
Memory-Based and Disk-Based Algorithms for Very High
Degree Permutation Groups

Gene Cooperman
∗

College of Computer Science
Northeastern University

Boston, MA 02115 / USA

gene@ccs.neu.edu

Eric Robinson
College of Computer Science

Northeastern University
Boston, MA 02115 / USA

tivadar@ccs.neu.edu

ABSTRACT
Group membership is a fundamental algorithm, upon which
most other algorithms of computational group theory de-
pend. Until now, group membership for permutation groups
has been limited to ten million points or less. We extend the
applicability of group membership algorithms to permuta-
tion groups acting on more than 100,000,000 points. As an
example, we experimentally construct a group membership
data structure for Thompson’s group, acting on 143,127,000
points, in 36 minutes. More significantly, we require approx-
imately 10 GB of RAM for the computation — even though
a single permutation of Thompson’s group already requires
half a gigabyte of storage.

In addition, we propose a disk-based group membership
algorithm with the promise of extending group membership
to well over one billion (1,000,000,000) points. Such a disk-
based algorithm has formerly been impossible, due in part to
the lack of a practical disk-based algorithm for multiplying
and taking inverses of such large permutations. Random
access to disk is prohibitively expensive. We demonstrate
the first practical disk-based implementation of the basic
permutation operations. We also propose a disk-based ar-
chitecture for group membership data structures.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms

General Terms
Algorithms, Experimentation

Keywords
permutation groups, group membership, permutation mul-
tiplication, disk-based methods, Thompson’s group

∗This work was partially supported by the National Science
Foundation under Grant CCR-0204113.

To appear in the International Symposium on Symbolic and Algebraic Com-
putation, August, 2003, Philadelphia, Pennsylvania

1. INTRODUCTION
The theory of computational permutation group

algorithms has become a mature field in recent years [2, 3,
4, 6, 10, 11, 12, 13, 29, 32, 35]. In the special case of small
base groups, randomized Schreier-Sims has been successfully
used. In addition, the nearly linear time group membership
algorithm of Babai, Cooperman, Finkelstein and Seress [3]
provides a variation with theoretically guaranteed bounds
on the time. Implementations of these algorithms are also
very fast in practice, as evidenced by their implementations
in GAP [22] and Magma [5].

However, with the time requirements well under control, it
is time to revisit the the space requirements for permutation
group algorithms. For example, the aforementioned nearly
linear time group membership algorithm requires storage
for Ω(log n) permutations. In the example of Thompson’s
group acting on n = 143, 127, 000 points, even one permu-
tation requires more than half a gigabyte. Storing Ω(log n)
permutations of that size is clearly unacceptable.

Given only the generators of a group, finding the order of
the group is an important problem. It is often the key to
identifying the group. For example, most group membership
algorithms also yield the order of the group.

Permutation groups play an important role even when the
initial group is not given by a permutation representation.
If a group is given by a presentation (defining equations)
or given as a matrix group over a finite field, a common
strategy is to find an equivalent permutation representation
for the group, and to then find the order of that group.
Unfortunately, that strategy is limited by the tendency for
the equivalent permutation representation to have very high
detree.

A major goal of this paper is to extend the applicabil-
ity of permutation group algorithms such very high degree
representations. One important application is to directly
analyze some of the base cases in the matrix recognition
project [30, 31] by converting matrix representations to per-
mutation representations where the permutation degree is
one billion or less.

A second important application is to allow the rich body
of permutation group algorithms to be applied, where the
permutation group degree was previously too large. Histor-
ically, this was important in the construction of permuta-
tion representations for the larger sporadic simple groups,
in which case ad hoc techniques were required for verifica-
tion of the construction. This paper shows the practicality

of finding the order of such constructed permutation groups
by a single, uniform set of heuristics.

In extending group membership to higher degrees, we
modify the randomized Schreier-Sims group membership al-
gorithm of Sims [35]. One variation is more space-efficient.
Another variation adds additional pseudo-random group el-
ements by applying the shallow Schreier trees of Cooperman
and Finkelstein [13, 12]. Shallow Schreier trees were also the
key to the nearly linear time algorithms of Babai, Cooper-
man, Finkelstein and Seress [3] for small base groups. A
further enhancement uses a new heuristic, called powerlev-
elling (see Section 3.1.2).

A key to the success of the new algorithm is the use
of a high quality random word generator. Several algo-
rithms for random generation are available, including those
of Babai [1], Celler et al. [7], and Cooperman [8]. Although
the theoretical complexity guarantees are far from satisfac-
tory, current implementations make random generation of
group elements quite practical.

Babai’s method was the first polynomial time method, op-
erating in O∼(n6) time. The product replacement method
of Celler et al. was shown by Pak [33] to run in at most
O∼(n10) time, although in implementations it is the most
practical and most widely used of the three methods. The
method of Celler et al. is particularly impressive in that
after its initialization, it can produce a new, high quality
pseudo-random element with only one group multiplication.
Cooperman’s method operates in O∼(n3) time. A variation
of Cooperman’s method is used here, for the sake of its abil-
ity to compactly represent pseudo-random group elements
by a vector of 0/1 exponents with respect to a fixed straight
line program.

Section 2 provides the background and a review of the
Schreier-Sims group membership algorithm. Section 3 de-
scribes a space-efficient group membership algorithm for a
permutation representation of Thompson’s group, acting on
143,127,000 million points. Thompson’s group is a sporadic
simple group of order 90,745,943,887,872,000. Section 4 de-
scribes a proposed efficient disk-based version of the algo-
rithm. Of particular interest is Section 4.1, which describes
a practical algorithm for disk-based permutation multiplica-
tion and permutation inverse, along with timings.

1.1 Previous Literature
The need for analysis of very high degree permutation

groups has a long history. Almost ten years ago, Cooper-
man et al. [15, 14] produced a permutation representation
of degree 9,606,125 for Lyons’ group acting on a conjugacy
class of subgroups of order three. The representation was
found, using the matrix representation of Wilson [39] as a
starting point. The representation was verified in a Monte
Carlo manner by computing its order through ad hoc meth-
ods. Gollan then began his work on a revised existence proof
of Lyons’ group [23, 24, 25]. As one part of that work, he
deterministically verified the order of the permutation repre-
sentation through the “double coset trick”, an independent
rediscovery of an unpublished Verify algorithm of Sims.

Later, a coset enumeration of Lyons’ group yielded a per-
mutation action on 8,835,156 points, based on Sims’ origi-
nal unpublished presentation. The coset enumeration was
executed in two different ways. It was carried out as a par-
allel enumeration by Cooperman and Havas [17] (described
therein as part of the future work). It was also demonstrated

as a sequential coset enumeration by Havas and Sims [27].
That presentation was verified as producing Lyons’ group
by Gollan and Havas [26].

Later work produced large permutation representations
for Thompson’s group acting on 143,127,000 and for Janko’s
group J4 acting on 173,067,389 points. A permutation rep-
resentation was implicit in the condensation computation for
Thompson’s group of Cooperman et al. [18, 21]. Weller [38]
carried out a direct computation at approximately the same
time. Havas et al. [28] produced a presentation for Thomp-
son’s group, and also a permutation representation thereof
through coset enumeration. Weller [36, 37] did the same for
Janko’s group, using some of the hashing techniques of [14,
15] and the double coset trick of [23, 25]. That work was
used in a revised existence proof for Janko’s group [19].

Finally, the matrix recognition project [30, 31] expects
to reduce certain matrix group recognition problems to the
base case of the simple groups, which then require other
methods for analysis. The methods of this paper provide a
useful alternative in this setting, since they allow the well-
developed computational methods for permutation groups
to be applied. Note, for example, that any group with a
representation in GL(30, 2) (the group of matrices of dimen-
sion 30 over the finite field with two elements) has a permu-
tation representation on at most 230, or approximately one
billion points.

The proposed disk-based algorithm grew out of work by
Cooperman and Grinberg [16] in which a shared memory
coset enumeration algorithm was found to be memory-bound.
The result was a new faster algorithm for memory-based per-
mutation multiplication by Cooperman and Ma [20]. That
algorithm has been retargeted here to provide the missing
link in a disk-based group membership algorithm.

2. BACKGROUND
A group membership algorithm takes as input a permu-

tation, g, on n points, and a set of permutations, S, on
n points, which generate a group G = 〈S〉. The member-
ship algorithm decides if g ∈ G.

The original group membership algorithm by Sims [35]
began a long period of new algorithmic research in permu-
tation group algorithms. It works by divide-and-conquer.

2.1 Notation
Denote the points on which G acts by the integers Ω =
{1, 2, . . . , n}. For i ∈ Ω and g ∈ G, let ig denote the action
of the permutation g on the point i. (Hence, igh = (ig)h for
g, h ∈ G.) Let e be the identity element of G. Let H ≤ G
denote that H is a subgroup of G, and H < G that H is a
proper subgroup of G. Define the point stabilizer subgroup

G(i) = {g : g ∈ G, ∀j < i, jg = j},

sometimes called “G move i” (and moving all the points
larger than i). Note that this yields a point stabilizer sub-
group chain

G = G(1) ≥ G(2) ≥ · · ·G(n) = {e}

for e the identity.
Let G/H = {Hg : g ∈ G} be the set of cosets of H in G

(where Hg = {hg : h ∈ H}). Note that iG
(i+1)g = ig for

g ∈ G (where iG
(i+1)g = (iG

(i+1)

)g). So, for h ∈ G(i)g, ih is

a signature of G(i)g. In other words,

∀h1, h2 ∈ G(i), ih1 = ih2 ⇔ G(i)h1 = G(i)h2.

A transversal of G(i)/G(i+1), T (i) is defined as a set of

representatives of cosets of G(i+1) in G(i). So,

|T (i)| = |G(i)/G(i+1)|.

Further, a transversal T (i) satisfies

∀j ∈ Ω, ig = j ⇐⇒ ∃t, T (i) ∩G(i+1)g = {t} with ig = it.

2.2 Review of Schreier-Sims Randomized
Group Membership Algorithm

This section describes a variation of the Schreier-Sims al-
gorithm that forms the basis for the algorithmic work of this
paper. The goal of the algorithm is to construct transver-
sals T (i) for all i ≥ 1. Once T (i) is constructed, the group
membership algorithm for g ∈ G is solved, as seen below:

ALGORITHM A:

INPUT: permutation group G, transversals {T (i)},
permutation g on {1, 2, . . . , n}

Let g1 ← g
LOOP:

For i = 1, . . . , n
If T (i) ∩ G(i+1)gi = ∅, then stop and return NOT A MEMBER

Otherwise, let ti ∈ T (i) be the unique element

such that T (i) ∩ G(i+1)gi = {ti}

Set gi+1 ← gi t−1
i

Note that gi+1 ∈ G(i+1) and that gi = gi+1ti
If gi+1 6= e, then goto LOOP

Return g = g1 ← ti ti−1 · · · ti

It also follows that any element g ∈ G can be uniquely
represented as

g = tn−1tn−2 · · · t1 for ti ∈ T (i).

Hence, |G| = |T (n−1)| |T (n−2)| · · · |T (1)|. This solves the
problem of computing the group order.

In order to construct T (i) for all i, two problems must be
solved.

P1: Given a random element of G(i), find a random element
of G(i+1).

P2: Given either generators or random elements of G(i),
construct a transversal, T (i).

The solution to Problem P1 follows by noting that any
random element gi ∈ G(i) has a unique representation gi =
tn−1tn−2 · · · ti for appropriate tj ∈ T (j) for j ≥ i. Fur-
ther, the randomness of gi implies that each tj is as if cho-
sen randomly from T (j). As in Algorithm A, one can de-
termine from gi the unique ti and gi+1 such that gi+1 =
tn−1tn−2 · · · ti+1 = git

−1
i . The randomness of the tj then

imply that gi+1 is random in G(i+1).
The solution to Problem P2 follows from simple search

algorithms, such as breadth-first search. Given sufficient
random elements of G(i), they are guaranteed to generate
G(i). Let S(i) be the generating set of G(i). Initialize a
reachability set R ⊆ Ω to R = {(i, e)}.

ALGORITHM B:

INPUT: generating set S(i) for G(i)

While there exists g ∈ S(i) and j ∈ R with jg /∈ R do

Add the pair (jg , g) to R

The data structure described in Algorithm B is called a
Schreier tree. Next, if g ∈ G(i), then one can find the unique
t such that G(i)g ∩ T (i) as follows.

Initialize t← e and initialize j ← ig.
LOOP:

If j = i, then stop and return t
Otherwise, let (j, h) ∈ R satisfy it = j

Set t← ht and set j ← jg−1

Goto LOOP

At termination, it = ig and hence we have constructed
the element t ∈ T (i).

2.3 Shallow Schreier Trees
Shallow Schreier trees were developed by Cooperman and

Finkelstein [13, 12]. The primary result on shallow Schreier
tree follows.

Theorem 2.1 ([12, Theorem 3.5] (paraphrased)).

For δ ≥ 1, let d = d20δ log2 |G
(i)/G(i+1)|e. Then d random

group elements suffice for a Monte Carlo algorithm to build
a new Schreier tree for G(i)/G(i+1) of depth d. The proba-

bility of error is less than |G(i)/G(i+1)|−δ.

Intuitively, the theorem says that for a transversal of
size T , 20 log2 T random elements suffice to build a Schreier
tree. Further, the tree will have depth at most 20 log2 T .
The probability of failing to construct the tree within the
stated bounds is less than 1/T . The proof of the theorem
uses a very conservative algorithm. We apply a more ag-
gressive heuristic to reduce the constant 20.

2.4 Generation of Random Elements
A random subproduct on elements (h1, . . . , hk), is defined

as h1 · · ·hk = he1
1 · · ·h

ek

k , where ei ∈ {0, 1} are chosen uni-
formly at random. Hence, each group element hi appears in
the random subproduct with probability exactly 1/2.

To generate random elements on a group G generated by
g1, . . ., gk, we recursively define gi for i > k by

gi = g1 · · · gi−1

The chosen algorithm for random elements is purely heuris-
tic, since the theoretical guarantees for currently known
random generation algorithms are much too coarse. The
algorithm is suggested by the more theoretical method of
Cooperman [8]. Random subproducts were used earlier by
Cooperman and Finkelstein [10, 11] in the context of a sim-
ple O(n4) randomized group membership algorithm for large
base groups. Intuitively, if a distribution of random group
elements covers a set that is close to a subgroup, then the
result of Cooperman and Finkelstein shows that a random
subproduct will produce a new random element that escapes
from that set.

The motivation for our choice of heuristic is two-fold. Our
first goal is to generate reasonably short words representing
a random element of the permutation group. This saves
space and time. In experiments, product replacement and
Cooperman’s method both satisfy the first goal.

The second goal is that the each random element be rep-
resentable as a subproduct of a fixed, short word in the
group generators. A word w is a subword of g1 · · · gk if
w = ge1

1 · · · g
ek

k for some choice of ei ∈ {0, 1}. (We de-
fine g1

i = gi and g0
i to be the identity.) This is especially

desirable for the disk-based version of the algorithm (see
Section 4).

When the group is given on two generators, the second
goal is easy to achieve by many heuristics. One can choose
a word w` = aba−1b−1aba−1b−1 · · · ab of length 4` for gener-
ators a and b, and any word of length ` in those generators
can be represented as a subword of w`. This second goal is
harder to achieve when the group is given by more than two
generators.

The stated heuristic is one of many that allow the group
membership algorithm to perform in reasonable time. Fur-
ther research is required to determine the best heuristic.

3. MEMORY-BASED GROUP
MEMBERSHIP

The algorithm proceeds as in Section 2.2. The most im-
portant and memory intensive portion of the algorithm is
the computation of a transversal for G(1)/G(2). First, the

method by which the transversal for G(1)/G(2) is computed
and stored will be illustrated, and then it will be shown that
this method can be easily extended to calculate transversals
for G(i)/G(i+1) for i > 1. Since for small base groups, the
size of the transversal tends to decrease rapidly with increas-
ing i, the remaining transversals are computed in a fraction
of the space needed for G(1)/G(2).

3.1 Building the First Schreier Tree
We tried two methods for computing the transversal for

G(1)/G(2). The first was a standard Schreier tree. The sec-
ond method introduced additional random group elements
to guarantee a shallow Schreier tree.

3.1.1 Method 1
A modified Schreier vector representation is used, but

without backpointers. A separate bit vector for the
143,127,000 nodes records if a node has been seen before.
The Schreier tree is explored in breadth-first order. New
nodes in the Schreier tree are appended to the Schreier vec-
tor as a pair consisting of a string of bits representing a
word in the generators, and the image of the point 1 under
that word. Once the Schreier vector is complete, it is sorted
based on image points. At the end, each vector location
at index i stores a string of bits representing a word in the
generators mapping 1 to i.

The storage to represent the word on original generators
is not much more than the storage for a “backpointer” to the
parent node in the Schreier tree. Storing the string directly
tends to be more CPU efficient, by avoiding cache misses as
one traces backpointers.

The Thompson group had a maximum depth of 72 and an
average depth of 59 for the transversal elements discovered
and the mapping was complete (a mapping was discovered
from the orbit to all of the other locations).

3.1.2 Method 2
The second method works harder to ensure an acceptably

shallow Schreier tree. There is a tension between using many
pseudo-random group elements as generators to reduce the
Schreier tree depth and few generators so as to minimize
storage requirements.

This method does use backpointers to indicate the parent
node of a given node in the Schreier tree. Initially, a subtree

of the Schreier tree for G(1)/G(2) is built to a specified depth
(depth 20 in the case of Thompson’s group). At this depth,
we reached 138,000 points using the two original generators.

Random elements are then used to extend the initial sub-
tree. Since our random elements are always subwords of a
fixed word, we save storage by storing them as bit represen-
tations indicating the exponents relative to the fixed word.
For Thompson’s group, 35 bits suffice. Our random word is
produced as gk for k = 9, based on Section 2.4. The average
length of gk as a word in the original generators is 15, and
words longer than length 30 are rejected.

Each successive pass applies a new random element to
each of the 138,000 nodes of the initial subtree. Further-
more, for each new node discovered by application of that
random group element, the tree is extended by a subtree
rooted at the newly discovered node. The subtree extension
is built using only only the original group generators. A
good depth for the subtree was found to be 20.

This method guarantees that all transversal elements are
expressible as words in at most one random element. This
is done because the random group elements are much more
expensive to apply than group generators. This process con-
tinues until the number of nodes gained per pass through the
tree is reduced to some specified percentage of the permuta-
tion degree. A good percentage for Thompson’s group was
found to be 0.5%.

At this point, a computational method, which we call pow-
erlevelling, begins. A powerlevel is the application of all of
the original generators to every node in the tree. If any of
these applications discovers a new node, the tree is extended
by a subtree rooted at the new node. For Thompson’s group,
a depth of 30 for this subtree was used. Powerlevelling is
then recursively applied to all nodes of the new subtree. If
at any point during the powerlevelling process there are no
new nodes gained by passing through the tree, the Schreier
tree is complete.

The depth of the Schreier tree was bounded above by
101: applications of original generators to depth 20; appli-
cations of approximately 15 random elements to each node
of the subtree; application of original generators for an ad-
ditional incremental depth of 20; and a powerlevelling phase
incrementally increasing the depth by 30+30=60. Since a
transversal element, expressed as a word, could include a
random element, and since a random element was expressed
as a word of length up to 30, the transversal element was
expressible as a word of length at most 131.

3.2 Finding a Small Suborbit
A suborbit is an orbit of the point stabilizer subgroup.

The transversal of G(2)/G(3) is a suborbit. A small transver-
sal greatly reduces the computation time for computing the
transversal of G(2)/G(3). The initial suborbit on the point 2
was of length 35 million, which made the computation time
too long. Notwithstanding this consideration, if the transver-
sal of G(2)/G(3) is too small, then |G(3)/G(4)| becomes com-

parable to |G(2)/G(3)|, and the random words used to com-

pute the transversal for |G(2)/G(3)| become very long.
For balance, we use a heuristic that searched for a subor-

bit of size approximately 0.6% of the full permutation de-
gree or smaller. The heuristic uses the incremental rate R
at which new elements of the transversal are found in order
to decide when to stop exploring the current suborbit, and
choose a suborbit with a different initial random point. If

f is the number of points found and τ the desired suborbit
size, then the heuristic rejects a suborbit if 0.5f + fR > τ .
Since initial random points are more often found in larger
suborbits, the search is biased toward large suborbits sat-
isfying 0.5f + fR ≤ τ . The suborbit found is somewhat
smaller (of size 179,712), but suitable.

3.3 Building the Remaining Schreier Trees
The remaining two levels were discovered by applying ran-

dom elements to build a tree (see Section 2.3). The quality
of the random element was found to be very important. For
a Schreier tree of depth d, random elements from words sig-
nificantly longer than d were needed.

3.4 Experimental Results
Figure 1 shows the breakdown of CPU times for Thomp-

son’s group. Computation of the second transversal requires
8 random group elements, while the third transversal re-
quires 5 random group elements. The computation used the
first method (Section 3.1.1) to compute the Schreier tree of
the first transversal. The 15 minutes divides into 7 min-
utes to find all transversal elements and then 8 minutes to
sort the Schreier vector based on image points. The second
method was also tried, and required 20 minutes. For com-
parison, the entire computation for Lyons’ group acting on
9,606,125 points completed in less than one minute.

Preprocessing 3 minutes
Transversal 1 (143,127,000 points) 15 minutes
Finding small suborbit (28 tries) 11 minutes
Transversal 2 (179,712 points) 5 minutes
Transversal 3 (3,528 points) 2 minutes
Total 36 minutes

Figure 1: Summary of Computation Times

The computation was run on a 1.3 GHz IBM pSeries 690
Turbo computer. We used IBM’s VisualAge C++ Profes-
sional compiler (version 5), generating a 64-bit executable.
The computer had 32 GB of RAM, shared among 32 Power4
CPUs. Although it is part of a parallel, shared memory com-
puter, all tests were done only sequentially. While it would
have been easy to parallelize our implementation, the rapid
speed made it unnecessary.

4. DISK-BASED GROUP MEMBERSHIP
In this section, we extend the previous algorithm to work

on a disk. We assume a base of constant size (i.e., there are

only O(1) levels with non-trivial transversals |T (i)| > 1). In
the case of disk access, random access is particularly expen-
sive. Hence, we require that the algorithm be modified suffi-
ciently to use only O(1) space and O∼(1) sequential disk ac-
cesses. (By O∼(1), we mean O(logcn) for some constant c.)
In this model, an access to one byte on disk costs as much as
an access to a megabyte as long as the megabyte is accessed
sequentially.

The criterion of considering a short and long sequential
access as of equal cost is motivated by the desire to use
disks with fast data transfer rates. RAID-0 and RAID-3
disks use striping to achieve data transfer rates that are
typically faster than 50 MB/s. Assuming a disk access time
of 10 ms for such disks, one could have read 500 KB during
the time that one waits for a single disk access.

An additional scenario in which high disk data transfer
rates can be achieved is a cluster of workstations with a fast
local area network. In such a scenario, one can treat the fast
network and local disks of the cluster as if they are part of
a single striped disk subsystem. In this case, one uses the
cluster for the sake of parallel disks, rather than for the sake
of parallel CPUs.

Next, two new algorithmic ideas are required to retarget
our previous algorithm to a disk-based computation. These
are a more efficient disk-based algorithm for permutation
multiplication and inverse, and a more efficient disk-based
version of Algorithm B.

4.1 Disk-Based Permutation Multiplication
and Inverse

A fast cache-aware algorithm for permutation multiplica-
tion and inverse in main memory was introduced in a re-
search note by Cooperman and Ma [20]. It gains its speed
by using sequential access to data in place of the more nat-
ural random access.

Here, we apply the same ideas toward disk-based permu-
tation operations, where the advantages of sequential access
are even larger. Briefly, assume a permutation representa-
tion X[], where X[i]=j means that the permutation X maps
the point i to the point j. We wish to multiply permutations
X and Y.

for i = 1 to n, do Z[i]=Y[X[i]]

Note that if Y is a random permutation of the points 1, . . . , n
and if Y is much larger than memory, then each iteration of
the loop is very likely to result in a random access to disk.

We replace such random access to disk by sequential ac-
cess as follows. Let m be the number of array entries that
can be held in memory. Assume m < n. There are three
phases. Assume a temporary array D, partitioned into blocks
B[i] with each block of size b < m. Define h(·) by h(a) =
ba/bc.

1. For i from 1 to n, copy X[i] to the next free slot in
B[h(X[i])].

2. For each block B[j], j ≤ n/b, load into memory the
segment of the Y array, {Y[(j-1)b], Y[(j-1)b+1], . . .,
Y[jb-1]}. Then replace each element a∈B[j] by Y[a].

3. We now invert the operations of Part 1. For each
block B[j], initialize a pointer to the beginning of the
block. For i from 1 to n, copy the next occupied slot
of B[h(X[i])] to Z[i].

By maintaining buffers for X, Z and each block B[j], one
can efficiently manage I/O to these arrays on disk.

Similar ideas apply to permutation inverse and multipli-
cation by permutation inverse:

for i = 1 to n, do Z[X[i]] = i; (z = x−1)

for i = 1 to n, do Z[X[i]] = Y[i]; (z = x−1 y)

As before, one uses the blocks B[j]. The algorithm proceeds
in only two phases. For permutation inverses, the pair (i,

X[i]) is copied to B[h(X[i])] in the first phase. Then in
the second phase, for j from 1 to n/b, the block B[j] is
brought into memory, and for each pair (a, b) ∈B[j], one
sets Z[b]← a. A well-known alternative for fast inverses
follows from using external sorting [34, Chapter 11] to sort
(i, X[i]) on X[i].

For multiplication by permutation inverse, one follows the
two phase algorithm as described for permutation inverses.
However, one employs the pair (Y[i], X[i]) instead of the
pair (i, X[i]). Hence, for the pair (a, b) ∈B[j], the second
phase computation, Z[b]← a, becomes Z[X[i]] = Y[i].

Experimental times for permutation multiplication are
shown below. The corresponding times for a disk-based
algorithm based on the traditional permutation algorithm
(with random access) is not shown. Such random access
would likely require days to complete in all cases.

Computer n (data b (block Time
size, bytes) size, bytes) (s)

Pentium II/RAID-5 16 MB 1 MB 17
Pentium II/RAID-5 32 MB 1 MB 38
Pentium II/RAID-5 64 MB 1 MB 108
Pentium II/RAID-5 128 MB 1 MB 450
Pentium II/RAID-5 64 MB 1 MB 108
Pentium II/RAID-5 64 MB 2 MB 118
Pentium II/RAID-5 64 MB 4 MB 82
Pentium II/RAID-5 64 MB 2 MB 118
SunBlade 100 64 MB 2 MB 409.0
800 MHz AMD 64 MB 2 MB 501.4

Figure 2: Fast Multiplication of two disk-based ran-
dom permutations
(disk usage: 4n; main memory usage: b)

The 800 Mhz AMD is running a Linux 2.4 kernel with
128 MB RAM. The SunBlade 100 is running at 500 MHz
with 512 MB. The Pentium II with RAID-5 is running at
350 MHz with a Linux 2.4 kernel and 256 MB RAM. All
times were repeatable to within 10%. The measured disk
data transfer rates were 2.25 MB/s (SunBlade, with NFS
filesystem over fast Ethernet), 1.95 MB/s (AMD, local EIDE
disk), and 6.5 MB/s (Pentium II/RAID-5).

Figure 2 shows that the times are roughly proportional to
the data transfer rates, and are largely independent of main
memory, at least as long as two blocks and all buffers can fit
in main memory at the same time. The experiments were
run under those conditions.

The experiment with the Pentium II and 128 MB was
slow because the working set of the memory was restricted
to 1 MB. This meant that the many buffers corresponding to
blocks B[j] were excessively small for efficient disk I/O. The
system limits of the Linux operating system prevented us
from manipulating multiple files of several gigabytes in order
to demonstrate permutation multiplication on one billion
points. Extrapolating linearly from the example of 64 MB
(16 million points), a permutation multiplication of one bil-
lion points requires 64 × 108 = 6912 s, or two hours. By
using striped disks, this time for multiplying permutations
of one billion points could be reduced by at least a factor of
ten.

4.2 Outline of Disk-Based Schreier-Sims Group
Membership

The key to the Schreier-Sims algorithm is to build a
Schreier tree. As noted for Problem P1 of Section 2.2, if g
is a random element of G(i) and a transversal of G(i)/G(i+1)

is known, then one can efficiently compute a corresponding
random element of G(i+1). Since there are only a constant
number of non-trivial transversals (constant base size), the
length of the random word produced in the solution of Prob-

lem P1 will be O∼(1). Since our algorithm requires only
O(log n) random group elements per transversal, it will coset
O∼(1) to produce the random group elements over the life
of the algorithm.

Hence, it suffices to show how to efficiently build a single
Schreier tree. As seen by Theorem 2.1, for a transversal of
length n, O(log n) random group elements suffice to build
the tree. The heuristics of Section 3 can often be used to
reduce that time.

In addition to permutation operations on disk, we will
require one other algorithmic subroutine. We require an
efficient disk-based sorting algorithm. External sorting [34,
Chapter 11] is a well known algorithm for this purpose. One
can often accomplish it at the cost of only two passes of
disk I/O.

We assume that we have previously stored both the initial
generators and their inverses. The inverses can be computed
efficiently as in Section 4.1.

We next describe how to find the nodes of a Schreier tree
corresponding to T (j) for G(j)/G(j+1). Let R be the reach-
able set of nodes as described in Algorithm B of Section 2.2.
We wish to apply a word w = g1g2 · · · gk to all of the nodes
in R = (r1, . . . , r`). We assume the nodes of R are stored
on disk in the same ordering as the points Ω on which the
group acts.

1. We compute ((r1, r
g1
1), . . . , (r`, r

g1
`)), which must be

stored on disk.

2. We then sort this into a new ordering according to in-
creasing rg1

i . Now {(ri, r
g1
i) : 1 ≤ i ≤ `} is ordered

montonically increasing according to the second posi-
tion of each pair.

3. Next, apply g2. We can follow one pass over {(ri, r
g1
i) :

1 ≤ i ≤ `} and over g2, to create {(ri, r
g1g2
i) : 1 ≤ i ≤

`}, which is stored on disk.

4. We then sort this into a new ordering according to
increasing rg1g2

i . Now {(ri, r
g1g2
i) : 1 ≤ i ≤ `} is or-

dered montonically increasing according to the second
position of each pair.

5. Repeat steps 3 and 4 for successive gi, until {(ri, r
w
i) :

1 ≤ i ≤ `} has been computed and is ordered mono-
tonically increasing according to the second position.

6. Scan both {(ri, r
w
i) : 1 ≤ i ≤ `} the array R in order

and for those nodes, and for those elements rw
i /∈ R,

enter them into R along with their parent node, ri.

4.2.0.1 Optimizations.
Several optimizations are possible. After the first transver-

sal, the size of the later transversals will typically be much
smaller. The reachable set may be small enough to fit within
main memory. Also, if the reachable set is very small, it will
be more efficient to access disk in a random access manner,
similarly to what one does if all data structures fit in RAM.

Next, we consider how to efficiently trace multiple words
at the same time. We may estimate in advance how many
words for random group elements will be needed. In that
case, we can take advantage of the fact that the random
words are all subwords of the same fixed word w. Hence,
we produce a set of random words, W , based on the fixed

word w = g1 · · · gk. In particular, for v ∈ W , let v =
ge1
1 · · · g

ek

k . For w = g1 · · · gk, we proceed as described ear-
lier. Let the word v′

s = ge1
1 · · · g

es−1
s−1 for exponents

{e1, . . . , es−1} ⊆ {0, 1} corresponds to a prefix of v.
At step s, for each element v ∈ W , we maintain an ordered

set {(ri, r
v′

s
i) : 1 ≤ i ≤ `}. If es = 1, then v′

s participates in
step s and we will compute v′

s+1 = v′

sgs. In that case, we

will compute {(ri, r
v′

sg+1

i) : 1 ≤ i ≤ `}, and maintain it as
an ordered set. We execute step s by scanning R simulta-

neously with each ordered set {(ri, r
v′

s
i) : 1 ≤ i ≤ `} that is

participating in step s.

4.3 Extensions
The permutation operations and external sorting were

both required as algorithmic disk-based subroutines. Both
algorithms are limited as the size of the data grows compared
to the size of main memory. This is because both algorithms
require holding buffers for many streams of data simultane-
ously in memory. For example, in the case of permutation
multiplication, these are the data blocks B[j]. The size of a
data block B[j] is limited to approximately half of the size
of main memory. The number of buffers is proportional to
the quotient of the size of data by the size of a buffer for a
single data block B[j]. As the size of the data grows, not
all of the buffers can simultaneously fit in main memory.

In both cases, the algorithms are extended by taking a
block B[j] as being larger than main memory. This keeps
the number of buffers at a manageable level. In the case
of external sort, this trick is well-known. In the case of
the permutation multiplication algorithm of Section 4.1, at
step 2 one is required to permute data from a segment of
the Y array and store it in a B[j] buffer. This is effectively
an example of a permutation multiplication problem, and
one applies the disk-based permutation multiplication re-
cursively to solve it. Similar ideas are used for permutation
inverse and multiplication by the permutation inverse.

Many of the other algorithms of computational permuta-
tion group theory can also be extended to disk-based algo-
rithms using the methodology outlined in this section. In
particular, this include verification of group membership.

5. COMPACT REPRESENTATION OF
SCHREIER TREES

An important consideration is the space storage for the
representation of the Schreier trees. A natural representa-
tion requires a pointer from each node to its parent, along
with a label indicating which group element maps the par-
ent to the child. A pointer typically requires four bytes, and
upon breaking the 4 GB barrier, it requires eight bytes.

The method of Cooperman and Finkelstein for Schreier
coset graphs [9] shows how to encode both the pointer and
the label in a data structure that takes two bits or less of
storage per node. That method depends on having a perfect
hash encoding of the cosets. Such a perfect hash encoding
exists, since for h ∈ G(i)g, ih is a signature of G(i)g, as noted
in Section 2.1.

A future implementation will use this more compact stor-
age method. This re-design of the Schreier tree data struc-
ture is likely to reduce the overall storage requirements of
the group membership application for Thompson’s group to
well under 4 GB. Because of this intended re-design, we did

not take as much care in minimizing the storage require-
ments of this preliminary version.

6. CONCLUSION
Computational permutation group algorithms and heuris-

tics for very high degree permutation groups are a missing
link in the ability to analyze the large group representations
being produced today. Such large permutation represen-
tations arise both from presentations of groups and from
matrix representations. In this paper, we have raised the
limits for what permutation degrees are practical by one or
two powers of ten.

For the future, we expect disk-based methods to raise the
limits still further. Applying such disk-based methods will
depend on the availability of disks with high data transfer
rates. Such technology is available both through disk strip-
ing (e.g. RAID-0 and RAID-3) and through the use of clus-
ters with many local disks and a high bandwidth local area
network. Implementing the disk-based algorithm closer to
this “bleeding edge” of technology will require further work.

For today, the memory-based algorithm presented here is
eminently practical. Although the storage requirements for
Thompson’s group for this preliminary implementation were
approximately 10 GB, the methods of Section 5 will likely
reduce the memory requirements to under 4 GB.

7. ACKNOWLEDGEMENTS
We are grateful to Michael Weller for providing us with

the large permutation representations that formed the basis
of these experiments, and for describing his own experiences
with such large computations. The generators for Thomp-
son’s group are standard generators in the sense of Wilson,
and were generated by Weller from one of Wilson’s matrix
representations [39]. We thank Xiaoqin Ma and Viet Ha
Nguyen for discussions about issues of random and sequen-
tial access in RAM. We also thank the Mariner Project at
Boston University for providing the experimental facilities.

8. REFERENCES
[1] L. Babai. Local expansion of vertex-transitive graphs

and random generation in finite groups. In Theory of
Computing, pages 164–174, New York, 1991. (Los
Angeles, 1991), Association for Computing Machinery.

[2] L. Babai, G. Cooperman, L. Finkelstein, E. M. Luks,
and A. Seress. Fast Monte Carlo algorithms for
permutation groups. J. Comp. Syst. Sci., 50:296–308,
1995.

[3] L. Babai, G. Cooperman, L. Finkelstein, and
A. Seress. Nearly linear time algorithms for
permutation groups with a small base. In Proc. of
International Symposium on Symbolic and Algebraic
Computation ISSAC ’91, pages 200–209. (Bonn),
ACM Press, 1991.

[4] L. Babai, E. M. Luks, and A. Seress. Fast
management of permutation groups I. SIAM J.
Computing, 26:1310–1342, 1997.

[5] W. Bosma, J. Cannon, and C. Playoust. The magma
algebra system i: The user language. J. Symbolic
Comput., 24:235–265, 1997.

[6] G. Butler and J. J. Cannon. Computing in
permutation and matrix groups I: Normal closure,

commutator subgroups, series. Math. Comp.,
39:663–670, 1982.

[7] F. Celler, C. R. Leedham-Green, S. H. Murray, A. C.
Niemeyer, and E. O’Brien. Generating random
elements of a finite group. Comm. Algebra,
23:4931–4948, 1995.

[8] G. Cooperman. Towards a practical, theoretically
sound algorithm for random generation in finite
groups. arXiv:math.PR/0205203,
http://arxiv.org/abs/math.PR/0205203.

[9] G. Cooperman and L. Finkelstein. New methods for
using cayley graphs in interconnection networks.
Discrete Applied Mathematics, 37/38:95–118, 1992.
(special issue on Interconnection Networks).

[10] G. Cooperman and L. Finkelstein. Randomized
algorithms for permutation groups. Centrum
Wissenschaft Institut Quarterly (CWI), pages
107–125, June 1992.

[11] G. Cooperman and L. Finkelstein. Combinatorial
tools for computational group theory. In Groups and
Computation, volume 11 of Amer. Math. Soc.
DIMACS Series, pages 53–86. (DIMACS, 1991), 1993.

[12] G. Cooperman and L. Finkelstein. A random base
change algorithm for permutation groups. J. Symbolic
Comput., 17:513–528, 1994.

[13] G. Cooperman, L. Finkelstein, and N. Sarawagi. A
random base change algorithm for permutation
groups. In Proc. of International Symposium on
Symbolic and Algebraic Computation ISSAC ’90,
pages 161–168, Tokyo, Japan, 1990.

[14] G. Cooperman, L. Finkelstein, M. Tselman, and
B. York. Constructing permutation representations for
matrix groups. J. Symbolic Comput., 1997.

[15] G. Cooperman, L. Finkelstein, B. York, and
M. Tselman. Constructing permutation
representations for large matrix groups. In Proceedings
of International Symposium on Symbolic and
Algebraic Computation ISSAC ’94, pages 134–138,
New York, 1994. (Oxford), ACM Press.

[16] G. Cooperman and V. Grinberg. Scalable parallel
coset enumeration: Bulk definition and the memory
wall. J. Symbolic Comput., 33:563–585, 2002.

[17] G. Cooperman and G. Havas. Practical parallel coset
enumeration. In Workshop on High Performance
Computing and Gigabit Local Area Networks, volume
226 of Lecture Notes in Control and Information
Sciences, pages 15–27, 1997.

[18] G. Cooperman, G. Hiss, K. Lux, and J. Müller. The
Brauer tree of the principal 19-block of the sporadic
simple thompson group. J. Experimental Math.,
6:293–300, 1997.

[19] G. Cooperman, W. Lempken, G. Michler, and
M. Weller. A new existence proof of Janko’s simple
group J4. In Computational Methods for
Representations of Groups and Algebras, volume 173
of Progress in Mathematics, pages 161–175, 1999.

[20] G. Cooperman and X. Ma. Overcoming the memory
wall in symbolic algebra: A faster permutation
algorithm (formally reviewed communication).
SIGSAM Bulletin, 36:1–4, Dec. 2002.

[21] G. Cooperman and M. Tselman. New sequential and
parallel algorithms for generating high dimension

Hecke algebras using the condensation technique. In
Proc. of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’96), pages 155–160.
ACM Press, 1996.

[22] The GAP Group. GAP — Groups, Algorithms, and
Programming, Version 4.3, 2002.
http://www.gap-system.org.

[23] H. Gollan. A new existence proof for Ly, the sporadic
simple group of R. Lyons. Preprint 30, 1995.

[24] H. Gollan. A contribution to the revision project of
the sporadic groups: Lyons’ simple group Ly.
Vorlesungen aus dem FB Mathematik, 26, 1997.

[25] H. Gollan. A new existence proof for Ly, the sporadic
simple group of R. Lyons. J. Symbolic Comput.,
31:203–209, 2001.

[26] H. Gollan and G. Havas. On Sims’ presentation for
Lyons’ simple group. In Computational Methods for
Representations of Groups and Algebras, volume 173
of Progress in Mathematics, pages 235–240, 1999.

[27] G. Havas and C. Sims. A presentation for the Lyons
simple group. In Computational Methods for
Representations of Groups and Algebras, volume 173
of Progress in Mathematics, pages 241–249, 1999.

[28] G. Havas, L. Soicher, and R. Wilson. A presentation
for the Thompson sporadic simple group. In Groups
and Computation III, pages 193–200, New York, 2001.
(Ohio, 1999), de Gruyter.

[29] W. M. Kantor. Sylow’s theorem in polynomial time. J.
Comp. Syst. Sci., 30:359–394, 1985.

[30] C. Leedham-Green. The computational matrix group
project. In Groups and Computation III, pages
229–248, New York, 2001. (Ohio, 1999), de Gruyter.

[31] C. Leedham-Green, E. O’Brien, and C. Praeger.
Recognising matrix groups. In J. Grabmeier,
E. Kaltofen, and V. Weispfenning, editors, Computer
Algebra Handbook, pages 474–475, 2003.

[32] E. M. Luks. Computing the composition factors of a
permutation group in polynomial time.
Combinatorica, 7:87–99, 1987.

[33] I. Pak. The product replacement algorithm is

polynomial. In Proc. 41st IEEE Symposium on
Foundations of Computer Science (FOCS), pages
476–485. IEEE Press, 2000.

[34] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGrawHill, second edition,
2000.

[35] C. C. Sims. Computation with permutation groups. In
Proc. Second Symp. on Symbolic and Algebraic
Manipulation. ACM Press, 1971.

[36] M. Weller. Construction of large permutation
representations for matrix groups. In W. J. E. Krause,
editor, High Performance Computing in Science and
Engineering ’98, pages 430–. Springer, 1999.

[37] M. Weller. Construction of large permutation
representations for matrix groups ii. Applicable
Algebra in Engineering, Communication and
Computing, 11:463–488, 2001.

[38] M. Weller. Computer aided existence proof of
Thompson’s sporadic simple group. manuscript, 2003.

[39] R. Wilson. Atlas of finite group representations.
http://www.mat.bham.ac.uk/atlas.

