
SLA and Profit-aware SaaS Provisioning through
Proactive Renegotiation

Aya Omezzine1,2,3 and Narjes Bellamine Ben Saoud1
1Univ. Manouba, ENSI, RIADI LR99ES26

Campus Universitaire Manouba, 2010, Tunisie
2Université Fédérale Toulouse Midi-Pyrénées, CNRS/LAAS

F-31400 Toulouse, France
Email: aya.omezzine@gmail.com, Narjes.bellamine@ensi.rnu.tn

Said Tazi2,3 and Gene Cooperman2,4
3Univ. de Toulouse, UT1, LAAS

F-31000 Toulouse, France
4College of Computer and Information Science

Northeastern University, Boston, MA / USA
Email: tazi@laas.fr, gene@ccs.neu.edu

Abstract—Software-as-a-Service (SaaS) providers offer on-
demand, highly scalable applications to the end users. To
maximize their profit, the providers must make profit-aware
scheduling decisions about assigning client requests to virtual
resources, while respecting the agreed upon Service-Level Agree-
ment (SLA). Given the highly dynamic nature of the cloud
environment, unexpected events may affect the initial scheduling
plans, which leads to unanticipated SLA violations. Thus, an
unaccounted event may create a lose-lose situation between
provider and client. If the SLA is violated the provider must
pay the potentially high penalty that is negotiated within the
original SLA. But from the client’s viewpoint, an SLA violation
may cause cancellation of a business-critical job, and no ordinary
SLA penalty can compensate for the loss of the client’s business.
The provider’s reputation could also suffers as the number of
such SLA violations grows, resulting in loss of future clients.
On the contrary of most existing work that assume that once
established the SLA cannot be modified, we propose to convert
the lose-lose situation into a win-win one through an automated
renegotiation mechanism. When an event threatens a lose-lose
violation of the SLA, the renegotiation mechanism is launched
to establish a new SLA that limits the losses on the two sides.
Experiments show that this new approach minimizes the loss in
profit of the provider and minimizes the number of cancelled
jobs experienced by the client, as compared with enforcing the
original SLA.

Index Terms—Cloud computing; SaaS provisioning; Service
Level Agreement (SLA); SLA-aware scheduling; Client satisfac-
tion; Automated renegotiation; Decision making strategy;

I. INTRODUCTION

SaaS providers offer highly scalable applications to end
users over the Internet. To run their applications, SaaS
providers often prefer to rent virtual resources from an
Infrastructure-as-a-Service (IaaS) provider instead of in-house
hosting. By doing so, they avoid infrastructure maintenance
and they can scale their application to serve as many end users
as possible. Thus, the end user negotiates with a SaaS provider,
while that provider in turn schedules jobs with IaaS providers.

The SaaS application provisioning must satisfy the SLA
contract established between the two parties. The SLA contract
is a formal representation of the QoS parameters, obligations
of the two parties, and provider penalties, that are agreed upon.
In order to maximize their profit and to satisfy end users, the

SaaS providers use an SLA-aware scheduling algorithm, which
efficiently assigns user requests to virtual resources offered by
IaaS providers.

Cloud computing represents a highly dynamic environment
(both at the business level and at the resource level). There may
be unforeseen events at the resource level such as catastrophic
resource failure, or else there may be unexpected events at the
business level coming from the need to share rented resources
between new clients that compete for immediate execution.
These events may result in violation of the original negotiated
SLA, since the schedule originally done (based on the initial
SLA) can be modified.

Generally if a contract is violated, a penalty is paid and
the service is canceled [1], [2]. But if a contract is violated
due to circumstances not accounted for in the original SLA
negotiation, the two parties may both lose badly. For example,
consider the situation in which a job is critical to the success
of the business. In principle, the client could have insisted on a
penalty in the original SLA that is equal to the value of client’s
business, as compensation for the losses due to the failure of
that business-critical job. But this is usually unrealistic, since
such a penalty can be larger even than the total assets of the
provider. Hence, the client will never be fully compensated,
and the provider faces a loss of future clients due to the loss
in reputation as the number of violated jobs accumulates.

For these reasons, the provider and the client would nor-
mally prefer to renegotiate using a new SLA with a new
deadline (i.e., an extension beyond the first deadline), rather
than pay a steep penalty and accept the cancellation of a
business-critical job. The new SLA will generally include a
discount by the provider on the originally agreed-upon price,
as a concession by the provider for avoiding the steep penalty
envisaged by the original SLA violation.

Most of the literature assumes that once an SLA is estab-
lished, it cannot be renegotiated [1], [2], [3], [4]. The concept
of renegotiation has not yet been well studied [5]. There is
some work that tries to enhance the WS-Agreement nego-
tiation protocol using renegotiation [6], [7], [8], and others
propose general conceptual renegotiation frameworks [9], [10].
However, the term renegotiation in this prior literature always
refers to a renegotiation phase within the original SLA.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

In particular, the prior work mentioned above does not
propose any decision-making model to guides the renegoti-
ation process toward a satisfactory agreement. In contrast, the
current work proposes decision-making strategies in which the
negotiators renegotiate based on a concession (lowering) of the
original penalty.

The key novelty of this paper is to propose an automated
renegotiation-based approach when detecting an unexpected
event during the SaaS provisioning process. In our approach,
the provider proactively renegotiates with the clients whose
jobs may be in violation of the SLAs, in order to minimize
the loss in profit and in order to assure the continuity of the
service. The renegotiation approach is composed of two steps.

1) The first step happens when the SaaS provider detects an
unexpected event. Since the provider may not be able to
physically continue some jobs with the same scheduling
parameters (VM, completion time, etc.), we consider
alternative rescheduling options for the provider. The
first step consists of the selection of an option for profit-
aware rescheduling. In examining the possible schedul-
ing options, the provider chooses an option leading to
a minimum loss in profit while also minimizing the
number of canceled jobs. (See Section III-C.)

2) At the second step, the SaaS provider triggers a renego-
tiation with those end users whose jobs may terminate
after deadline. The renegotiation consists of an exchange
of offers and counter-offers guided by decision-making
strategies using a utility model that is based on eco-
nomics. The strategies followed by the SaaS provider
are based on the rescheduling option selected in the first
step, above. (See Section IV-A and following.)

The rest of the paper is organized as follows. Section II
presents the basis for negotiation, how it is used in cloud com-
puting, and especially the role of renegotiation. Section III and
Section IV describe the first step and second step, respectively,
of the renegotiation-based SaaS provisioning process. Sec-
tion V presents experiments to assess the algorithm. Section VI
is dedicated to discussing the related work. Conclusions are
presented in Section VII.

II. MOTIVATION AND BACKGROUND

Cloud computing presents a highly dynamic marketplace
for delivering IT services on demand. Each cloud actor has its
own interests. In particular, the client aims to obtain the most
convenient service at the cheapest price, while the provider
aims to maximize its profit and to serve the maximum number
of clients. The negotiation between cloud actors is an intuitive
way to solve conflicts between client and provider and to reach
a satisfactory agreement. As the infrastructure and platforms
for the cloud become more complex, we need more automated
negotiation to handle that interaction.

Automated negotiation can be split into three issues [11].
1) The negotiation protocol expresses the locutions that may
be exchanged between the negotiators and defines the rules of
interaction. 2) The negotiated service is composed of objects
(also called issues) about which the participants negotiate.

There are specific service issues, which concern the service
type, and there are generic issues such as the price. 3) The
decision-making model for negotiation defines the decision-
making strategies for each actor.

Decision making is composed of two main strategies. The
first strategy allows one to evaluate a received offer and to
decide whether to accept, reject or propose a counter-offer.
This first strategy is generally based on a utility function
that measures the degree of satisfaction of a received offer
according to the preferences. The second strategy enables one
to generate offers or counter-offers at each step.

Automated negotiation in the Cloud is primarily used to
establish an SLA between clients and providers. It happens
generally in the first phase of the service-provisioning process
(before the SLA establishment itself). In this paper, we focus
on SaaS application provisioning and especially on compute-
intensive applications. Some examples are: scientific data pro-
cessing, and finance data analysis. In the first phase, in order
to maximize the number of clients and minimize the costs of
renting sufficient computer resources, the SaaS provider adopts
a profit- and SLA-aware scheduling algorithm. The schedule
must guarantee that the SLA is met, while also maximizing
the profit.

After signing the contract, unexpected events may later
occur that can impact the current scheduling. To avoid an
SLA violation, the provider must take rescheduling actions.
However, maybe no rescheduling can meet the previously
signed SLA. For example, migrating a job to another VM
after failure may delay the completion time beyond the agreed
upon deadline. The SLA model generally assumes that once
the deadline is violated, the job is automatically cancelled and
a penalty is paid.

This is the scenario in which automated renegotiation
becomes important, as part of a second phase of service
provisioning. This second phase occurs after violation of
the original SLA due to an unexpected event. We invoke a
new renegotiation phase between the end user and the SaaS
provider, in order to minimize the SLA penalty costs and
in order to ensure the continuity of service on which the
provider’s reputation depends.

In what follows, we detail how automated renegotiation can
be used to handle unexpected events, as part of a second phase
in SaaS application provisioning.

III. SELECTION OF AN OPTION FOR PROFIT-AWARE
RESCHEDULING

When detecting an expected event that alters the initial
scheduling, the provider takes rescheduling actions in order
to avoid SLA violations to the extent possible. Generally, the
provider may have more than one rescheduling option. For this
reason, we propose an algorithm for the selection of an option
for profit-aware rescheduling. In this section, we model first
the unexpected event and the rescheduling option. Then, we
present our algorithm for selection of a rescheduling option.

A. Definition of an Unexpected Event

An unexpected event leads to a change in the situation under
which the already signed SLAs had originally been negotiated.
Indeed, the schedule contracted by the SaaS provider in the
first phase may be affected, thereby leading to violation of the
original SLA. The unexpected events can be classified into
two categories: 1) resource events, for example VM failure,
failure of the currently executing job, etc. The jobs scheduled
on that VM may be affected, and so the initial scheduling
may be altered. 2) business events, such as a new incoming
client needing immediate execution with no additional VMs
available from the IaaS provider. Thus, the SaaS provider may
choose to execute a new job on an already active VM even
though there exist prior jobs (either running, or scheduled but
not yet started). An unexpected event can be specified using
two parameters: the time at which the event occurs, tevent;
and the set of resources affected by the event, vmID. The
unexpected event is assumed to be detected just prior to SLA
violation through a monitoring module.

B. Definition of the Rescheduling Option

The rescheduling option is composed of potential schedul-
ing actions applied to accepted and scheduled jobs (which
may either be running or not yet started). Two examples of
rescheduling actions are: (i) the provider may proactively mi-
grate the job to a different computer; and (ii) the provider may
invoke periodic checkpointing to protect against catastrophic
failure. (The provider can then restart from a previous check-
point image on a new computer, or even directly migrate to a
new computer.) A scheduling action defines when and where to
place a job. A scheduling action Ac, applied to a job j, can be
defined as (type, j, estimated start time, vmID, compT)
where: the type denotes the scheduling action type. For ex-
ample: insert, postpone, cancel/restart, migrate,suspend/restart.
The estimated start time and vmID define when and
where to start the job, respectively. The compT denotes the
estimated completion time, and can be calculated based on the
information given by scheduling action.

Hence, a rescheduling option, denoted Op, is defined as
follows: Op = {Acj}, where j ∈ {rescheduled jobs}. Each
rescheduling option has as output a list of rescheduled jobs
(resch List) and the list’s rescheduling information given by
the scheduling action.

C. Algorithm for Selection of a Profit-aware Rescheduling
Option

For the selection of a rescheduling option, we consider two
metrics: 1) the lossInProfitp, which calculates the SaaS
provider loss in profit when choosing rescheduling option p;
and 2) the number of potential cancelled jobs when choosing
option p, denoted by nbrJobsp.

1) The lossInProfitp for the provider: This include two
parameters: a) The actionCost define the cost due to
the action. For example, if the action is to migrate
the job to a new VM , the cost of the action will be
equal to the price of provisioning a new VM . b) The

penaltyCost, defined as the SLA violation cost, which
can be calculated for a job j using the following formula:

penaltyCostj =

0, if compTj ≤ respTj

prj ∗ delayj , if respTj ≤ compTj ≤ dlj

fixedPenaltyj , if dlj < compTj

(1)
where respTj is the agreed upon response time, and dlj
is the agreed upon deadline. The value prj indicates the
penalty rate. The fixedPenaltyj denotes the penalty
paid in case of violation.

2) The number of potential cancelled jobs, nbrJobsp:
This calculates the jobs whose estimated completion
time compTj are greater than the deadline dlj of the
initial SLA.

The proposed algorithm, Algorithm 1, below, takes as input
the list of possible rescheduling options that the provider can
choose after detecting the unexpected event. The algorithm
returns a scheduling option and associated rescheduling infor-
mation for each job such that the number of cancelled jobs is
minimized and the loss in profit is minimized.

For each possible rescheduling option: First, Algorithm 1,
below, calculates the estimated completion time compTj for
each job j, based on the action Acj applied to this job (line 5).
Second, the algorithm calculates the lossInProfit as a sum
of the loss in profit for each of the rescheduled jobs (lines
6 and 7). Third, the algorithm selects the potential cancelled
jobs whose compT are greater than the agreed upon deadline,
calculates nbrJobs, and stores the rescheduling information
for those jobs in potentialCancelJobs (line 8 to 10). Then,
the algorithm stores the option results in optionsResults
(line 13). Finally, the algorithm selects the option noted
optionsResultss having the minimum nbrJobs and the min-
imum lossInProfit (line 14) using the selectBestOption
function. We propose to use utility functions in order to
select the most convenient option. The utility function of an
attribute i with value x can be calculated as follows.

Let U(xi) =
xi − xworst

xbest − xworst
, (2)

where xworst and xbest denote the best and worst value,
respectively. For each possible rescheduling option: the
selectBestOption function calculates the utility values
UtLoss and UtNbrJobs for lossInProfit and nbrJobs
using equation 2 (line 21 and 22). The worst and best
values for the lossInProfit are the maximum and minimum
lossInProfit values selected from the optionResults, re-
spectively. Likewise, the worst and best values for nbrJobs
are the maximum and minimum nbrJobs values selected from
the optionResults, respectively. Then, the function calculates
the option’s distance to the best option, which has UtLoss = 1
and UtNbrJobs = 1 (line 23). Finally, the function returns
the option having the minimum distance to the best option
(line 24 to 27).

Algorithm 1 Pseudo-code for selection of rescheduling option
Input: The list of possible rescheduling options
Output: The rescheduling option leading to the min

lossInProfit and min nbrJobs
1: for each p ∈ possible rescheduling options do
2: lossInProfitp = 0
3: nbrJobsp = 0
4: for each j ∈ resch Listp do
5: compTj = getCompT (Acj)
6: lossInProfitj = penaltyCost(compTj) +

actionCost(Acj)
7: lossInProfitp = lossInProfitp + lossInProfitj
8: if compTj > dlj then
9: nbrJobsp ++

10: Add resch info from resch Listj to
potentialCancelJobsp

11: else
12: continue
13: Store lossInProfitp,nbrJobsp,potentialCancelJobsp

in OptionsResultsp
14: OptionsResultss=selectBestOption(OptionsResults)
15: return OptionsResultss

16:
17: Function selectBestOption(OptionsResults)
18: minDistance =

√
2

19: optionsResultss = optionsResultsp
20: for each p ∈ OptionsResults do
21: UtLossp = U(lossInProfitp)
22: UtNbrp = U(nbrJobsp)

23: Distancep =
√
(UtLossp − 1)

2
+ (UtNbrp − 1)

2

24: if Distancep < minDistance then
25: minDistance = Distancep
26: optionsResultss = optionsResultsp
27: return optionsResultss

IV. THE RENEGOTIATION-BASED RESCHEDULING
PROCEDURE

Once a rescheduling option is selected, the provider will
renegotiate with the clients whose jobs may be cancelled
by triggering a renegotiation session with each client. The
values of the renegotiable issues (deadline, compensation)
will be guided by the renegotiation decision-making strategy
and will be based on the results of the selected rescheduling
option. In this section, we present first the overall process for
renegotiation. Then we present details about the strategies that
will be followed by the provider and the client.

A. The renegotiation overall process

A renegotiation session can be defined as the period cover-
ing the time when the interaction between negotiators begins
until it stops. The renegotiation session terminates either with
an agreement, and in this case the new SLA is applied, or
without an agreement, in which case the initial SLA is applied.

The different states of the renegotiation session, denoted
renegSessionState, are: 1) Active (when the two parties are
exchanging offers and counter-offers); 2) Succeeded (when
the renegotiation session terminates with an agreement if
one party accepts the offer received from his opponent);
3) Failed (when the renegotiation session terminates without
an agreement). This last situation (Failed) occurs when one
party rejects the opponent’s offer or when the negotiation
deadline is reached.

The renegotiation-based rescheduling algorithm, Algo-
rithm 2, takes as input the potentialCancelJobs list (included
in the optionsResults returned by Algorithm 1). For each
job that may be cancelled, the provider opens a renegotiation
session with the client that owns that job. The renegotiation
sessions are triggered sequentially. The provider opens a new
renegotiation session only if the current one is terminated
(lines 3 and 4). If the renegotiation terminates with success,
then the SLA is updated to include the new agreed upon
deadline and the compensation (lines 5 and 6). If the rene-
gotiation about the job j fails then the provider must update
the estimated completion time of the jobs that potentially are
rescheduled after job j, in order to avoid the resource wastage
due to unused time slots (lines 8 to 10). For that reason, the
renegotiation is done sequentially, so that the provider can
update the estimated completion time of the rescheduled jobs
based on the renegotiation session’s output.

Algorithm 2 Pseudo-code for renegotiation-based reschedul-
ing
Input: The list of potential cancelled jobs
Output: The results of each renegotiation session

1: for each j ∈ potentialCancelJobs do
2: open renegotiation session j with owner of job j
3: while renegSessionStatej == Active do
4: wait
5: if renegSessionStatej == Succeded then
6: update the SLAj

7: continue
8: else if renegSessionStatej == Failed then
9: for each k ∈ rescheduled jobs after j do

10: update compTk in potentialCancelJobsk

B. The Decision-making Strategies for Renegotiation

During the renegotiation session, the provider and client
automatically exchange offers and counter-offers according
to their decision-making strategies. The renegotiation strategy
should be designed to rapidly achieve agreement, since the
participants are generally pressed when renegotiating after
an SLA violation. For this reason, we assume that the new
deadline proposed by the provider in the first round cannot
be modified when exchanging offers and counter-offers. This
is because the proposed deadline value is imposed by the
rescheduling option selected. So the given deadline value is
the best that the provider can offer to the client.

In what follows, we present how the compensation value is
evaluated and generated during the renegotiation session.

1) Decision-making by the Provider:
The offer evaluation strategy: The offer evaluation is

based on the satisfaction model described in [12]. The utility
value of a negotiable attribute i with value x can be calculated
using equation 2 where the worst and best values are
defined by the negotiator before starting the negotiation as
internal preference. In our scenario, based on the SLA model
described in equation 1, the values penaltyCost(deadline)
and fixedPenalty denote the best and worst values of com-
pensation, respectively.

The acceptance conditions of a received
offer from the client during the renegotiation
session are: 1) U(compensation received) >=
U(compensation proposed); and 2) deadline received >
compT .

If the offer received from the client does not satisfy the
two conditions mentioned above, the provider will propose a
counter-offer using the utility-based offer generation strategy.

The Strategy for Generation of Utility-based Offers:
As mentioned earlier, the proposed new deadline will
be equal to the estimated completion time included in
potentialCancelJobs list. Given the expected compensation
utility for the provider, the compensation value can be gen-
erated using equation 2 of Section III-C. The expected utility
consists of a tradeOff between minimizing the loss in profit
and satisfying the client. The expected client utility can vary
between 0 and 1. In the special case when the utility is
equal to 1, the provider proposes a minimum compensation
(the provider’s best value) while still managing to relax the
deadline. So, in this case the provider prefers minimizing the
provider loss over satisfying the client.

And in the special case that the utility is equal to 0, the
provider proposes to pay the fixed penalty as compensation
while continuing to run the job. So, the provider doesn’t
minimize the provider loss, but instead satisfies the client by
not cancelling his job. The SaaS provider can offer this to the
client only because it had obtained additional resources during
the rescheduling phase with the IaaS provider, as described
in Section III-C. Before renegotiating and according to the
provider’s internal preferences, the provider has fixed values
for preferred and reserved utility values (upper and lower
bounds on the expected utility). Those values are kept secret
and are not know by the client. In the first round, the provider
generates the initial offer based on the provider’s preferred
utility. During the later rounds, the provider may back off
from its preferred utility until reaching its reserved utility.

2) Decision-making by the Client:
The Strategy for Offer Evaluation: The evaluation is

based on the overall utility value. The overall utility of
a received offer composed of n attributes is calculated as
a weighted sum of each single utility using the following
equation:

U(offer) =

n∑
i=1

wi ∗ U(xi) (3)

where wi is the weight expressing the importance of the
attribute i and wi is in the range [0, 1]. For example, for high
priority jobs, users may place more importance on the deadline
than on compensation. In contrast, for low priority jobs, users
may place more importance on the compensation than on the
deadline.

The client defines preferred (preferredUt) and reserved
(reservedUt) utility values, as bounds on the overall expected
utility. Those clients having urgent business-critical jobs assign
low value to the (reservedUt). This is because they prefer to
accept the job along with a relaxed deadline and a smaller
compensation, rather than having the job cancelled. The client
preferences are kept secret.

In our scenario, the client accepts an offer only if
U(offerreceived) ≥ reservedUt. The client rejects an offer if
∃ issue i, U(xi) < 0. Otherwise, the client proposes a counter-
offer using the following strategy.

The Strategy for Offer Generation: As mentioned earlier,
the client does not change the deadline value proposed by the
provider when generating a counter-offer. Since the deadline
utility is known (expressed by the provider’s initial offer),
the compensation utility value can be generated from the
expected overall utility using equation 3. As was the case
for the provider, the client similarly starts by generating an
offer according to the preferredUt value, until reaching the
reservedUt value.

V. EVALUATION AND ANALYSIS

A. Experimental settings

To simulate the cloud market and the interaction between
the SaaS provider and the final users, we implement a multi-
agent system using JAVA and the Java Agent DEvelopment
framework (JADE) [13]. Each software agent is acting on
behalf of either clients or providers. The agents negotiate
through the FIPA iterated contract net protocol, which is a
multi-round negotiation protocol [14].

In the SaaS application provisioning process there are two
phases: 1) Before the SLA establishment: the provider tries
to find a schedule satisfying the client request, and decide
whether to accept or reject the request. Once accepted, an SLA
is signed between the two parties (between SaaS provider and
client). 2) When an unexpected event occurs after the SLA
establishment, as we have presented in Section III, there are
two steps. The first step happens when the provider initially
detects an unexpected event that may alter the initial schedule.
The first step deals with choosing an option from several
possible rescheduling options. In the second step, the provider
triggers a renegotiation session with each user whose SLA
may be violated.

Since we are interested in testing and validating the rene-
gotiation approach, we assume in our experiments that:
• The first phase is done according to an existing SLA-

aware scheduling algorithm [3]. That algorithm performs
more efficiently when evaluated and compared with the
reference scheduling algorithms [3]. For each accepted
job, the output of the first phase is an SLA with the

required scheduling information. The scheduling infor-
mation indicates where and when to put the job to satisfy
the SLA.

• The first step of the second phase is not explicitly
implemented. Instead, we generate an unexpected random
event. We implement a rescheduling module simulator
that generates the list of potential rescheduled jobs and
their estimated completion time given an unexpected
event. We assume that the jobs are rescheduled sequen-
tially. The estimated completion for the job running can
be generated randomly and for the other jobs using the
following formula.

compTj = compTjr +
∑

k∈{k between jr et j}

procTk,l (4)

where compTjr denotes the completion time of the job
running jr at tevent. And procTk,l denotes the processing
time of job k on the VM of type l.
We assume that the rescheduling module simulator
chooses the best rescheduling option.

B. Results and Analysis

Our objective is to evaluate the renegotiation-based appli-
cation provisioning algorithm and to compare it to the basic
scenario in which the provider cannot modify the established
SLA. For the basic scenario, we assume that the provider
tries to execute a rescheduling action (step 1) without any
renegotiation. If the SLA is violated the job is cancelled and
the SLA penalty is paid. We measure performance using two
metrics: 1) the total loss in profit, expressing how much the
provider loses when violating an already established SLAs;
and 2) the number of cancelled jobs, the number of jobs whose
completion time is beyond the agreed upon deadline for the
original SLA.

We conduct three types of experiments in which we cal-
culate the loss in profit and the number of cancelled jobs.
For these experiments, we assume that each agent (provider
or consumer) is able to generate only one offer during the
renegotiation session, since the renegotiation must be done in a
timely manner. Furthermore, we assume for the expected util-
ity that the agent’s reserved utility is equal to the preferred one.
So the agents generate one offer according to their expected
utility. If the opponent accepts the offer, the renegotiation ends
with an agreement. Otherwise the renegotiation fails. This
configuration (where preferred utility is equal to the reserved
one) is the worst possible configuration in negotiation, since it
is the least flexible. By choosing this configuration, we will be
sure that for other configurations, our renegotiation algorithm
will perform better. Hence, when relaxing the expected utility,
there is a greater chance of a request/offer being accepted,
and so the number of successful renegotiation sessions will
be increased.

For the first and the second experiments, we vary the
expected utility for the provider and the client, respectively,
while injecting exactly one unexpected event (affecting only
one VM). For the third experiment, we vary the number of

Fig. 1. Impact of provider’s expected utility variation

resources affected by the unexpected event. Note that an event
may lead to altering the initial scheduling of more than one
VM. For example, a failure may affect many VMs.

1) Impact when varying the expected utility of the SaaS
provider: Figure 1 shows the different values obtained for the
loss in profit and the number of cancelled jobs with respect
to the provider expected utility. For those experiments, we
generate clients and their initial request with expected utility
equal to 0.1 (clients with business-critical jobs). We observe
that the loss in profit and the number of cancelled jobs using
renegotiation is minimized compared to the basic scenario.
Without renegotiation, the loss in profit and the number of
cancelled jobs are constant. regardless of the value of the
provider utility. This is expected, since the provider’s strategy
for handling unexpected events does not consider the value of
the provider utility.

In Figure 1(a), the loss in profit (red curve) is decreasing
when the provider’s expected utility increase. This is because
the utility is related to the compensation paid to the client. The
higher the utility, the less is the compensation that is paid, and
so the loss in profit is also less. In Figure 1(b), the number of
cancelled jobs (red curve) is constant regardless of the value of
the provider utility, this is because the client’s reserved utility
is at the lower limit. This implies that the client will accept
any offer from the provider, even if the compensation is not
at the upper limit (not at the upper bound for the provider
utility). For those clients, a lower utility is nevertheless better
than cancelling the job.

In the next experiments, we will vary the clients’ expected
utility.

2) Impact when varying the expected utility of the clients:
Figure 2 shows the different values obtained for the loss in
profit and the number of cancelled jobs, with respect to the
clients’ expected utility. For those experiments, the provider’s
expected utility is equal to 0.6. We note, as in Figure 1, that
the loss in profit and the number of cancelled jobs are constant
in the basic scenario, since the basic scenario does not take
into account client satisfaction.

With renegotiation, we notice that the loss in profit and the
number of cancelled jobs increase when the client expected
utility increases. For the users with low utility values, the
renegotiation algorithm performs much better than the basic
one. But, for users with high utility values, the renegotiation
algorithm results are the same as the basic one. So, when

Fig. 2. Impact of variation of clients’ expected utility

increasing the clients’ expected utility, the renegotiation al-
gorithm performance tends to the performance of the basic
algorithm. In contrast, when the expected utility is low, the
client has a high-priority business-critical job, and so it accepts
any renegotiation offer in order to assure the continuity of its
business. In contrast, the client with a high expected utility
(i.e., having a less business-critical job) may choose to not
accept a renegotiation offer. In this case, the client prefers
that the provider should pay the penalty and cancel the job.

3) Impact as the number of resources are varied: Figure 3
shows the different values obtained for the loss in profit and
the number of cancelled jobs with respect to the number of
affected resources. For those experiments, the provider and the
client expected utility are equal to 0.6 and 0.1, respectively.

Fig. 3. Impact of variation of number of resources

We notice that the loss in profit (with and without renegotia-
tion) and the number of cancelled jobs (without renegotiation)
increase when the number of affected resources increases.
Further, when the unexpected event affects many VMs, the
number of rescheduled jobs increases which lead to a poten-
tially increased number of cancelled jobs. Consequently, the
total loss in profit will increase. In Figure 3(b), the number of
cancelled jobs is equal to zero, regardless of the number of
resources. This is because, in our configuration, we generate
clients whose jobs are highly business-critical. So the clients
always accept the renegotiation requests.

For the three experiments, we conclude that: 1) our algo-
rithm’s performance exceeds that of the basic algorithm in
terms of profit and the number of cancelled jobs when the
clients’ jobs are highly business-critical (low expected client
utility); and 2) our algorithm’s performance tends toward the
basic algorithm’s performance when the clients have jobs that
are less business-critical (when the clients’ expected utility is

high). Thus in the second case, the clients do not accept a
renegotiation, and prefer to enforce the initial SLA.

VI. RELATED WORK

Our work is related to SLA-aware Cloud service provision-
ing. Most of the existing work proposes an approach aiming to
guarantee the agreed upon QoS during the service provisioning
process. However, there is less work that considers the conse-
quences of SLA violations, and how the service provisioning
should be affected by those violations (e.g., the effect on the
provider profit and provider reputation).

In [15], Wu et al. propose a negotiation framework that
helps both consumers and providers to define QoS parameters
values before service provisioning. The proposed framework
includes brokers that assist consumers to find SaaS providers
satisfying their needs. The provider cost model does not
consider the SLA penalties to be assessed in case of violation.

In order to avoid SLA violations and minimize SLA
penalties, it is important to design efficient SaaS scheduling
algorithms [1], [2], [3], [4]. In [2], Leitner et al. propose a
scheduling algorithm that takes as input the incoming job’s
execution time requests and the current resource load. That
algorithm decides for each request whether to launch a new
VM or to schedule it on an existing VM. The objective
is to minimize the cost of running VMs and to minimize
SLA violations. Despite the fact that the provider revenue
depends on the budget given by the requests, the authors do
not consider this parameter in the scheduling decision. In the
same sense as [2], Liu et al. [1] propose a genetic algorithm
that aims to maximize revenue by minimizing the costs of
rented VMs. This algorithm divides the user’s request into
sub-tasks, and then tries to find the optimal combination of
VMs able to run those sub-tasks without an SLA violation.
Although [1], [2] do not consider the client’s budget when
scheduling, Wu et al. [3] propose admission control strategies
that take into account the budget and the deadline to decide
whether to accept or reject the client’s request. The main
goal is to avoid SLA violation and maximize profit. In [4],
Wu et al. propose a scheduling algorithm for enterprise-based
SaaS application. The algorithm aims not only to minimize
the number of rented VMs, but also to maximize the Customer
Satisfaction Level (CSL) by considering the consumer’s future
interest when scheduling his or her initial request.

The works cited above do not consider what to do after
an SLA violation, and once established, the SLA cannot be
modified. Our work proposes a renegotiation-based approach
to handle possible SLA violations. In contrast to cloud service
negotiation for SLA establishment, which is well developed,
the subject of renegotiation has not yet been well studied. We
are interested in work dealing with renegotiating an already
signed SLA, in contrast to [16], which considers renegotiation
as negotiating a counter-offer (before the SLA establishment).
There is some research work that evokes the idea of SLA
renegotiation, but without presenting a concrete contribution
on how it could be done [5], [17]. That work focusses
on showing the importance of adding renegotiation to the

SLA management life-cycle and presents the requirements
for doing so. In [9], [10], the authors propose a conceptual
framework for renegotiation. Before renegotiation was intro-
duced to the WS-Agreement protocol by the Grid Resource
Allocation Agreement Protocol (GRAAP) group [18], many
researchers tried to extend the negotiation component of the
WS-Agreement standard in order to support renegotiation [6],
[7]. Those authors focus on a renegotiation protocol and pro-
pose an approach for extending the WS-Agreement standard
in order to support renegotiation.

None of the above-mentioned work proposes a decision-
making approach for renegotiation. In [8], Sharaf et al. pro-
pose a decision-making strategy based on a fuzzy logic de-
cision support system, as part of the AssessGrid project. The
proposed strategy enables the evaluation of an offer received
during renegotiation. The authors do not provide details on
how the offers are generated during the renegotiation.

To the best of our knowledge, no previous decision-making
approach for renegotiation handles a SaaS provisioning proce-
dure wherein the SaaS provider is provisioned by a lower-tier
IaaS provider. Our work differs from the work above in that
we propose a renegotiation process based on SaaS scheduling
information. The proposed renegotiation approach aims not
only to minimize the loss in profit due to violation, but also
to assure the continuity of service.

VII. CONCLUSION

For scaling purposes, SaaS providers need to rent resources
from IaaS providers in order to run their highly scalable
applications. In order to maximize their profit and to satisfy
clients, a SaaS provider employs an SLA-aware scheduling
algorithm that efficiently assigns client requests to rented
resources. Since the cloud environment is highly dynamic,
unexpected events may occur that alter the originally selected
schedule and lead to SLA violations. Most of the literature
assumes that once established, an SLA cannot be modified,
and when violated the job is automatically cancelled, without
first allowing the provider and consumer the option of renego-
tiation. The provider pays a high penalty and loses reputation,
while the consumer may have a business-critical job cancelled.

We have described an SLA renegotiation-based approach
to proactively handle such SLA violations. The resulting
decision-making model makes possible a win-win situation
(ensuring continuity of service and minimizing SLA penalties
costs). The decision-making strategies are based on a utility
function for the provider and scheduling information generated
by the rescheduling option chosen before renegotiation.

In the future, we plan to investigate further the rescheduling
options upon detecting an expected event. The impact of these
options will be studied in a large-scale environment using
a real world application. Finally, we intend that negotiators
will be able to automatically choose an appropriate decision-
making negotiation strategy based on the situation.

ACKNOWLEDGMENT

This publication is partially supported by the IDEX “Chaire
d’attractivité” program of the Université Fédérale Toulouse
Midi-Pyrénées under Grant 2014-345.

REFERENCES

[1] Z. Liu, S. Wang, Q. Sun, H. Zou, and F. Yang, “Cost-aware cloud service
request scheduling for saas providers,” The Computer Journal, p. bxt009,
2013.

[2] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar, “Cost-
efficient and application sla-aware client side request scheduling in an
infrastructure-as-a-service cloud,” in Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on. IEEE, 2012, pp. 213–220.

[3] L. Wu, S. K. Garg, and R. Buyya, “Sla-based admission control for
a software-as-a-service provider in cloud computing environments,”
Journal of Computer and System Sciences, vol. 78, no. 5, pp. 1280–
1299, 2012.

[4] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “Sla-based resource provi-
sioning for hosted software-as-a-service applications in cloud computing
environments,” IEEE Transactions on services computing, vol. 7, no. 3,
pp. 465–485, 2014.

[5] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Renegotiation in
service level agreement management for a cloud-based system,” ACM
Computing Surveys (CSUR), vol. 47, no. 3, p. 51, 2015.

[6] M. Parkin, P. Hasselmeyer, and B. Koller, “An sla re-negotiation proto-
col,” in Proceedings of the 2nd Non Functional Properties and Service
Level Agreements in Service Oriented Computing Workshop (NFPSLA-
SOC08), CEUR Workshop Proceedings, ISSN 1613-0073, Volume 411.
Citeseer, 2008.

[7] G. Di Modica, O. Tomarchio, and L. Vita, “Dynamic slas management
in service oriented environments,” Journal of Systems and Software,
vol. 82, no. 5, pp. 759–771, 2009.

[8] S. Sharaf and K. Djemame, “Extending ws-agreement to support renego-
tiation of dynamic grid slas,” in eChallenges e-2010 Conference. IEEE,
2010, pp. 1–8.

[9] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Service level
agreement renegotiation framework for trusted cloud-based system,” in
Future Information Technology. Springer, 2014, pp. 55–61.

[10] W. Mach and E. Schikuta, “A generic negotiation and re-negotiation
framework for consumer-provider contracting of web services,” in Pro-
ceedings of the 14th International Conference on Information Integration
and Web-based Applications & Services. ACM, 2012, pp. 348–351.

[11] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, M. Wooldridge,
and C. Sierra, “Automated negotiation: prospects, methods and chal-
lenges,” Intern. J. of Group Decision and Negotiation, vol. 10, no. 2,
pp. 199–215, 2001.

[12] X. Zheng, P. Martin, and K. Brohman, “Cloud service negotiation:
Concession vs. tradeoff approaches,” in Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid 2012). IEEE Computer Society, 2012, pp. 515–522.

[13] Jade Site: Java Agent DEvelopment Framework, http://jade.tilab.com/.
[14] FIPA Interaction Protocols, http://www.fipa.org/repository/ips.php3.
[15] L. Wu, S. K. Garg, R. Buyya, C. Chen, and S. Versteeg, “Automated sla

negotiation framework for cloud computing,” in Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium
on. IEEE, 2013, pp. 235–244.

[16] A. Galati, K. Djemame, M. Fletcher, M. Jessop, M. Weeks, S. Hickin-
botham, and J. McAvoy, “Designing an sla protocol with renegotiation to
maximize revenues for the cmac platform,” in Web Information Systems
Engineering–WISE 2011 and 2012 Workshops. Springer, 2013, pp.
105–117.

[17] T. B. Quillinan, K. P. Clark, M. Warnier, F. M. Brazier, and O. Rana,
“Negotiation and monitoring of service level agreements,” in Grids and
Service-Oriented Architectures for Service Level Agreements. Springer,
2010, pp. 167–176.

[18] O. Waeldrich, D. Battré, F. Brazier, K. Clark, M. Oey, A. Papaspyrou,
P. Wieder, and W. Ziegler, “Ws-agreement negotiation version 1.0,” in
Open Grid Forum, vol. 35, 2011, p. 41.

