,
with log C steps occuring from cache. We neglect the cost
of buildheap and copying to the destination array, since both
are proportional to N , and are small compared to the N log N
terms. Hence, the total cost of heapsorting N integers is

B

β2
N(log2 N − log2(C/w) + log2 log2 N) + mN log2 N.



d) Bucket sort (uniformly distributed data).

Consider a simple version of non-comparison sorting:
bucket sort for uniformly distributed data. We distribute el-
ement values in the original arrays into buckets according to
their high bits, and then recursively sort them again using
bucket sort and the next lower field of bits. Finally, we
concatenate the buckets to get the results. Bucket sort is in
some sense the opposite of radix sort, which begins with the
low bits.

Suppose we use b buckets for each pass, then we need totally
logb N passes. Of these, blogb(C/2)c−1 passes are performed
in cache and dlogb Ne − blogb Cc + 1 passes are in memory.
(The C/2 in blogb(C/2)c − 1 passes in cache can be seen
because the size of an input array must fit in half the cache in
order for there to be room in cache for the destination buckets.
The “−1” is needed since no matter how small the input array,
one pass is needed to copy the array from RAM to cache.)

In each pass, we read sequentially from the source array and
distribute values (read-and-modify) into buckets. According to
the discussion in Model Rules 8 in Section II, if b is smaller
than the maximum number of concurrent streams, µ2, then the
cost for one pass will be 3wN

β2

with w the integer word size,
and the total cost for bucket sorting N integers will be

3wN

β2
(dlogb Ne − blogb(C/2)c + 1).

We demonstrate on an array of length N = 8 Meg using
b = 64 buckets. At the end of the second pass, each bucket
is 8 KB. So, we concatenate each 8 KB bucket into the
destination array after first sorting it by bucket sort inside
cache.

For the distribution count version of this, we add

wN

β1
(dlogb Ne − blogb Cc + 1).

to the previous formula for the counting phase.

e) Radix Sort (uniformly distributed data).

The analysis is similar to that of bucket sort. The primary
difference is that none of the passes operate in cache. So,
dlogb Ne − blogb(C/2)c + 1 is replace by dlogb Ne.


