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ABSTRACT
Permutation multiplication (or permutation composition) is
perhaps the simplest of all algorithms in computer science.
Yet for large permutations, the standard algorithm is not the
fastest for disk or for flash, and surprisingly, it is not even
the fastest algorithm for RAM on recent multi-core CPUs.
On a recent commodity eight-core machine we demonstrate
a novel algorithm that is 50% faster than the traditional al-
gorithm. For larger permutations on flash or disk, the novel
algorithm is orders of magnitude faster. A disk-parallel algo-
rithm is demonstrated that can multiply two permutations
with 12.8 billion points using 16 parallel local disks of a clus-
ter in under one hour. Such large permutations are impor-
tant in computational group theory, where they arise as the
result of the well-known Todd-Coxeter coset enumeration al-
gorithm. The novel algorithm emphasizes several passes of
streaming access to the data instead of the traditional single
pass using random access to the data. Similar novel algo-
rithms are presented for permutation inverse and permuta-
tion multiplication by an inverse, thus providing a complete
library of the underlying permutation operations needed for
computations with permutation groups.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic algorithms, Analy-
sis of algorithms

General Terms: Algorithms, Experimentation, Performance

Keywords: permutation, permutation multiplication, per-
mutation composition, permutation inverse, pseudo-random
permutation

1. INTRODUCTION
Algorithms are introduced for efficiently executing the ba-

sic permutation operations for large permutations, permuta-
tions that range in size from 4 million points to permutations
with billions of points.
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The standard permutation algorithm is:
for i ∈ {0 . . . N − 1} Z[i] = Y[X[i]]

for input permutation arrays X[] and Y[], and output per-
mutation array Z[]. All experiments are performed on ran-
dom permutations. In this regime, almost every iteration
incurs a cache miss.

The size of the permutation dictates the preferred archi-
tecture. At the high end of our regime (billions of points),
the preferred architecture consists of parallel disks. Using
parallel disks, we are able to efficiently multiply permuta-
tions with 12.8 billion points in under one hour using the
16 local disks of a 16-node cluster. (Table 4).

In the case of flash memory, it took under one hour to mul-
tiply two permutation with 2.5 billion points using a single
machine with two solid state flash disks in a RAID configu-
ration (see Table 2).

In the case of RAM, one has a choice of using a multi-
threaded algorithm or multiple independent single-threaded
processes. Both regimes of computation are useful. Where
independent computations from a parameter sweep are per-
formed, or where a parallelization of the higher algorithm
is available, independent single-threaded processes are pre-
ferred. Where a single inherently sequential algorithm is the
goal, the multi-threaded algorithm is preferred.

Experimental results show a 50% speedup in both cases.
The novel algorithm has its primary advantage for permu-
tations large enough that they overflow the CPU cache. In
the case of a multi-threaded algorithm, we demonstrate the
speedup on a recent eight-core commodity computer for per-
mutations with 32 million points (see Table 8). In the case of
single-threaded processes, we run eight competing processes
simultaneously, and demonstrate the same 50% speedup over
the traditional permutation algorithm. In this single-threaded
case, the speedup is observed for permutations with as few
as 4 million points (see Table 7).

Similar algorithms are also presented for permutation in-
verse and permutation multiplication by inverse. This com-
pletes the standard suite of permutation primitives required
by packages that support permutation algorithms, such as
GAP [6].

The importance of these new methods for computational
group theory is immediately evident by considering a previ-
ous permutation computation of one of the authors. In 2003,
a group membership permutation computation for Thomp-
son’s group was reported. Thompson’s group acts on
143,127,000 points [4]. Those 143 million points from seven
years earlier are well within the regime of interest discussed
in this paper: between 4 million points and billions of points.
That computation now fits on today’s commodity comput-



ers, including the in-RAM technique of this paper, and would
be expected to produce a result 50% faster.

In addition to permutations being given directly, permuta-
tions arise frequently as the output of a Todd-Coxeter coset
enumeration algorithm. There are several excellent descrip-
tions of this algorithm [1, 5, 13, 17]. In those cases, the
first description of the group is as a finite presentation, and
one employs coset enumeration to convert this into a more
tractable permutation representation. The group can then
be efficiently analyzed through such algorithms as Sims’s
original polynomial-time group membership and the rich li-
brary that has grown up around it. Examples of such large
coset enumerations include parallel coset enumeration [2]
used to find a permutation representation of Lyons’s group
on 8,835,156 points, sequential coset enumeration [7] used to
find a different permutation representation of Lyons’s group
on 8,835,156 points, and a result [8] finding a permutation
representation of Thompson’s group on 143,127,000 points.

1.1 Problem Description
In addition to the problem of permutation multiplication,

two other standard permutation operations are typically sup-
ported by permutation subroutine packages: permutation in-
verse and permutation multiplication by an inverse. The last
problem, X−1Y , is often included as a primitive operation
because there exists a more efficient implementation than
composing inverse with permutation multiplication:
for i ∈ {0 . . . N − 1} Z[X[i]] = Y[i]

More formally, the problems are:
Let X and Y be two arrays with the same number of

elements N , both indexed from 0 to N − 1, such that:

0 ≤ X[i] ≤ N − 1,∀i ∈ {0 . . . N − 1}

Problem 1.1 (Multiplication). Compute the values
of another array, Z, with N elements, defined as follows:

Z[i] = Y [X[i]], ∀i ∈ {0 . . . N − 1}

Problem 1.2 (Inverse). Compute X−1 such that:

X[X−1[i]] = X−1[X[i]] = i,∀i ∈ {0 . . . N − 1}

Problem 1.3 (Multiply by Inverse). Compute the re-
sult of multiplying a permutation by an inverse X−1 × Y :

Z[i] = Y [X−1[i]], ∀i ∈ {0 . . . N − 1}

1.2 Other Problems
While a full discussion is beyond the scope of this paper,

we also note that the new algorithms presented for permu-
tation multiplication also apply to object rearrangement:
Object Z[N], Y[N]

int X[N]

for i ∈ {0 . . . N − 1} Z[i] = Y[X[i]]

When the size of an object remains small compared to the
size of a disk block, flash block, or cache line, then the al-
gorithm can be used on disk, flash, or RAM, respectively.
Further, the algorithm described here generalizes in an obvi-
ous way when Y is near to a permutation, but whose values
may include duplicate entries from {0 . . . N −1}, while omit-
ting other entries from {0 . . . N − 1}.

Terminology.
In this paper we present three permutation multiplication

algorithms for architectures with at least two levels of mem-
ory, in increasing order of performance: the “external sort

algorithm”, the “buckets algorithm” and the “implicit indices
algorithm”.

The terminology “fast-memory/slow-memory” refers to an
algorithm which uses slow-memory as the slower, much larger
lower-level memory (the one on which the permutation ar-
rays are stored), and fast-memory as the faster, much smaller
higher-level memory (which cannot hold the entire permu-
tation arrays).

Organization of the Paper.
The rest of the paper is organized as follows: Section 2

presents related work, Sections 3 and 4 present our new fast
algorithms, along with some theoretical considerations on
their performance. Section 5 presents new fast algorithms
for permutation inverse and multiplication by an inverse.
Section 6 presents formulas for the optimal running time,
under the assumption that the CPU cores are infinitely fast
and that the single bus from CPU to RAM is the only bot-
tleneck (or time to access flash memory or disk). Section 7
presents the experimental results, followed by the conclusion
in Section 8.

Overview of the Algorithms.
Six algorithms are presented. Algorithms 1 and 2 are in-

tended solely to explore the design space. Algorithms 1 and 2
are disk-based permutation multiplication algorithms using
external sorting and a simple buckets technique, respectively.
Algorithm 3 reviews an older method for permutation mul-
tiplication [3, 4], here called implicit indices. Algorithm 4
constitutes the central novelty of this work. It presents
a multi-threaded parallel permutation multiplication algo-
rithm. Tables 4 and 5, along with Section 3.2, present a
generalization to parallel distributed disks. Algorithms 5
and 6 review older algorithms for permutation inverse and
multiplication by inverse [3, 4], that are analogous to Al-
gorithm 3. The generalization to the multi-threaded case
(analogous to Algorithm 4) is omitted for lack of space, but
experimental results are presented in Table 8.

Section 6 presents a new timing analysis applicable to Al-
gorithms 3, 4, 5 and 6 and their parallel generalizations.

2. RELATED WORK
The current work builds upon [3]. In that work, the au-

thors present a fast RAM-based permutation algorithm that
worked well on the Pentium 4, due in part to the 128-byte
cache line on that CPUs. Most later CPUs have 64-byte
cache lines, and so that algorithm, which is reviewed in this
paper as Algorithm 3, later achieved mixed results. Algo-
rithm 3 was also used as a sequential disk-based algorithm
in [4]. Related sequential algorithms for permutation in-
verse and permutation multiplication by inverse were also
described in [3, 4].

For lower-level memory data, some of the main ideas of
disk-based computing [14, 16] have been used successfully in
recent years to solve or make progress on important problems
in computational group theory [9, 10, 14, 15], where the size
of the data is too large for one RAM subsystem or even the
aggregate RAM of a cluster.

The memory gap and memory wall phenomena are very
important for understanding the reasons behind the effi-
ciency of our new algorithms and the limitations of both
our new algorithms and the traditional algorithms. These
phenomena are well-known in literature [3, 18]. All the algo-



rithms we describe, whether traditional or new, are memory-
bound for certain parameters.

3. PERMUTATION MULTIPLICATION
USING EXTERNAL MEMORY

New algorithms for large permutations are presented. For
many problems in computational group theory, the size of a
permutation is in the range of tens to hundreds of gigabytes.

The first case presented below deals with permutations
that fit on a single disk, with a permutation occupying at
least 10 GB of space, but not more than 50 GB. These same
algorithms can be run on flash memory. Both disk and flash
are types of external memory in wide use today. Table 2
presents experimental results obtained by running our im-
plicit indices algorithm both on flash and on disk. In the
following three subsections one can replace disk with flash
and everything remains correct.

3.1 Local Disk and Flash
The traditional implementation for permutation multipli-

cation would be:
for (i = 0; i < N; i++) Z[i] = Y[X[i]];

Using this implementation would be impractical. For large
enough pseudo-random permutations, most array accesses
are to random locations on disk. Thus a memory page would
be swapped in from disk at almost every array element ac-
cess. On most current systems a memory page is on the order
of 4 KB. If the element size is 8 bytes, then for each 8 bytes
the traditional algorithm accesses the system would actually
transfer 4 KB of data, which results in a 4 KB/8 bytes =
512 times ratio of transferred to useful data. This was in-
deed observed for naive permutation multiplication running
in virtual memory (see Table 3).

A few important notions are defined before discussing the
details of the three new algorithms for external memory.

Definition 1. System and Algorithm Parameters
The values in each permutation array X, Y and Z can be

represented on β bytes.
Hlms = the size of the higher-level memory component,

in number of elements of β bytes.
Any arrays used in the algorithms can be divided into

blocks of length Bl = (Hlms/2) number of elements. Two
blocks must simultaneously fit in Hlms.

Nb = N/Bl is the total number of blocks in an array.

3.1.1 Using External Sort
The disk-based permutation multiplication method using

external sorting is described in Algorithm 1.
Using the concept of buckets that fit in RAM, one can sig-

nificantly improve the performance of the algorithm. RAM
buckets are an alternative to external sorting which trades
the n log n running time of sorting for random access within
RAM. RAM buckets have significantly sped up computations
that previously used external sorting [11].

3.1.2 Using RAM Buckets
The RAM buckets method is described in Algorithm 2.

The RAM bucket size has to be chosen such that two RAM
buckets simultaneously fit in RAM. Considering that both
the index i and the value X[i] are represented using the same
number of bytes, one needs 2×N/Hlms buckets (here Hlms
is the size of RAM).

Algorithm 1 Permutation Multiplication Using External
Sort
Input: Permutation arrays X and Y , of size N
Output: Z, s.t. Z[i] = Y [X[i]], ∀i ∈ {0 . . . N − 1}

Phase 1: Scan X and, for each index i, save the pair
(i, X[i]) to an array D on disk.
Phase 2: Externally sort all pairs (i, X[i]) in array D
increasingly by X[i]. Now ∀j ∈ {0 . . . N−1}∃i ∈ {0 . . . N−
1} such that D[j] = (i, X[i]) and X[i] = j.
Phase 3: Scan both array Y and the pairs (i, X[i]) in the
array D at the same time. ∀j ∈ {0 . . . N − 1} we have
D[j] = (i, X[i]), such that X[i] = j. Save the pair (i, Y [j])
to an array D′ on disk.
Phase 4: Externally sort the array D′ increasingly by the
index i in pairs (i, Y [j]). Now the D′ array contains pairs
(i, Y [X[i]]) in increasing order of i. For each index i, copy
Y [X[i]] to the i index in the Z array.

Algorithm 2 Permutation Multiplication Using RAM buck-
ets
Input: Permutation arrays X and Y , of size N
Output: Z, s.t. Z[i] = Y [X[i]], ∀i ∈ {0 . . . N − 1}
1: All arrays are split into Nb equally sized buckets, each

containing Bl = N/Nb elements. The bucket size can
be at most one-half the size of RAM. Bucket i of array
A is denoted Ai. Bucket b contains indices in the range
[b ∗ Bl, (b + 1) ∗ Bl).
// Phase 1: bucketize

2: Scan array X and, for each index i, save the pair (i, X[i])
in the bucket DX[i]/Bl.
// Phase 2: permute buckets

3: for each bucket b do
4: Load buckets Db and Yb into RAM.
5: for each index i in this bucket do
6: Let Db[i] = (j, X[j]).
7: Save the pair (j, Yb[X[j]]) to bucket D′

j/Bl.
// Phase 3: combine buckets

8: for each bucket b do
9: Load buckets D′

b and Zb into RAM.
10: for each index i in this bucket do
11: Let D′

b[i] = (j, Y [X[j]]).
12: Set Zb[j] = Y [X[j]].

Algorithm 2 presents a few important improvements over
Algorithm 1. Note that in phase 2 of Algorithm 2, there is
no need to save the index in the buckets of array Y , since it is
implicit in the ordering. Thus a bucket of array Y occupies
twice as little space as a bucket of pairs (i, X[i]). In phase
3, Z is also divided into 2 × N/Hlms − 1 buckets, and all
indices from the j-th bucket of D′ correspond to positions
in the j-th bucket of Z. Algorithm 2 completely eliminates
sorting and, in practice, shows a 4 times (or more) speedup
over the External Sort-based algorithm if the computation
is disk-bound (see Table 5, the 1 node case).

Both algorithms 1 and 2 need to save the index of each
value of the X permutation, thus resulting in disk arrays as
large as twice the size of the initial arrays. The implicit in-
dices RAM/disk algorithm (Algorithm 3) avoids saving the
indices to disk arrays.



3.1.3 With Implicit Indices

Algorithm 3 Permutation Multiplication using implicit in-
dices
Input: Permutation arrays X and Y , of size N
Output: Z, s.t. Z[i] = Y [X[i]], ∀i ∈ {0 . . . N − 1}
1: All arrays are split into Nb equally sized buckets, each

containing Bl = N/Nb elements. The bucket size can
be at most one-half the size of RAM. Bucket i of array
A is denoted Ai. Bucket b contains indices in the range
[b ∗ Bl, (b + 1) ∗ Bl).
// Phase 1: bucketize

2: Traverse the X array and distribute each value X[i] into
bucket DX[i]/Bl on disk.
// Phase 2: permute buckets

3: for each bucket b do
4: Load buckets Db and Yb into RAM.
5: for each index i in this bucket do
6: Set Db[i] = Yb[Db[i]].

// Phase 3: combine buckets
7: For each value X[i], let j be the next value in bucket

DX[i]/Bl. Note that j = Y [X[i]]. Set Z[i] = j and
remove that value from bucket DX[i]/Bl.

The correctness of Algorithm 3 can be proved by following
the three phases for a generic index i ∈ {0 . . . N − 1}: in
phase 1 value X[i] is distributed into bucket j = X[i]/Bl
at position k of array D, so that D[k] = X[i]. In phase 2,
D[k] = Y [D[k]], which can be written D[k] = Y [X[i]]. In
phase 3, Z[i] = D[k], which can be written Z[i] = Y [X[i]].

The implicit indices version runs about twice as fast as the
buckets version (see Table 4). The implicit indices RAM/
disk algorithm performs the following steps: a sequential
read of the X array and a sequential write of the D (tempo-
rary) array in phase 1 (2 sequential accesses); a sequential
read of the D array, a sequential read of the Y array and a
sequential write of the D array (3 sequential accesses); and
a sequential read of the X array, a sequential read of the
D array and a sequential write of the Z array (3 sequential
accesses). In total, there are 8 sequential accesses

It is interesting to compare the running time of the im-
plicit indices algorithm and the running time of a permuta-
tion multiplication algorithm that we implemented in Roomy
[12], which uses Algorithm 2. Roomy is a general framework
for disk-based and parallel disk-based computing which pro-
vides a high-level API for manipulating large amounts of
data. The disk-based implicit indices algorithm is generally
twice as fast as the Roomy implementation.

3.2 Many Disks
Here we describe how the three disk-based algorithms for

permutation multiplication, presented in Section 3.1, can be
used with the many disks in a cluster of computers.

Serial permutation multiplication using external sort is de-
scribed in Algorithm 1. To parallelize it, all arrays are first
split into sub-arrays, each of which is placed on the disk of a
single compute node in the cluster. All operations on those
arrays are performed in parallel. In cases where one node
generates data that references a sub-array on another node,
that data is first sent over the network, then saved to disk. In
our implementation, there is a separate thread of execution
on each node that handles the writing of this remote data to
the local disk. Finally, there is a synchronization point after

each phase, to insure that all nodes are done with one phase
before beginning the next.

Permutation multiplication using buckets (Algorithm 2) is
made parallel in the same way. The arrays are already split
into sub-arrays (buckets), and the same methods are used for
data distribution, parallel processing, and synchronization.

There is one additional modification necessary to paral-
lelize permutation multiplication using implicit indices (Al-
gorithm 3). Because the algorithm depends on the specific
ordering of elements in each bucket, the buckets can not be
written to in parallel. This is solved in the same way that Al-
gorithm 4 extends Algorithm 3: each bucket is further split
into sub-buckets, so that each node has its own sub-bucket
to write to. Unlike the multi-threaded RAM case, the par-
allel disk case does not need an extra phase to compute the
sizes of the sub-buckets, since the buckets are represented
with files, which are dynamically sized.

4. PERMUTATION MULTIPLICATION
IN RAM

The traditional permutation multiplication algorithm for
cache/RAM can be trivially-parallelized. Each thread pro-
cesses a contiguous region of the X[] permutation array. Al-
though this incurs frequent cache misses, it tends to scale lin-
early on current commodity computers until one goes beyond
four cores. This is because the single bus to RAM becomes
saturated by the pressure of the several cores. In Table 8
of Section 7, one sees this happening approximately with
3 threads for permutation multiplication and for 4 threads
for inverse and multiplication by inverse.

Algorithm 3 of Section 3 presented a single-threaded disk-
based algorithm to overcome the many page faults. The
same algorithm can be implemented for cache/RAM to min-
imize cache misses. That algorithm’s cache/RAM version
is preferred for permutation algorithms that can be paral-
lelized at a higher level and then call a single-thread permu-
tation multiplication algorithm. Here, we consider a multi-
threaded version for the case when the higher level algorithm
does not parallelize well. The corresponding results at the
level of eight cores are presented in Table 7 in Section 7. As
described in the extrapolation in Section 7.3, both the new
single-threaded and the new multi-threaded algorithms are
expected to have an even greater advantage at the 16-core
and higher level in the future.

Algorithm 4 provides the multi-threaded version for multi-
plication using cache/RAM. Intuitively, it operates by split-
ting the buckets of Algorithm 3 into sub-buckets. Within a
given bucket, each thread“owns” a contiguous region (a sub-
bucket) for which it has responsibility. Algorithm 4 requires
one extra phase (Phase 1) in order to determine in advance
the size of the sub-bucket to allocate for each thread.

Some alternative designs were also explored. A brief sum-
mary of the alternatives considered is presented along with
our reasons for rejecting them.

• Using pthread private data via “ thread” (problem:
uses too much memory).

• Using pthread locks to synchronize memory access (prob-
lem: synchronization delays).

• Using an atomic add operation to a single global counter
(problem: internally, it still uses a lock).



Algorithm 4 Multi-threaded cache/RAM Permutation
Multiplication using Implicit Indices

Input: Permutation arrays X and Y , of size N , the number
of cache buckets Nb, the number of threads T .

Output: Z, s.t. Z[i] = Y [X[i]], ∀i ∈ {0 . . . N − 1}
1: All arrays are split into Nb equally sized buckets, each

containing Bl = N/Nb elements. The bucket size can
be at most one-half the size of cache. Bucket i of array
A is denoted Ai. Bucket b contains indices in the range
b × Bl to (b + 1) × Bl.

2: Each thread t, 0 ≤ t ≤ T − 1, will handle indices in the
range t × N/T to (t + 1) × N/T − 1.
// Phase 1: create sub-buckets

3: Create a temporary array D, split into T × Nb sub-
buckets. Db,t is the sub-bucket corresponding to bucket
b and thread t. The bucket Db is the concatenation of
all sub-buckets Db,t. The size of a sub-bucket is first
determined by an additional scan of X.
// Phase 2: bucketize

4: Each thread scans the portion of X that it is responsible
for, and saves each X[i] to sub-bucket Dt,X[i]/bl.
// Phase 3: permute buckets

5: Each thread locally permutes each bucket b that it is
responsible for, setting Db[i] = Yb[Db[i]].
// Phase 4: combine buckets

6: Each thread computes the final values Z[i] that it is re-
sponsible for. For each such index i, let j be the next
value in sub-bucket Dt,X[i]/Bl that has not been removed
(Note that j = Y [X[i]]). Set Z[i] = j and remove that
value from sub-bucket Dt,X[i]/Bl.

• Exploiting L1 cache via a two-level algorithm, similar
to two-level external sort (problem: delays due to extra
passes).

Section 7.3 presents experimental results for the cache/
RAM multi-threaded implicit indices algorithm.

5. PERMUTATION INVERSE.
MULTIPLICATION BY AN INVERSE

While Algorithms 5 and 6 are not new [3, 4], their multi-
threaded generalizations analogous to Algorithm 4 are novel.
Experimental results for running permutation inverse and
multiplication by an inverse, as well as theoretical estimates
for these runs, can be found in Table 8.

Permutation Inverse.
The traditional algorithm for permutation inverse is:
for (i = 0; i < N; i++) Y[X[i]] = i;

The bottleneck is still the random access (this time write
access) to the Y array.

Permutation Multiplication by an Inverse.
For the multiply-by-inverse, the traditional algorithm is:
for (i = 0; i < N; i++) Z[X[i]] = Y[i];

At the end of the loop Z[i] = Y [X−1[i]], ∀i ∈ {0 . . . N−1}.

Algorithm 5 Permutation Inverse Using Implicit Indices

Input: Permutation array X, of size N
Output: Y [X[i]] = i,∀i ∈ {0 . . . N − 1}

Phase 1: Scan array X and distribute each value X[j] in
array D at block number k = X[j]/Bl . At the same time
write value j at the same index in block k of D′ as X[j]
was written at in block k of D.
Phase 2: Scan the D′ and D arrays sequentially at the
same time and, for each index j, write Y [D[j]] = D′[j].

Algorithm 6 Permutation Multiplication by an Inverse Us-
ing Implicit Indices

Input: Permutation arrays X and Y , of size N
Output: Z[i] = Y [X−1[i]], ∀i ∈ {0 . . . N − 1}

Phase 1: Scan array X and distribute each value X[j] in
its corresponding block of array D. At the same time write
value Y [j] at the same index in D′ as X[j] was written at
in D.
Phase 2: Scan the D′ and D arrays sequentially and, for
each index j, write Y [D[j]] = D′[j].

6. PERFORMANCE ANALYSIS
The analysis presented here can be used to estimate the

running time for the implicit indices algorithms, when using
any 2-level memory hierarchy, including cache/RAM, RAM/
flash, RAM/disk. The implicit indices algorithms include Al-
gorithm 3, its generalization to Algorithm 4, Algorithms 5
and 6, and their parallel generalizations.

Definition 2. System and Algorithm parameters (Analysis)
Hrl = higher-level read memory latency (seconds)
Lrl = lower-level read memory latency (seconds)
Lwl = lower-level write memory latency (seconds)
Lwb = lower-level write memory bandwidth (bytes/second)
Lrb = lower-level read memory bandwidth (bytes/second)
Es = array-element size (bytes)
N = array length (bytes)
Nb = number of blocks per array
Bs = bucket size (bytes)
Bl = N/Nb (block length) (bytes)

We refer to permutation multiplication as PM, to permu-
tation inverse as PI, and to permutation multiplication by
an inverse as PMI. The next three formulas estimate the
running time when memory is the bottleneck for PM, PI,
and PMI, respectively. Note that in the case of cache/RAM
N/Lrb must be added to each formula, due to the extra pass.

Formula 6.1 (PM Total estimated time).

N ×

„

Lwl + Lrl

Bs
+

3

Lwb
+

5

Lrb
+

Hrl

Es

«

Formula 6.2 (PI Total estimated time).

3N ×

„

1

Lrb
+

1

Lwb
+

2 × Lwl

Bs
+

Hrl

Es

«

Formula 6.3 (PMI Total estimated time).

N ×

„

4

Lrb
+

3

Lwb
+

2 × Lwl

Bs
+

Hrl

Es

«



7. EXPERIMENTAL RESULTS

7.1 Local disk and flash
Tests were ran on an AMD Phenom 9550 Quad-Core at 2.2

GHz with 4 GB of RAM, running Fedora Linux with kernel
version 2.6.29. The machine has both a disk drive (Seagate
Barracuda 7200.10 250GB) and 2 RAID-ed flash SSD drives
(2 × INTEL SSD SSDSA2MH080G1GC, 80 GB each).

Table 1 contains the measured system parameters of this
machine. Table 1 also contains the measured system param-
eters for one of the disks of the cluster that was used to run
the “parallel RAM/parallel disk” algorithms. The parallel
disk bandwidth assumes that network bandwidth is not a
limiting factor. Table 4 shows this to be the case for permu-
tation arrays of size up to 25 GB.

Table 1: Measured system parameters for external
memory.

Disk Flash Cluster disk
Read BW (MB/s) 85 200 51
Write BW (MB/s) 82 26 51
Latency (ms) 10 14 39
Latency RAM (ns) 233 211 169

Table 2 shows a comparison between the new RAM/disk
algorithm and the new RAM/flash algorithm, both based
on implicit indices. The estimates from the formulas of Sec-
tion 6 are also presented, to confirm that the algorithm is
limited by the bandwidth of disk and flash.

Table 2: Running times of our new RAM/disk and
RAM/flash algorithms and comparison with esti-
mated running times. Element size is 8 bytes.
Bucket size is 2 MB, block size is 1 GB.

Nr. elts. Running Time (seconds)
(billions) Using Disk

PM PI PMI
real est real est real est

1.25 (10 GB) 1609 1388 1002 1149 1253 1269
2.5 (20 GB) 3205 2776 2259 2298 2736 2538

Using flash
PM PI PMI

real est real est real est
1.25 (10 GB) 1584 1849 1212 1747 1348 1798
2.5 (20 GB) 2807 3698 2604 3494 2711 3596

Table 3 details our findings about the traditional permu-
tation multiplication algorithm ran in virtual memory on the
same machine. The experimental results confirmed our ex-
pectations: when the working set is at least twice the size
of available RAM, using the traditional algorithm in virtual
memory is infeasible. We also implemented a buffered tradi-
tional algorithm and ran parallel versions of both the simple
traditional and buffered traditional algorithm. While the
parallel buffered traditional algorithm clearly outperforms
the parallel simple traditional one, the first is still infeasible
when the working set overflows RAM by a significant per-
centage.

Table 3: Comparison of the traditional algorithm
and the buffered traditional algorithm with disk-
based and flash-based external memory. Element
size: 4 bytes. RAM size is 4 GB. Arrays X, Y and
Z are the work set.

Nr. elts traditional algorithm time (seconds)
(millions) sequential parallel

disk flash disk flash
750 (3.0 GB) 3476 1198 1802 489
825 (3.5 GB) > 4hrs > 4hrs > 4hrs > 4hrs

Buffered algorithm time (seconds)
sequential parallel

disk flash disk flash
750 (3.0 GB) 150 130 142 115
825 (3.5 GB) > 4hrs 11762 > 4hrs 3561

7.2 Many disks
These experiments were run on a cluster of computers,

each with two dual-core 2.0 GHz Intel Xeon 5130 CPUs and
16 GB of RAM, a locally attached 500 GB disk, running
Linux kernel version 2.6.9. The network used a Dell Power-
Connect 3348 Fast Ethernet switch. Only one process was
used per node, to avoid competition for the single disk.

Tables 4 and 5 give a comparison of the three disk-based
permutation algorithms presented in Section 3.1, based on:
external sorting; RAM buckets; and implicit indices.

Table 4: Comparison of three parallel-disk permu-
tation multiplication algorithms for increasing per-
mutation size, using 16 nodes of a cluster. Elements
are 8 bytes each. A “∗” indicates that the estimated
time is not accurate, because the network became a
bottleneck.

Nr. elts. Algorithm Time (seconds)
(billions) Sort Bucket Implicit Indices

real estimated
0.8 (6 GB) 538 105 77 70
1.6 (12 GB) 1151 202 100 139
3.2 (24 GB) 3440 490 270 279
6.4 (48 GB) 7484 2364 1571 ∗
12.8 (95 GB) 15697 6838 3228 ∗

Table 5: Comparison of three parallel-disk permu-
tation multiplication algorithms for increasing par-
allelism, using from 1 to 16 nodes of a cluster. Ele-
ments are 8 bytes each. Permutations have 1.6 bil-
lions elements each (12 GB).

Nr. nodes Algorithm Time (seconds)
Sort Bucket Implicit Indices

1 28952 7069 5576
2 13555 3627 2861
4 6197 677 354
8 2227 336 167
16 1185 202 100



Table 4 shows the results of using 16 nodes of a cluster,
with permutation sizes ranging from 800 million elements
(6 GB) to 12.8 billion elements (95 GB). In general, the three
algorithms scale roughly linearly with permutation size. The
most notable exception is a 5-fold increase in the running
times of the bucket and implicit indices algorithms when
moving from 24 GB to 48 GB permutations. We believe
that this is due to network traffic on an older Fast Ethernet
switch. Until that point, the bottleneck was likely disk band-
width. The sorting based algorithm does not see a similar
effect because its time is dominated by the in-RAM sorting
process, not inter-node communications.

Table 5 shows the results of using between 1 and 16 nodes
of the cluster, with permutations having 1.6 billion elements
(12 GB). Again, the time for each algorithm scales roughly
linearly with the number of nodes. The non-linear scaling
when moving from 2 to 4 nodes is likely due to the bottleneck
moving between disk and the network.

In general, the bucket algorithm takes about 1.5 to 2 times
longer than the implicit indices algorithm, with the largest
differences occurring with larger permutations and more par-
allelism. The implicit indices algorithm is more efficient be-
cause of the smaller amount of data that must be saved
to disk. The sorting based algorithm takes roughly 5 to
10 times longer than the implicit indices algorithm, largely
due to the time needed to sort data in RAM.

7.3 RAM
For cache/RAM, the performance of permutation multipli-

cation, inverse and multiplication by an inverse was demon-
strated on a recent 8-core commodity machine: two Quad-
core Intel Xeon E5410 CPUs running at 2.33 GHz, with a
total of 24 MB L2 cache — 12 MB L2 cache per socket and
16 GB of RAM made up of four memory modules. Table 6
lists the system parameters measured on this system.

Table 7 concerns the case of independent permutation
computations running in parallel, with one computation per
core. We believe that the traditional algorithm is close to
saturating the bandwidth from CPU to RAM, both in the
case of 8 threads and 8 processes. Table 8 provides confirm-
ing evidence of bandwidth saturation in comparing 4 threads
versus 8 threads. As described in Section 6, the new algo-
rithm is more bandwidth-efficient. We see that benefit for
8 processes but not for 8 threads. We speculate that is due to
cache poisoning as the threads compete for the same cache.

Table 6: Measured system parameters for cache/
RAM. Latency for cache is negligible.

Read bandwidth 5859 MB/s
Write bandwidth 3850 MB/s
Latency of 1 random access 302 ns

Table 7: Comparison of traditional and new algo-
rithms, using thread or process-based parallelism.
Permutations have 4 million 4-byte elements each.

Eight Threads Eight Processes
Traditional 0.042 s 0.048 s

New 0.054 s 0.026 s

In Table 8 one can find running times for Algorithm 4 and

the multi-threaded generalizations of Algorithms 5 and 6, as
well as theoretical estimates of these running times based on
the formulas in Section 6.

The new permutation multiplication algorithm is faster
by about 50% than the traditional algorithm for permuta-
tions of 32 million elements or more, when using 8 threads.
Our new algorithm is also faster than performing 8 multi-
threaded traditional permutation multiplications in a row
by at least a factor of 1.6. In contrast, when using only one
thread (with seven cores idle), the time represents a mixture
of RAM bandwidth and CPU power. Hence, the traditional
and new algorithms have similar performance.

Extrapolation on memory bandwidth results.
In the near future, commodity machines will continue to

gain additional CPU cores at a rate based on Moore’s Law.
But the number of memory modules on the motherboard
is likely to remain fixed (while the density of each memory
module continues to rise). Hence the memory bandwidth is
unlikely to grow significantly.

Table 8 shows the times for the traditional algorithm al-
ready approaching an asymptotic value for the transition
from 4 threads to 8 threads. Furthermore, the timings for
8 threads is close to the timing for the theoretically optimal
case for bandwidth limited computation.

The new algorithm shows a significant improvement in
time in the transition from 4 threads to 8 threads. In the
case of permutation multiplication, the timing for 8 threads
approaches that of the theoretically optimal memory band-
width limited case. On the other hand, the algorithms for
permutation inverse and permutation multiplication by an
inverse show the potential for additional improvements in
timings as more cores become available. This is seen by
comparing the numbers for 8 threads and the optimal case.

8. CONCLUSIONS
New algorithms were presented for multiplication of large

permutations for disk and flash (Section 3), for the aggregate
disks of a cluster (Section 3.2) and a multi-threaded algo-
rithm for RAM (Section 4). These algorithms make permu-
tation multiplication a practical operation for large permu-
tations that do not fit in RAM. Further, the multi-threaded
cache/RAM implicit indices algorithm clearly outperforms
the trivially-parallel traditional algorithm when using mul-
tiple threads on machines with many cores.
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