
Nearly Linear Time Algorithms for Permutation Groups

with a Small Base

L6sz16 Babail’2*, Gene Cooperman3t, Larry Finkelstein3t, and ~kos Seress4

4Dept. of Mathema@3college of Comp. Science
lDept. of Comp. ,Science 2Dept. of Algebra

University of Chicago Eotvos University Northeastern University Ohio State University

Chicago, Illinois 60637 Budapest, Hungary H-lo88 Boston, Mass. 02115 Columbus, Ohio 43210

Abstract. A base of a permutation group G is a subset
B of the permutation domain such that only the identity
of G fixes B pointwise. The permutation representations
of important classes of groups, including all finite simple

groups other than the alternating groups, admit O(log n)
size bases, where n is the size of the permutation domain.

Groups with very small bases dominate the work on permu-

tation groups in much of computational group theory. A se-
ries of new combinatorial results allows us to present Monte
Carlo algorithms achieving O(n log’ n) (c a constant) time
and space performance for such groups with respect to the
fundamental operations of finding order and testing mem-

bership. (The input is a list of generators of the group.)
Previous methods have achieved similar space performance
only at the expense of increased time performance. Adap-
tations of a ‘(cube-doubling” technique [BSZ] and a local ex-
pansion property of groups [Ba3] (cf. [Ba4]) are the key to
theoretically reducing the time complexity to O(rI log’ n.).

The shared principal novelty of the new ideas is in their
abilitv to build and manitmlate certain chains of subsets of a

grou~, which are not themselves subgroups, in order to build
the point stabilizer subgroup chain. Further combinatorial
ideas are used to lower the constant c. Comparative timing
estimates, based on asymptotic worst-case analysis, lead us

to expect a new implementation to be faster than previous
implementations for groups of high degree.

1. INTRODUCTION

In his seminal work [Si], Sims introduced the notions of
a base and strong generating set as the fundamental data
structures for computing with permutation groups. We

consider permutation groups given by a list of generators.
A base for a permutation group G of degree n is a subset

~ = {@l, P2, ... @M } of the permutation domain, Q, with the
property that only the identity of G fixes each point of B.

The point stabilizer sequence for G relative to B, considered

*Research partially supported by NSF Grants CCR-
8710078 and CCR-9014562.

tResearch partially supported by NSF Grant CCR-
8903952.

Permission to oopy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

titla of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fae

and/or specific permission.

e 1991 ACM 0-89791-437-6191 /0006 /0200 . ..$1 .50

ae an ordered subset, is the chain of subgroups

G = G(l) > G(2) >... ~ G(M+l) = 1,

where G(i) = G{O ,,..,P, -,] is the subgroup of G which fixes
pointwise the set {/31,. . . ,~i_l}j 1 ~ i ~, M + 1. A strong

generating set (SGS) for G relative to B IS a generating set

S for G with the property that

G(i) forl<i~~+l.(S II G(i))= ,

Given B and S, it is straightforward to compute the
order of G and test membership in G of an arbitrary elemect

of Sn. This requires the construction, either implicitly as
in [Je, Si] or explicitly as in [FHL, Kn], of a complete
transversal system T for the point stabilizer sequence. T

is the union of the transversals (complete sets of coset

representatives) for G(i+l) in G(i), 1 ~ i ~ M.

Let P(G, Q) denote the minimum base size for a permu-
tation group G. (Q will be suppressed, where it is obvious.)
If B is a non-redundant base, i.e. no proper subset of B is a
base, then the following relation is immediate for M = 1111:

(*)

In fact, this inequality holds under the weaker and more
easily verified assumption that B, ae an ordered set, is

nonredundant in the sense that no member of B is fixed
by the pointwise stabilizer of the elements preceding it. The

latter concept is called the non-redundant base with respect
to an ordering, and is uniquely specified by an ordering of $2.

Blaha [131] has shown that a “greedy” ordering, choosing
the next base point from the largest orbit of the pointwise
stabilizer of the set of current base points, results in a nearly

optimal base size M = O(#(G) log log n).

Computational group theory algorithms whose com-
plexity depends on the baae size can be formulated naturally
under three increasingly general hypotheses.

A. A possibly redundant base is known in advance.

B. An upper bound on the minimum base size K(G) is
known in advance.

C. Nothing is known in advance about bases or their sizes,

Section 2 provides the machinery to find an SGS under
Hypothesis A in deterministic time O(nikfc) where M is

200

the size of a given base B. In section 3, a simple Monte

Carlo solution is given in the general case (Hypothesis C) in
time O(np(G)c) (where (p(G) is not assumed to be known).

An asymptotically more efficient version follows in section 6

(with improved c).

The version in section 6 is suggested for implementi~-
tions under Hypotheses B or C, The approach in section 6

starts with a solution under Hypothesis B. In additionj a
very efficient strong generating test is described. These two
are then combined to yield a solution under Hypothesis C:
we pTetend to have some upper bound M on p(G), test

whether the output of the algorithm is indeed an SGS; if

not, we double the assumed bound M and repeat.

A family ~ of permutation groups is a small base }amily

if there is a constant c such that for any group G s ~ of

degree n, there is a base for G of size M ~ log’ n. When
the family is clear, we refer to an individual member as a
small base group, By inequality (*), this is equivalent to the

condition that log IGI ~ log=’ n for some constant c’.

The small base groups are especially important be-

cause all permutation representations of degree n of non-
alternating simple groups have O(log n) size bases. This

follows from bounds due to Kantor [Ka], via Cameron [Ca,

Theorem 6.1]. (One often has fewer than eight base points

for groups acting on ten thousand or more points.)

From a practical point of view, small base groups are

the only groups with which one can effectively compute in

the case of ‘(very large” n. Indeed, a strong generating set
requires fl(n~(G)) storage.

Rubik’s cube-type puzzles and more general permuta-
tion puzzles don’t fall under the ‘(small base” heading. Such

puzzles allow incremental solution: one can construct group
elements with small support, i.e. sequences of moves that
end up moving a small number of pieces. As we show in
section 5, transitive groups with a small base cannot have

non-identity elements with small support.

Some of our algorithms will be Monte Carlo. Such

algorithms use random bits along the way and are not

guaranteed to yield the correct result; but they are likely
to do so on every input.

We say that the rekabdity of the algorithm is p(n) if the
probability of producing a correct output is at least p(n) for
every input group of degree n. If we mention a Monte Carlo

algorithm without specifying its reliability, it will always ‘be
understood that the reliability is at least 0.9. In some cases,

a greater reliability (such as 1 – I/n) will be stated.

To amplify the reliability from say I – d to I –E, one has

to repeat the algorithm 0(log(6/e)) times and take majority
vote. (e is chosen by the user.)

Our main theoretical result follows.

Theorem 1.1. Given a permutation group G of degree n

generated by s generators, one can construct an SGS by a
Monte Carlo algorithm running in time O(ns log’ IGI) for
some small absolute constant c. (No estimate on the order
of G or the base size is assumed to be known in advance.)

In particular, for small base groups this means nearly

linear time, i.e. O(nslogc’ n).
section 3. (We note that in

base size) [Si, Je, Kn] require

The proof will be given in
the general case (arbitrary

0(n3) time to construct an

SGS, while [BCFLS] does the same in Monte Carlo time

0(n3 log3 n) (assuming s = O(n)).)

Finer estimates are obtained in terms of several param-

eters. The following result (reproduced later as Theorem
6.2) displays more complicated looking bounds which are
easily seen to subsume Theorem 1.1.

Theorem 1.2. Let G = (S) ~ Sym(Q) be a
group with Ifll = n, and suppose that b is the

maximal size of a non-redundant base. Then there

exists a Monte Carlo algorithm which returns an

SGS for G in O(n log3 IGI + nbz log2 IGI log(b + Iogn) +

b3 (log b) (log3 IGI) (log n)) + nlS]log IGI) time. The con-

structed SGS supports membership testing in O(n log \Gl)

time and the memory requirement is O(nblog lG\ + nlS\)

during the construction.

It should be stressed again that no prior bounds on
base size or IGI are required for this result (i.e it holds under
Hypothesis C).

We note that usually s = IS I = O(log IGI) (this is
certainly true if S is non-redundant, and often we have

s ~ 3). Furthermore if s = O(logz IGI) and p(G) =

0(3fi/ log n) (far weaker than the assumption of ‘(small

base”), the running time is dominated by the first term of

the expression, O(n log3 \G\).

An important byproduct of these considerations is a
very efficient Monte Carlo strong generahng test for small

base groups (fully stated as Theorem 6.1).

The basic approach is that of Sims and uses a variation
of his Schreier vectors [Si]j although portions of the algo-
rithm were also influenced by Knuth’s version [Kn]. There
are, however, two quadratic bottlenecks in attempting to re-

duce the time of these traditional algorithms below 0(n2).

The first occurs in using O(n) coset representatives to form
all Schreier generators. If the coset representatives were cal-

culated on all points, then Q(n2) time and space would be
required. The second quadratic bottleneck occurs when sift-
ing (also called factoring or stripping) the Schreier genera-

tors. The Schreier generators are a set of group elements,

formed from generators of G(’) and coset representatives of

the point stabilizer subgroup G(i+l) in G(’), that are guar-

anteed to generate G(’+l). Since there are at least as many
Schreier generators as coset representatives, simply comput-
ing the action of O(n) Schreier generators on all n points

would again require Q(nz) time.

Several radically new ideas that are combznatomzl in
nature were required in order to achieve these results. While
our primary objective continues to be the construction of
generators for certain subgToups, the shared principal novelty
of the new ideas is in their ability to build and manipulate

certain chains of subsets of a group, which are not themselves
subgroups. Appropriately structured subsets allow a gradual
buildup of the target subgroup by repeated doubling for
which the familiar subgroup structure would be too coarse.

The solution to the first quadratic bottleneck is given in

section 2 by a particularly efficient implementation of Sims’s
“Schreier vector” data structure which ensures time-efficient
access to coset representatives without excessive storage re-
quirement. This is accomplished through an intriguing algo-
rithmic adaptation of a doubling technique due to Babai and

201

Szemer4di [BSZ], originally developed for building (nonde-
terministically) short straight line programs in finite groups.
This guarantees that the depth of the “Schreier trees” form-

ing a Schreier vector is bounded by log IGI.

The second quadratic bottleneck is eliminated in sec-
tion 3 by showing that for small base groups, a “small” ran-

dom number of Schreier generators suffice to generate the

point stabilizer subgroup. Thus, only a ‘(small” number of

coset representatives need ever be computed on all n points.

The technique is based on the ‘(local expansion lemma” for
groups [Ba3] (cf. [Ba2]), re-stated in Lemma 3.1. This re-
sult states that if S is a generating set for G closed under
inverses and if D is a subset of G such that IDI < \G1/2 with
the property that each element of D can be expressed as a

word of length at most t in the elements of S, then there
is an element g E S such that Illg \ DI ~ lD/4tl. With

this in place, a simple algorithm for constructing a strong
generating set with complexity O(n log’ n) is given.

At least two other new combinatorial ideas are intro-

duced in order to lower the power of log n in the com-

plexity. One is to substitute short Schreier trees of depth

O(log n) (as described in the paper of Cooperman, Finkel-
stein and Sarawagi [CFS]) for the cube Schreier trees of
depth O(log IGI). The second is to use a combinatorial result
showing that a group with a small base and a small number
of orbits must have a large support. From this, one shows
that a relatively small random subset of points is likely to
intersect any undiscovered base points. (An implementation
is still in progress.)

2. SCHREIER VECTOR DATA STRUCTURES AND

CUBE SCHREIER TREES

In this section, we show how to construct especially ef-
ficient versions of Sims’s Schreier vector data structure [Si],

These are important both for storing coset representatives
of a point stabilizer subgroup chain, and as the basis of

Sims’s original group membership algorithm. The new ver-
sion is shown both to be more space efficient and to en-
able faster computation of coset representatives, in the worst
case. As such, they are the key to eliminating the first of the
quadratic bottlenecks mentioned in the introduction. It also
provides the machinery necessary for a O(n log’ n) deter-
ministic group membership algorithm under Hypothesis A,
although the algorithm is omitted due to lack of space.

Given a permutation group G = (S) ~ S~, a Schreier

vector data structure for G is a sequence of pairs (~ ,Ti)
called .$chreier trees, one for each base point ~~ , 1 ~ i < M.
Ti is a directed labelled tree, rooted at pi, with edge labels

from the set Ri = {gl, ,gk} ~ G(’). The nodes of Ti are

‘R’) For a directed edge from u to vthe points of the orbit pi

with label h, Uh = v, If v is a node of Ti, then the product of
the edge labels along the path from pi to v in Ti is a word in
the elements of ~ whose corresponding permutation moves

P; to v. Thus each Sch,reier tree (~, T~) defines a set of coset

representatives for G(’+l) in G(t). The set of all such coset
representatives forms a partial transversal system for G. A

Schreier tree (Ri ,Ti) is complete if lTil = /~,G(’) I and the
Schreier vector data structure is complete if the trees are
complete for each base point /?;. In this case, the Schreier
vector data structure defines a complete tTansveTsal system.

Given G ~ S~ and a permutation g c S~, a Schreier
vector data structure for G is important for testing mem-

bership of g in G. For w a word on elements of G, if

W=glgz. gk then w-l = g~l ~. g~lg~l. The notation

Xw denotes xg’g’””’gk , the image of x under the product of

the elements of w. The time for computing the image of z is

clearly Iwl, the /ength of the word w. The residue of a per-

mutation (or word) under the Schreier vector data structure
is the word computed in the next procedure. Computing

the residue (as a word, only) requires O(riM) time, where r

is the sum of depths of the trees in the Schreier vector data
structure, (This assumes that for each h E UjRj, both the

permutations h and h-l are stored.) We say that the per-

mutation sifts if the product of the residue word, considered
as a permutation, is the identity. A group element is in G if
and only if it sifts. Testing the last property is known as a
group membership test.

Procedure Residue-as-Word(g, {(Rj,’Tj) :1< J’ < ~})

Set w & g [if g is permutation, w is a word of length 1]

Fori-lto A4do
Set x = /3,W

If z is not a node of Ti then return(w)

Let wi be the word consisting of the edge labels in ~

along the path from @i to c in Ti

Append W,-l to the end of w

Return(w)

The notion of a Schreier vector data structure was
introduced by Sims in order to save up to a factor of n in
space for typical cases, at the cost of up to a factor of n
in time in computing coset representatives. Nevertheless,

there are pathological examples of Schreier trees for which
the worst case time occurs, and no savings in space. For

example, if G is the symmetric group given by generators
(1 2), (2 3),..., (n -1 n), consider a Schreier tree which

uses those labels for G/G(z) , Such a tree will have depth
n – 1. The remainder of this section is concerned with how
to build shallow Schreier trees that are guaranteed to avoid
such pathology.

This paper will primarily be concerned with monotone
Schreier trees. A Schreier tree (R, T) is monotone if R is

an ordered set and the edge labels “along the path from

the root /3~ to each vertex v is a word in R-l U R =

(g~l, ~~,gi_l)gl, ,g~) with strictlY increasing indices It
is clear that given the labels R of a monotone tree, one
can recover a monotone Schreier tree of depth at most 21RI

in time O(nlRl). We will invoke such a procedure under
the name monotone-tree(R). Two examples of monotone
Schreier trees are introduced in this paper, This section

presents one based on the “cube-doubling” of Babai and
Szemer6di [BSZ]. Section 4 presents ‘(shallower” trees based
on those used in the random base change algorithm of
Coeperman, Finkelstein and Sarawagi [CFS].

Let R = (gl,gk) be a sequence of elements of a

group G. The cube C(R) is the set of group elements

{g~’g~’ g~’ : ei 6 {0,1}} and C-l(R) = {g E G : g-l s

C(gl,gk)}. The cube is non-degenerate if IC(R)[= 2k,

The cubes were used in [BSZ] to show (non-constructively)
the existence of short straight line programs in finite groups.
We give an efficient algorithmic adaptation of theier basic
doubling technique.. A simple observation from [BSZ] fol-
lows.

Proposition 2.1. Let (gl,gk. gk+l) be a sequence of

202

group elements and C = C(gl,gk). Then [C(gl,g~+l)l =

21CI if and onJy ifgk+~ f’ C ‘lC. In particular, C(gl,9k+l)

is non-degenerate if and only if C(gl, gk) is non-degenerate

and gk+~ ~ C-l C,

Proof. Obvious from the definition. II

Procedure Double-the-Cube((R, T), g, ~)

Input: a monotone Schreier tree (R, 2’),

a group element g and
a root node ~

Output: either the original Schreier tree (R, 2’) or a new

monotone Schreier tree (R’, T’) with g E (R’) and

Ic(l?’)1 = 21C(R) I
Time: O(n depth(Z’))

lf ~C-’(R)C(R)g + pc-’ (R)C(R) then

Let g’ c C–l(R)C(R)g \ C-l(R)C(R) such that

@ $?D
C-’(R)C(R)

Set R + append(R, {g’})

Set T - monotone-tree(R) [using R ‘lu R]
Return (R, T)

The claimed output and times of the procedure are

clear from Proposition 2.1 and the observation that P9’ @
PC-’(R)C(R) .

Implies that g’ ~ C-l (l?) C(R).

Lemma 2.2. Let G = (S) ~ Sym(Q), IQ] = n, and z an
arbitrary point of ft. Then a monotone Schreier tree (R, T)
with IRI ~ log IGI (and, consequently, T with depth at most

210g IGI) can be built in 0(nlog2 IGI + nlS[) time.

Proof. First, determine z G in O(nl Sl) time. Set (R,’Z’) to
the trivial Schreier tree rooted at x. While there is a g $ S
with ~C-l(R)C(R)g # ~C-l(R)C(l?)

, execute Double-the-
Cube((R,T), g, ~). Since C(R) ~ G doubles in size at
each step by Proposition 2.I, there can be at most log IGI

iterations, Setting (R, T) ~ monotone-tree(R) then yields

the result. O

3. RANDOM SCHREIER GENERATORS, RANDOM

SUBPRODUCTS, AND A SIMPLE ALGORITHM

In general, there can be as many as]Sln = Q(n)
Schreier generators, and each Schreier generator costs Q(n)
to construct since a full permutation multiply must be
performed. This is the second of the quadratic bottlenecks

mentioned in the introduction. Under Hypothesis A (known

base) one can initially evaluate Schreier generators as words

only on a known set of base points in order to construct
a strong generating set in O(n loge n) time, but additional
machinery is necessary when a base is not known in advance
(Hypothesis B or C). The additional machinery requires
Monte Carlo algorithms.

Typically, we have a set S of generators for G, subgroup
H ~ G. for some x g Q, and an SGS, S’ for H. We
want to test if H = G=. The standard method is to sift all

Schreier generators formed from S and a transversal for G.
in G through a complete transversal system for H formed
using S’.

This section takes the approach of defining an appropri-
ate ‘(small” random subset of the Schreier generators which
suffices to generate a point stabilizer subgroup with high

confidence. Since this set will always be poly-logarithmic in
size, one can evaluate them on all n points of the permuta-
tion domain, while avoiding a quadratic bottleneck. Using

cube Schreier trees and a random set of Schreier genera-
tors then allows one to find an SGS under Hypothesis C in
O(n log’ n) time for small base groups. Nevertheless, a suffi-
ciently high constant c would be required, that it is unclear

whether the method would be faster than existing Q(n2)
algorithms when tested on groups within the range of cur-

rent computers. Hence, after prescribing how large a set
of random Schreier generators is required, the remainder of
this section describes the method of random subproducts for
improving the complexity of forming random Schreier gen-
erators. This is followed by two further sections improving

additional aspects of the basic algorithm, and culminating
in a solution under Hypothesis C with considerably lower
asymptotic bounds.

3.1. RANDOM SCHREIER GENERATORS

Let Z be the set of coset representatives of G mod

Gz determined from ‘T, For arbitrary h E G, let ~ be

~ = ~h, The (ichTt?geTthe unique element of E such that z

generators for G~ are {ug~-l :0 E Z,g c S}. As is well
known, the Schreier generators generate the point stabilizer

subgroup G$ [Ha, Lemma 6.2,2],

The next lemma, from [Ba3, Lemma 10.2], is the key
to knowing how many random Schreier generators suffice to

generate a point stabilizer subgroup.

Lemma 3.1. Let S denote a set of generators of the group

G andset Z’ = SUS-l U{l}. Let Ll be any finite subset of Tt,
the set of t-term products of members of T (in any order),

such that]Dl ~ lG1/2. Then for at least one generator G S,

l~9\~l 2 1~1/(4t)

The application to our problem follows.

Lemma 3.2. Let H < ~ ~ G (H a proper subgroup).

Suppose that (Rj, Tj) are Schreier trees for H(j) /H(j+l)
for 1 < j < M, Let U be a set of coset representatives

determined by a complete Schreier tree (~, ~) of ~ in G

such that S := ~ u (U1<j<MRj) generates G. Then there

exists a g E S such tha~ fir a random u ~ U, the Schreier

E G \ H (~-~ U defined as above) withgenerator ug~-l -

probability at least 1/(4 depth(T) + 4 ~l<j<~ depth(Tj))

Proof. Let D = HU. Since H is a subgroup of ~,

IHI < 1~1/2, and so 1111 = IHIIUI < l~llf71/2 = [G1/2.

Hence we can apply Lemma 3.1 with T = SUS-l U{ I}, t=

~wth(~) + X1<j<M depth(Tj). Therefore, there exists a

generator g E S ~u?k that for a random element d = hu 6 D,
h c H, u E U, with probability at least l/(4t), dg @ D. But

dg c D if and only if hug = hug@-l~ ~ HU. This is true

if and only if ug~–l— ug E HU. Since ~~~ HU = HiXj, it

then follows that dg E D if and only if ug~-l E H. The
test for dg ff D depended only on the random choice of u

and not of h, completing the proof. D

3.2. THE CORE ALGORITHM

The ideas developed up to this point suffice for con-

structing an SGS in O(n Iogc IGI) Monte Carlo time under

203

Hypothesis C. The algorithm presented here provides a sim-

plified framework for later improvements. We shall refer to

an ordering (/31, ,/3n) of Q.

Procedure Construct-SGS(S)
Input: generators S for G
Output: a strong generating set UkRk

Reliability: l- O(l/nc)

Set RI -S
Set Z’l *monotone-tree(R1)

If orbit of~l # vertices of T1 then
Augment (R1)Z’l) asin Lemma 2.2
Until orbit of/?l =verticesof T’l

Complete-Point-Stablllzer-Subgroup-Si.mple(e, 1)

Return {(Rj ,Tj)}

Procedure
Complete-Point-Stabilizer-Subgroup-Simple(g, ~)

Input: group element g,pointj
such that@j ~ first-point-moved(g)

Global variables: Schreier vector data structure

{(Rj, Tj) :j ~ 1} and
an ordering of the set Q = (~1,/32)...,p~)

Output: modified global data structure,
‘{(Ri,Tj):l{j <n-l}

ReiiabiJity: with probability 1 –O(l/nc), finds an element
of ((uj<k Rk))~J \ (Uj+l<k l%) if it exists

[Note @jC-’(R’)c(R’) = nodes of Tj]

If ~Jc-’(%)W%)9
$C-’(R’)C(R’) then

SetRj -RjU{g}
While3h E Uj~k~lBIRk

:-’(RJcWW ~ #’(WWL) do
such that /3.

J

Set (Rj,Tj~* Double-the-Cube((ftj ,~j),h,oj)

Repeat

Repeat (4Zj<k.n_l ‘ePt~(~k)) /uj<!t<n-l&/ timeS

Set u - rafidom coset representa~v~ in (R?, Tj)

Set g+ random element ofUj~k Rk -
Set u ~ ug

[u has probability fl(l/(de@h(Tj) luj<k~~ Rk l))

of producing anew element of G(j+17.]
Set h+- Residue-as-!dord(u,{(Rk,Tk):~<k~n-1})
Evaluate h as a permutation
Ifh# identity then

Set j’t first-point-moved(h)

For k=j’ downtoj do
If k= j’’or Rk #@then

Complete-Point-Stabilizer-
Subgroup-Simple(h, k)

Until the last c’logniterations of outer repeat loop
yielded only trivial residues [capprop. constant]

Lemma 3.2 can be applied to show correctness,

with G = (uj</t<w-lb), ~ = ((uj<k~n–l Rk))f?}]

and H = (Uj+l<k<n_lRk). Lemma 3.2 then says

that there exists– a- g E UjSkSn_lRk for which

lj(q Zj<k<.-l
de@h(~k))Of the Coset repRSentdiVeS, u,

fOr(uj<k<~-l Rk)/((uj<k <~1 Rk))p, yield Schreier genera-
torsug-wi;h non-trivial ~es~due. Hence, theinner repeat loop

of Complete-Point-Stabilizer-Subgroup-Simple will have
probability Q(l) of finding a Schreier generator with non-
trivial residue, if one exists. At most nlog\Gl new Schreier

generators can be added to the cubes C(Rj) over then levels

over the life of the algorithm. Since nlog(l Gl) < nzlogn,

iog(nlogl Gl) < 310gn. Thus by choosing a suitable c’ for

the outer repeat loop termination criteria) (c’ ~ 4 will do),
theouter repeat loop hasprobability Q(l– 1/n) that it will
not exit while there remains a Schreier generator with non-
trivial residue.

The required time is clearly O(nlogclG[), while the
space is O(nblogl Gl). The constant c is not derived here,
since in the remaining sections, using additional combina-
torial techniques, a faster algorithm (smaller power of C)

is derived. In addition, a space-time tradeoff will be

demonstrated, in which the newer algorithm can operate in

O(n log IGI) space (similarly to Sims’s algorithm) at the cost

of an additional factor of O(logl Gl) in time.

The previous discussion completes a sketch of the proof
of Theorem 1.1 from the introduction.

3.3. RANDOM SUBPRODUCTS

Random subproducts were first defined in [BLS, sec-
tion 6.2] and were used extensively in [B CFLS]. They serve
hereto accelerate the algorithm that follows.

Definition. ATandom subproduct ofasequence ofgroup e]-
ements(gl, g21, .,, gk)isan instance ofapr0dUCtg~1gj2 ..g~t

in which thee; are independent random variables uniformly
distributed over {O, 1}.

Lemma 3.4. Let H < ~ ~ G be groups. Let S =

{gl, gz., ,gk} generate G’, and Jet u be a transversalof~ in
G. Let P(g, x) be the proposition that I{u E U:ug~–l E

~\H}l > x (@ 6 U as previously defined). Assume there
is at least one generator g E S such that P(g, r) for some
r, O < r ~ IUI. (Which g satisfies P(g, r) is not known

a priori.) Then we can form a word w of length at most
k (byrandom methods)in time O(k) such that P(w, r/4)
with probability at least 1/4.

PToof. The word w is chosen to be either w’ or W3 (de-

fined below), each with probability 1/2, Let g = gj
be a randomly chosen generator satisfying P(g, r). Let

w’ = 9;= ’9;=2 ““9kek be a random subproduct, where

(g;,g~),g~) is a random re-ordering of (gl,gz,,g~)
(eiis Oorlwith uniform probability.) Thenw’=wlgejwz

(:Without loss ofgenerality, wewillassume that length W2) <
length. Themethod of proof will betoformawordw3
with the same properties and random distribution as W2.
We will then find probabilities for P(wlgje’ WZ, r/4) and

P(w3, ?/4).

We first assume the probability space to be restricted
to the union of the set of events in which length(w2) <

iength(wl) and half of the set of events in which length(wz) =

length(wl). (The half of the events for the latter class are
chosen independently and randomly.) The complementary

set of events is handled similarly at the end of the proof,
Choose a random number 1’ from a uniform distribution
from O to k – 1, and let 1 = 11’/2] . Then, since the
length of W2 is uniformly distributed between O and k – 1,
the distribution of 1 corresponds to the distribution of the

length of W2 given that either length(w2) < iength(wl) or
length(wz) = tength(wl) and an independent random event

204

of probability 1/2 occurs. Next choose W3 as a random sub-

product on a randomly chosen subset of S of size 1. Then set

w to either w’ = wlgje> W2 or to W3, each with probability

1/2.

Next, note that Prob(P(wlgje’ ,r/2) I ~(w2, 9’/4)) ?

1/2, where P(w2, r/4) denotes the negated statement. To

see this, note that although the length of WI can be affected
by W2, ej is independent of W2. Thus, if P(w1, r/2), then

with probability 1/2, ej = O and the claim follows. If

P(wl, r/2), then with probability 1/2, ej = 1. In that case,
recalling F’(gj, r) and the Schreier generator decomposition

—-1
= (U’W1 ‘UW1 1, (Wgj UWlgj 1, for all

—-
UWlgjUWlgj

——

u c U then yields the claim.

For fixed WI, W2, and ej, if P(wlg~’ ,r/2) and

P(w2, r/4), then P(wlg~’ wz, r/4). This follows from clb-

serving that for each U1 E U, there is a unique U2 =

ulwlg;~ c U. such that ulwlg~’uz–l c ~ and that

‘-1 = (ulwlg~’u2-1) (u2w2ulw 1, G ~. IfUIWUIUJ
—-

we define p = Prob(P(w2, r/4)) and use the fact that

Prob(P(wlgje’, ~/2) I P(w2, r/4)) ~ 1/2, then we observe

that Prob(w’, r/4) = Prob(P(wlg~’w2, r/4)) z (1 – p)/2.

Also, Prob(F’(w3, r/4) I gj @ W3 (for W3 considered
as a word)) = Prob(P(w2, r/4)) = p by the construction
of W3. Since W3 is defined to be of length at most k/2,

Prob(P(w3, r/4)) ~ p/2. Combining this with the previc~us

probability, we see that Prob(w, r/4) = Prob(w’, r/4)/2 +
Prob(w3, r/4)/2 ~ (1 - p)/4 +p/4 = 1/4.

Finally, we must consider the set of events complemen-

tary to the original assumption. The same method then
shows that Prob(P(gje~w2, 7-/2)) z 1/2, and the remain-

der of the proof then follows by replacing P(w2, r/4) by

P(wl, r/4) above. D

The next procedure describes how to exploit Lem-

mas 3.2 and 3.4 in order to reduce the number of Schreier
generators that must be computed.

Procedure Random- Schreier-Generat or-
as-word((Rl, Z’1), U2<~<~Rj)

Input: a monotone Schr%&r tree (Rl, T’l) for G/G@l with

generating set R = ul<j<MRj for G such that for
k ~ 2 and H = (U2<j<fiRj) < Gg, , Rk is the label
set of a complete m~n;tone Schreier tree (Rk, Tk) for

#k)/#+U

output: a Schreier generator as a word in R which is in
Gb, \ H.

Iteliabihty: 1- 1/(64 ~l~j<M de@~(Tj))

Time: O(ll?l)

Choose at random a coset representative u of GP,
in G computed from (Rl, Tl)

Choose random subword w from R according to Lemma 3.4

Return(uw~-l)

Proposition 3.s. If H is a proper subgroup of Gp,, then

Randorn-Schreier- Generator-as- Word produces a word in
Gpl \ H with the time and reliability as claimed.

Proof. BY Lemma 3.2, there exists a g c R = Ul<j<MRj
such that for a randomly chosen coset representaFlvZ u of

~ = G@l in G computed from (Rl ,Tl), the probability is

1/(4 Zl<j<ikf depth(Tj)) that ug~-l lies outside of any
-—

subgroup H of GO, . (Here, (Rl ,2’1) corresponds to (~, ~) in

the lemma.) Setting r- = [G : GP1]/(4 ~1<~<~ de@~(Tj)),

the hypothesis P(g, r) of Lemma 3.4 is n~w- satisfied, and

the result follows by multiplying T/4 by the probability 1/4

of Lemma 3.4. D

4. SHORT SCHREIER TREES

This section shows how to reduce the depth of the
Schreier trees. Section 2 showed how to construct cube

Schreier trees, which were monotone of depth log IGI. This
section constructs short Schreier trees for GZ in G, which are

monotone of depth log n, thus accelerating the final group

membership algorithm. It assumes the existence of O(log n)
random group elements of G.

The new Schreier trees depend on the availability of a
set of O(log n) random group elements of G. Cooperman,

Finkelstein and Sarawagi have shown that with O(log n)

random group elements, one can build a monotone Schreier

tree of depth O(log n) [CFS, Theorem 3.5]. (The original

constant of the theorem, 44, was recently revised to 21 by a

finer analysis.) The source of such random elements for G(i)

will be knowledge of complete Schreier trees for G(j) /G(j+l)
for allj ~ 2.

Lemma 4.1. Let [G : Gs] = nl. Then 21610gn1 random
e)ements of G (in any order) define a monotone Schreier tree

for GIG= with probability at least 1 – 2–61nnI

For a Schreier tree (Rj, Tj), let ~j = l~}R’) I below.

Note that if (Rj, Tj), 1 < j’ < M is a complete Schreier
vector data structure for G, a random element of G can be

computed by multiplying together M different random coset
representatives, one for each j. Further, the cost of such a
random element will be O(n ~l~j5M depth(Tj)).

Procedure Shorten-S chreler-Tree

Input: abasell = {01, /3z,.. .,0M} for Gwith Ol =Z and
a complete Schreier vector data structure (R-j, Tj),
1 $ j < M for G such that depth(Tj) ~ 21 lognj,

2 s j ~ Nf and depth(Z’l) < 210g IGI

Output: a new Schreier vector data structure (R\ ,T{) such

that /31(R~) = /31(R1), depth(T() s 21 lognl, and

[R~l ~ 21 lognl.

Reliability: 1 – 0(1/n)

Time: O(n log IGI logn)

Set R~ to an ordered set
of 21 log nl random group elements

[A product of random cosets, one from each (Rj, ‘Tj),
is a random element]

Form a monotone Schreier tree (R1, T;) from RI
If there is a node in T1 not in T{, then return ‘[failure”
Return (Rl, Tl)

Lemma 4.2. Procedure Shorten-Schreier-Tree performs

correctly with the advertised time and reliability.

Proof. Correctness and reliability of the algorithm are

clear from Lemma 4.1. Under the assumptions on

(Rj, Tj), the cost of generating a random element will be

O(n Z1<j<M depth(Tj)) = O(nloglGl +n~,2<j<M ‘~) =— — --

205

O(n log IG[). The cost of generating 21 log nl random el-

ements then satisfies the required time. It also domi-

nates the cost of building the Schreier tree and testing that

depth(T~) ~ lognl. II

5. SMALL BASE IMPLIES LARGE SUPPORT

Being able to ‘(guess” a base for the group helps further
to reduce the time. It means that a Schreier generator can
be represented as a word, and calculations done only on the
image of an assumed base, not on all n points. Only if it is

decided to add the group element to the SGS, is it multiplied

out as a permutation. Thus, the dominant time will be the

time to multiply out as a permutation those group elements

added to the SGS, and then update the Schreier vector data
structure.

The idea is encompassed in the following lemma. For

a permutation g E Sym(Q), the support of g is supp(g) =
{zcf2:zg #c},

Lemma 5.1. Let G be transitive, b the size of a minimal
base of G, and m the minimal size of support for non-identity
elements of G. Then bm z n = Ifll.

Proof. Let B be a minimal base for G and K the support of
some g # 1 of minimal size. We define two hypergraphs on

Cl with edge sets B = {Ilk : h E G} and K = {Kh : h c G},
respectively. Both hypergraphs are uniform and, since G is
transitive, both are regular. Let deg(13) and deg(K) denote

the valencies of these hypergraphs. Counting the number

of pairs (z, 13’) with z c Cl and 13’ E f?, uniformity and
regularity imply deg(f3)n = b\Z?l. Similarly, deg(lC)n =
rnlK1. Moreover, since the elements of B are bases for G
and the elements of K are supports of group elements in

{gh : h E G}, B’ nK’ # 0 for all @ E L?,K’ IS K. A simple

counting argument yields deg(B)deg(K)n = I{(B’, K’, z) :

B’ E B, 1(’ E K, z E B’ n K’}1 ~ IZ.?[IKI. Substituting the

values of deg(&?) and deg(K), we obtain bm ~ n. D

6. FAST SGS CONSTRUCTION FOR AN UNKNOWN BASE

In this section, we present modifications of the pro-

cedures Construct-SGS and Complete-Point-Stabilizer-
Subgroup, first presented in section 3, to exploit the full
power of all the techniques developed in this paper. These

modifications work for transitive groups under either Hy-
pothesis B, when we know in advance an upper bound b on
the size of a non-redundant base, or under the more general
Hypotheses C, when we have no prior knowledge about the
size of a base. We present two versions of the main algo-
rithm, Construct -SGS-Hypothesis-B and Construct -SGS -

Hypothesis-C. Extensions to the intransitive case are more
complicated, and are therefore omitted due to lack of space.

We maintain three global variables, First, there is
an ordered set B = (~l,~z, PIBI) ~ Q. Second, there

is a Schreier vector data structure {(Rj, Tj) : 1 ~

j ~ [l?l}, which will always have the property that

~l<j<[B\ depth(Tj) = O(log IGI), even when we don’t know

log(IGI). Third there is a specialized Schreier vector data
structure, a set of cube Schreier trees {(7Zj, Tj) : 1 S ~ <

Il?l}. The cube Schreier trees {(’Rj, ~)} redundantly rep-
resent the same information as {(Rj, Tj)}j but are used to

bound the amount of time spent building coset represen-

tatives for {Gti) /G(j+l) }. Complete-Point-Stabilizer-

Subgroup is passed three parameters, g, j and M, where

g E G(Y) and R4 is a bound on the current base size.

The value of M is used in Complete-Point-Stabilizer-

Subgroup to test if a word is equivalent to the identity per-

mutation when it is already known to be trivial on B. This
is accomplished by testing if the group element moves any
point of a randomly chosen subset of Q of size A4 log(kf). If

no point is moved and M ~ b, then we may apply Lemma
5.1, to certify with some measure of confidence that the ele-

ment is trivial. In the case of Hypothesis B, one can deter-

mine a value b, the maximal size of any non-redundant base,
and then set M = b. Otherwise, we have no prior knowl-

edge of the value of b and require the use of a fast strong
generating test to have confidence in the answer returned by

Complete-Point-Stabilizer-Subgroup.

Procedure Construct-SGS-Hypothesis-B(S,b)

Input: generators S for G and

an upper bound b on base size
Global Variables: An ordered set B = (BI, B2, ...,DIB1) C ~,

a Schreier vector data structure {(Rj, Z’j) : j z I} with

~l~j<]Bl depth(Tj) = O(log IGI), and

cube Schreier trees {(Rj, Tj) : .i ~ 1} such that
~-1 (R,)c(R,) _ nodes of Tj on HItry

Pi
Outpui: a strong generating set UhRk

Initialize {(Rj, Tj)}, {(’Rj ,Tj)} to trivial trees

Set B + {1}
For each g E S do

Set h + Residue-as-Word(g)

Evaluate h as permutation
If h # identity then

Set j - first-point-moved(h)
For z ~ j’ downto 1 do

Complete-Poi.nt-Stabilizer-Subgroup(h)i,Lf)
Return {(Rj , T’j)}

Procedure Construct-SGS-Hy pothesis-C(.S’, M)

Input: generators Sfor Gand

an upper bound M on base size
Global variables: An ordered set B = (~1, /32,@[El) ~ Q,

a Schreier vector data structure {(Rj ,Tj) : j’ } 1} with

~l<j<lB1 depth(~j) = O(log IGI), and

cube Schreier trees {(Rj, Tj) : J’ ~ 1} such that

8;”1(R’)C(R’) = nodes of Tj on entry

Output.’ a strong generating set Uk Rk

Initialize {(Rj, Tj)}, {(7?j, 7j)} to trivial trees
Set B t (1]

For ea~h’g c S do

Set h t Residue-as-Word(g)

Evaluate h as permutation
If h # identiiy then

Set j’ t first-point-moved(h)
ForiAj downto 1 do

Sift:
Complete -Point-Stabilizer-Subgroup(h,i,&f)
Ifr~turned failure, then

Set M*2M
Goto “Sift”

Loop:
Forie-lBl downto 1 do

Complete-Point- Stabilizer-Subgroup(e,
If Complete-Po int-Stabilizer-Subgroup

returned failure then goto ‘(Failure”

.

i, M)

206

Repeat

Do Strong-Generating-Test

[described in Theorem 6.11

If Strong-Generating-Te;t returned failure then

Goto ‘(Failure”
Until successor test for (loglognl iterations

Return {(Rj ,?’j)}
Failure:

Set M t 2M
Goto “LOOP”

Procedure
Complete-Point-Stablllzer-Subgroup(g, j,kf)

Input: group element g,pointj
such that~j < first-point-moved(g), j < M, and

upper bound M on base size
Global Variables: an ordered set B=(/31, /?2,..., @lBl)~flj

Schreier vector data structure {(Rj ,Tj) : j ~’ l}
cube Schreier trees {(Rj, ?__) :3 > 1}

[The inequality ~l<j<lBl d@h(Tj) = O(log IG]) will

always hold, and we-sh-all have
~-ItR,)c(Rj) = nodes of Tj “n

c-’(~,)c(%) = ~j
Pj

entrvl

Output: modified global data structure,

{(~j,~’) :1 <~ S [Bl}
Reliability: fixed probability close to one (say ~ 0.9) of

finding element of ((Uj<~Rk))p, \ (Uj+l<~R~) if it

exists

[Ijgaugments (’R~,7j), thenjind

cument coset Tepvesentatives ojG~j/G~+l)]

[Note ~jC-’(R’)C(R’) = nodes of Z’j]

If/3JC-’(R’)C(R’)g # $-’(%) C(2,) then

Set7?~ k%?~U{g}
While 21h6 Uj<k~lB[~k

such that /3~-’(~’)c(n’)h # Py-’(n’)c(z’) do
Set (7?j,7j~ e Double-the-Cu~e((~j, ~), h,~j)

Set (Rj, Tj) +-(~j,~)

[Add Schveier generators untd, with high confidence,
eithev uj<k<\B]Rk is a SGS OTB z’s not a base]

Repeat

‘ePeat64 ~j~k~JB\ depth(Tk) times

[Random-Schreier-Generator-as-Word has

probability Q(l/(64 ~j<~<lBl depth(~k)))

of producing a new element of G(~+l)]
Set u k Random- Schreier-Generat or-

as-word((Rj, T’j), uj<k~l BIRk)

Set h + Resi.due-as-~ord(u, {(Rk, Tk) : j < k < 1~]1})

Let B’ ~ Q be a random subset of size min(ik’ log M, Ifl[)

If Zk # z for some z E El U B’ then

If Zh = x for all x c B then [add base point]

Set PIBI+I - y c B’ such that Yh # Y

Set B + append(B, {~IBI+I})

set (RIBI+I, Z’IEII+I) and (~IBI+I, ~BI+.1)
to trivial Schreier tree
[Set one root node, ~1~1+1, and no labels]

Evaluate h as a permutation
Set j’ - first-point-moved(h)

For k=j’ downto j do

Complete-Point-Stabilizer-Subgroup(h, k, M)

Until the last clog(n) iterations of outer repeat loop

yielded only trivial residues onthe random subsets

[c is determined by the constants of the other routines]

/Ensure depth(Tj) <O(2110gnj) a~tervetuming, to satisfy

~l~j<lB] depth(Tj) = O(log IGI) (needed for timin9)]

If depth(Tj)> 2(2110 gnj)or lRjl >2(2110gnj) then

Repeat
Set (Rj, Tj) t

Shorten-Schreier-Tree({(Rk, Tk) : j < k < IBI})

Until Shorten- Schreier-Tree returns success once,
or returns [log(Mlog lG1/logn)/lognl

iterations with failure

[1-ffaihre, abase point is missing]
If Shorten-Schreler-Tree returned failure, then

Return to Construct-SGS with failure

Next we formalize our efficient stvong gener-sting test

basedon Lemma 3.1.

Theorem 6.1. Assume we are given a candidate Schreier
vector data structure {(Rj, z’j) : j E B} where B is

a candidate base. Set R = Ul<k<lBIRk and D =

&k<lBl de@h(Tk). Then we can;es; whether or not R

isan SGSfor G:=(R) inikfonte Carlo time O(nl B\lRID+
nlSID).

Proof. The test consists of calling the inner repeat loop of

Complete-Point-Stabilizer-Subgroupfor each value of j

from ltolBlwith M=n. (Computations are performed on
all points of Q.) The proof of Theorem 6.2 will demonstrate

that at each level j,we will have probability fl(l) of finding
a new element of (Uj+l<k<l BIRk). The time will then be

.- —
clear from the proof of Theorem 6,2. U

Remark. This algorithm has a worst-case space bound of

O(nblog IGI), since Complete-Point-Stabilizer-Subgroup
may recursively create several cube Schreier trees, each
with fl(log\Gl) distinct labels. Such space usage would be

temporary, since just before returning from a level with such
a tree, Complete -Point-Stabilizer-Subgroup would call
Shorten-Schreier-Tree, yielding a Schreier tree of depth
O(lognj) and space usage O(nlognj). However, initial

experiments indicate that even this temporarily excessive
usage of space would not usually occur. Even a single

cube Schreier tree tends to have depth O(log n), and the
chances are remote that the routine would simultaneously
maintain several cube Schreier trees, each with Q(logl Gl)
distinct labels. For those, whoare worried about theoretical
worst cases, one can state a variant algorithm with worst
case space bounds of O(nlogl Gl), but a worst case time
bound that is a factor O(logl Gl) worse than for the current

algorithm,

Theorem 6.2. Let G = (S) ~ Sym(fl) be a group
with [Q[= n, and suppose that b is the maxi-
mal size of a non-redundant base. Then the Monte
Carlo a]gorithm Construct-SGS(S,l) (either version B
or C) returns an SGS for the case of transitive G in

0(nlog31Gl +b3(log b)(log31Gl) (logn)+nl S\logl Gl) time.
For intransitive G, an extension of the algorithm re-

turns an SGSin 0(nlog31Gl +nb210g21G] log(b+log n)+

207

b3 (log b) (log3 IGI) (logn) + n[S[log IG[) time. The con-

structed SGS supports membership testing in O(n log \Gl)
time and the memory requirement is O(nb log IGI + n/Sl)
during the construction.

It should be noted that this routine may return an SGS
with respect to an unpredictable ordering of Q. However, a

base change to a prescribed ordering can then be done in

O(n logz IGI) Monte Carlo time [CFS],

Proof. Due to the large number of details and lack of

space, we only a sketch the proof for the transitive case.
In particular we warn the reader that the pseudocode given
earlier in this section applies to the transitive case only. An

extension to the intransitive case with the same performance
bounds will be described in an expanded version of this
paper, It depends on carrying out the current algorithm

with all base points restricted to the first orbit until a strong
generating test restricted to the first orbit returns success.

All global data structures are retained, and the algorithm

is repeated on the union of the first first and second orbits,
followed by the union of the first three orbits, etc.

It is crucial to observe that the algorithm goes through
two phases: &l < b and M ~ b, where M is the currently
assumed size of the base, and b is as in the theorem,

Concerning issues of reliability, in the first phase it is only
necessary to show that Strong-Generating-Test will return

false with high probability if the strong generating set is

not complete. This assures that &f will continue to be
doubled either until (by luck) we achieve a strong generating
set, or until (more likely) &f ~ b and we enter the second

phase. In the second phase (&f > b), we will show that the
calls to Complete -Point-Stabilizer-Subgroup construct a
strong generating set before Strong-Generating-Test is

called again.

A second overall issue is to find upper bounds on

the number of times that Complete -Point -Stablllzer-
Subgroup can be called with a non-trivial group element g.
Whenever this occurs with parameter j, g must have been
a new element of (U~<~<lBli7~) for some value f 2 j.

Since the length of a c~ai; of subgroups is at most log [Gl,
Complete -Point-Stabilizer-Subgroup can be called at
most logl G[times for each parameter, Thus, the number
of overall calls is bounded by blogl Gl,

Proof of Rekzbi/ity: Thereliability of the first phase relies on
demonstrating the reliability of Strong-Generating-Test,

Recall that this involves a call to a modified Complete-

Point -Stab ilizer-Subgroup with parameter Al = n. The

reliability of this routine is at least as high as that of a call
to Complete -Point-Stabilizer-Subgroup with parameter
&f ~ b. Since the next part of the proof demonstrates that
the reliability for M ~ b is $2(1), we asfiume the fact here.
Further, when Strong-Generating-Test returns failure, it
exhibits a certificate of failure so this conclusion will never
be reached erroneously. Next, note that each repeat loop
with [loglognl iterations of Strong-Generating-Test can
be called at most logb times with failure (and at most
once with success) during the first phase (M < b), since
each failure triggers a doubling of &f. Thus, if each call

to Strong-Generating-Test returning success is verified at
least loglogb times, then we have Q(l) confidence that over
the life of the algorithm the O(logb) calls to the repeat
loop of Strong-Generating-Test will never falsely report
success.

Next, we consider the reliability of the second phase.
Double -the -Cube isdeterministic, and cannot fail. Shorten-
Schreier-Tree is executed at most once per call to Complete-

Point -Stab ilizer-Subgroup, oratmost blogl Gl times. We
can inductively assume that when Short en- Schreier-Tree
is called at level j in the second phase, UJ<~~lB112~ is a

strong generating set for (U~~~~lB\~~). Since each call is

attempted up to log(kflog lG//logn)/logn times until suc-

cess is achieved, when combined with the fact that Shorten-

Schreier-Tree has reliability –0(1/n), we can conclude
that Shorten -Schreier-Tree has probability 0(1) of never

failing.

Next for parameter j, the inner repeat loop around
Random-Schreier-Generator-as-Word has probability Q(l)
that agroupelementh @ (uj+l<h<l BIRk)will degenerated,--
if possible. This is seen since Random- Schreler-Gene rater-
as-Word has probability Q(l/(64 ~j<k<lBl depth(T’~))) of

generating such a group element, ;nd it is repeated

64 xj~k~lzf, depth(~k)times. Byan elementary probability

argument using Lemma 5.1, when h4 ~ b, we have proba-
bility Q(l) of generating a residue h, such that swpp(h) will

intersect with BU@. This will cause some residue, h, to be
evaluated as a permutation, and added to the strong gener-

ating set with probability $l(l).

Over the life of the algorithm O(n log IGI) such elements
will be added to the strong generating set. Since the outer

repeat loop executes up to O(log(nlogl Gl)) = O(logn)
times, with reliability fl(l) all required group elements for a
strong generating set will be constructed,

Proof of Taming: We are now ready to analyze the tim-
ing. The cost of forming the cube Schreier trees {(7?j)7j)}

is 0(nblog21Gl). The routine Double-the-Cube costs

O(nlogl Gl). Over the whole algorithm, it can be called at

most loglGl times per Ievel) since each call must double the

size of the cube. Multiplying the factors and the b levels
yields the time for the cube Schreier trees.

The cost of the calls to Shorten- Schreier-Tree

is 0(nlog3 IGI) since the cost of building the short
Schreier tree is 0(nloglG]logn3). There are at most
[log(blog /Gl/logn)/lognl ~ (210gb/lognl ~ 2 calls to
Shorten-S chreier-Tree for each call to Complete-Point-

Stabi,lizer-Subgroup with non-trivial g. Since there are
at most O(logl Gl) calls per level (per j), the total time is

o(zl<j<M(nlogl Gllogn~)logl Gl) = 0(nlog3 IGI).
—-

The time for successful calls to Random- Schreier-
Generator-as-Word and the associated calls to Residue-

as-Word is 0(nblog2 IGI). (We define a “successful”
call as one that constructs a group element, u, whose
residue is non-trivial on B U B’.) Note that the time
for one such call is O(nlogl Gl), To see this, observe

‘hat ~j~k</Bl depth(T”) = O(log\Gl). Hence, h (gen-

erated from u) is a word of length O(logl Gl) evaluated
on n points. The number of successful calls is bounded
by O(blogl Gl), the number of calls to Complete-Point-
Stabilizer-Subgroup. Hence, the overall time follows.

The time for unsuccessful calls to Random- Schreier-
Generator -as-Word and theassociated calls to Residue-as-

Wordis 0(b3(log b)(log31Gl) (logn)). Intheproof ofreliabil-
ity, we showed that with probability Q(l), M < 2b on termi-
nation. So, thetime forasingle call is O(Mlog Mlog[G[)=
O(b(log b)(logl Gl)), There are at most b(logl Gl)(logn) un-

208

successful calls before either a successful call is made, or be- [Ba2]
fore the strong generating test is called. There are at rnc)st

blog[Gl successful calls, since each one generates a call to

Complete -Point -Stab lllzer-Subgroup. There are at most
logb calls to Strong-Generating-Test. Hence, the total [Ba3]

number of unsuccessful calls is O(b(log lGl)(logn)(blog IGI+

log b)) = 0(b2 (logz IGI) (logn)), (The unsuccessful calls [Ba4]
made as part of the strong generating test are accounted for
later, under the time for the strong generating test.) Com-
bining this with the cost of a single unsuccessful call yields
the overall stated time. [BCFLS]

The cumulative time for the strong generating test is

0(nblog2 IGI log bloglog n). To see this, note that the cost

of constructing a new random Schreier generator at level j

and sifting it to obtain the residue is n log IGI. As in the
previous paragraph O(log IGI) random Schreier generators
are required to assure constant probability of discovering

non-trivial residue (where possible). The strong generating
test can be called at most log b times since the assumed base

size ikf doubles before each call, and the algorithm will find
a strong generating set with high probability once &l ~ ;2b.
The repeated calls to the strong generating test then cause

an additional factor of O(log log n) in the time. The sum

of all the previous times then yields the theorem (for the

transitive case). II

7. CONCLUSION.

A Monte Carlo algorithm for constructing a strong

generating set in time O(n log’ n) for a base of size O(logc n)
was demonstrated in section 3. A more efficient version

(smaller power c) was given in section 6. A deterministic
construction of a strong generating set in time O(n loge n)
for a base of size O(logc n) is also available based only on
section 2, for the case of Hypothesis A (a known small base).
(The formal algorithm was omitted for lack of space.)

The worst-case analysis of the general case (unknown

base) frequently assumed that Schreier trees could be of
depth O(log IGI), as seen for cube Schreier trees, Practi-
cal experience has shown that this theoretical worst case is

highly unlikely. In a practical implementation, the new algo-

rithm will be heuristically speeded up by using the Schreier
trees of a traditional implementation (using breadth-first
search), and reserving the cube and short Schreier trees as

theoretical guarantees to be used only in the event that an
unusually deep Schreier tree occurs.

While awaiting an implementation corresponding to

Theorem 6.2, a tentative guess for the break-even point of

the new algorithm can be made. For lack of a better estimate
we take all asymptotic coefficients as 1, all logarithmic ba;~es

as 2, a Sims-type implementation is assumed to run in tilme

fl(nzbz) in practice, and we assume the worst-case estimate

of O(nb logz IGI log b) for the new method. If we assume a
base size of 10, the new method would be competitive for
n ~ 35,000. Naturally, the true asymptotic coefficients of an
implementation may yield a very different break-even point.

Acknowledgment. We are indebted to Gene Luks for
inspiring discussions.

REFERENCES.

[Bal] L. Babai, ‘(Monte-Carlo Algorithms in Graph Isomor-
phism Testing”, Universit4 de Montr6al Tech. Report
D.M.S. 79-1o (1979), Dep. Math. et Stat.

[BLS]

[BSZ]

[Bl]

[BFP]

[cS.]

[Ch]

[co]

[CF]

[CFS]

[FHL]

[Ha]

[Je]

[Ka]

[Kn]

[Si]

L. Babai, “Local Expansion of Vertex-~ ansitive Graphs

and Random Generation in Finite Groups”, PTOC, 23’d

ACM SZ’OC (1991), to appear.

L. Babai, ‘(Bounded Round Interactive Proofs in Finite

Groups”, SIAM J. DiSCT. Math,, to appear.

L. Babai, ‘(Complexity in Finite Groups”, PTOC. In-
ter-national Congress of Mathematicians, Kyoto, 1990,
Springer- Verlag, to appear.

L. Babai, G. Cooperman, L. Finkelstein, E.M. Luks,

and A. Seress, “Fast Monte Carlo Algorithms for Per-

mutation Groups”, 23Td ACM STOC (1991), to app.

L. Babai, E. Luks, and A. Seress, “Fast Management of

Permutation Groups”, PTOC. 29th IEEE FOCS (1988),
pp. 272-282,

L. Babai and E. Szemer6di, “On the Complexity of

Matrix Group Problems I,” PTOC. 25 ‘h IEEE FOCS
(1984), Palm Beach, FL, pp. 229-240.

K. Blaha, “The Greedy Algorithm and Bases for Per-

mutation Groups”, J. Algorithms, to appear.

CA. Brown, L, Finkelstein, and P.W. Purdom, “A

New Base Change Algorithm for Permutation Groups”,
SIAM J. Computing 18 (1989), pp. 1037-1047.

P.J. Cameron, ‘[Finite Permutation Groups and Finite

Simple Groups”, Bull. London Math. Sot., 13, 1981,

pp. 1-22.

H. Chernoff, “A Measure of Asymptotic Efficiency for

Tests of a Hypothesis Based on the Sum of Observa-
tions”, Ann. Math. Stat. 23, (1952), pp. 493-507.

J.H. Conway et al., Atlas of Finite Groups, Clarendon
Press, Oxford, 1985.

G, Cooperman and L. Finkelstein, ‘(A Strong Gener-

ating Test and Short Presentations for Permutation

Groups”, to appear in J. Symbolic Computation.

G. Cooperman, L. Finkelstein and N. Sarawagi, “A
Random Base Change Algorithm for Permutation

Groups”, Proc. Intern at. Symp. on Symbolic and Al-
geb. Comput., Tokyo, 1990, ACM Press and Addison-
Wesley, pp. 161-168.

M. Furst, J. Hopcroft and E. Luks, ‘(Polynomial Time

Algorithms For Permutation Groups”, Proc. 21st IEEE
FOCS (1980), pp. 36-41.

M. Hall, Jr., The Theory of GTOUPS, Macmillan, New
York, 1959.

M. Jerrum, “A Compact Representation for Permuta-
tion Groups”, J. Algorithms 7 (1986), pp. 60-78,

WM. Kantor, ‘[Permutation Representations of the
Finite Classical Groups of Small Degree or Rank”,
J, A[gebTa 60 (1979), pp. 158-168.

D.E. Knuth, “Notes on Efficient Representation of
Perm Groups” Combinatorics 11 (1991), pp. 57-68
(preliminary version circulated since 1981).

C.C. Sims, “Computation with Permutation Groups”,
in PTOC. Second Symp. on Symbolic and Algeb. Mantp.,
(S.R. Petrick, cd.), ACM, New York, 1971.

209

