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Abstract—Fault tolerance for the upcoming exascale generation
has long been an area of active research. One of the components
of a fault tolerance strategy is checkpointing. Petascale-level
checkpointing is demonstrated through a new mechanism for
virtualization of the InfiniBand UD (unreliable datagram) mode,
and for updating the remote address on each UD-based send,
due to lack of a fixed peer. Note that InfiniBand UD is required
to support modern MPI implementations. An extrapolation from
the current results to future SSD-based storage systems provides
evidence that the current approach will remain practical in the
exascale generation. This transparent checkpointing approach
is evaluated using a framework of the DMTCP checkpointing
package. Results are shown for HPCG (linear algebra), NAMD
(molecular dynamics), and the NAS NPB benchmarks. In tests
up to 32,752 MPI processes on 32,752 CPU cores, checkpointing
of a computation with a 38 TB memory footprint in 11 minutes
is demonstrated. Runtime overhead is reduced to less than 1%.
The approach is also evaluated across three widely used MPI
implementations.

I. INTRODUCTION

Scalability of checkpointing for petascale and future ex-

ascale computing is a critical question for fault tolerance on

future supercomputers. A stream of publications by researchers

has been concerned with this question of fault tolerance for

future supercomputers [1]–[5].

System-level transparent checkpointing has been avoided at

larger scale in HPC because of the need for a full-memory

dump. For example, a 2014 report [4] on software resilience

presents a typically pessimistic outlook for pure full-memory

checkpoints:

“The norm in 2009 was to store the application

state on remote storage, generally a parallel file

system, through I/O nodes. Checkpoint time was

significant (often 15-30 minutes), because of the

limited bandwidth of the parallel file system. When

checkpoint time is close to the MTBF, the system

spends all its time checkpointing and restarting, with
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little forward progress. Since the [MTBF] may be an

hour or less on exascale platforms, new techniques

are needed in order to reduce checkpoint time.” [4]

Nevertheless, prior work on transparent, system-level check-

pointing is only used at moderate-scale (e.g., 128 MPI pro-

cesses in [6], [7]). The single-node checkpointing package

BLCR [8], [9] is used in combination with the checkpoint-

restart service of a given MPI implementation such as- [10]

for Open MPI or [11] for LAM/MPI. In this approach, the

checkpoint-restart service temporarily tears down the Infini-

Band network, and delegates the single-process checkpointing

to BLCR. This approach does not scale, since BLCR does

not support SysV shared memory objects [12]. Most modern

MPI implementations require such shared memory for efficient

communication among MPI processes on the same node to

avoid the delay in going through kernel system calls.

Moreover, an important work on transparent, system-level

checkpointing is [13], which supported only InfiniBand RC

(reliable connection) mode. While that result sufficed for

earlier MPI implementations, modern MPI implementations

require InfiniBand UD for optimal performance when running

with more than about 64 processes. This is because a pure

point-to-point RC mode implementation would require up

to n2 connections for n MPI ranks (for n MPI processes).

MPI requires InfiniBand UD for the scales considered in

this work, such as 32,752 MPI processes on 32,752 CPU

cores. Setting up (32, 752)2, or nearly 1 billion, point-to-point

RC connections is unacceptable both due to large memory

resources and long times for initialization.

Advances in transparent checkpointing on large-scale super-

computers depend on the fundamental problem of transparent

checkpointing over InfiniBand: how to save or replay “in-flight

data” that is present in the InfiniBand network at the time of

checkpointing, while at the same time not penalizing standard

runtime performance. In particular, we need to address (a) how

to enable transparent checkpointing support for InfiniBand

UD (unreliable datagram) mode; and (b) how to reduce the

excessive runtime overhead seen at larger scales. This second



issue of runtime overhead affects performance even when

no checkpoints are taken. The earlier result [13] had shown

runtime overhead to grow as high as 1.7% ith 2K cores.

When scaling to 4K cores on the Stampede supercomputer

in this work, overhead then grow to an unacceptable 9% (see

Section III-B for a discussion and solution).

A. Contributions

The primary contribution of this paper is to demonstrate the

practicality of petascale system-level checkpointing through

the use of full-memory dumps. In order to achieve this,

DMTCP [14] was used as a vehicle for checkpointing. We

have extended the designs for DMTCP software to have a tight

interaction with modern MPI runtimes by taking advantage of

some important scalability features. The proposed enhance-

ments are along these directions:

1) This is the first checkpoint support for a hybrid Infini-

Band communication mode that uses both reliable con-

nection (RC) and unreliable datagram (UD). A hybrid

RC/UD mode provides better performance than a pure

connection-oriented RC mode, and is a commonly used

optimization among modern MPI implementations. See

Section III-A for details.

2) A secondary contribution is to lower the runtime over-

head for checkpointing RC mode connections them-

selves. Previous work supported only RC mode [13],

using runtime tracing of InfiniBand send messages. The

runtime overhead was shown to be 1.7% for 2K cores

(see Table 2 in [13]), which grew to 9% for 4K cores

in current experiments on Stampede. We use a new

checkpoint-time strategy that reduces runtime overhead

to under 1% even for many cores (see Section IV-C2).

B. Significance of this Work

The current work represents an advance in the state-of-the-

art. By transparently supporting both InfiniBand RC and UD

mode, this work demonstrates a pure system-level checkpoint

over 32,752 CPU cores at the petascale Stampede supercom-

puter [15] in just 10.9 minutes, during which 38 TB are saved

to stable storage on a Lustre filesystem. In contrast, an earlier

report [4] described the 2009 state-of-the-art for checkpointing

to be 15–30 minutes for a supercomputer from that era, and

had argued that checkpointing times would increase even

further from the times of that era.

Of course checkpointing through full-memory dumps is

just one component of a software resilience strategy of

the future, and is compatible with other complementary ap-

proaches. These include multi-level checkpointing [16], in-

cremental checkpointing, partial restart, mitigation of silent

data corruption (SDC), tuning of checkpoint frequencies [17],

[18], and alternate approaches to error prevention, prediction,

tolerance, detection, containment and recovery (forward or

backward) [4], [5].

C. Going beyond the petascale HPC systems

Going beyond the petascale level presented here, there is

an important question of scalability to support future exascale

computing. In order to address this, we enunciate a simple

formula, the Checkpoint Fill-Time Law, for predicting the

checkpoint time using fundamental specifications for a given

supercomputer (see Section III-D). This law predicts an ideal

checkpoint time, and underestimates the checkpoint time for

two real-world applications (HPCG and NAMD) by as much

as a factor of ten. Nevertheless, this formula predicts that

SSD-based exascale supercomputers of the future will enable

checkpointing through a full-memory dump in just 1.6 minutes

(ideally), or a real-world 16 minutes if one extrapolates using

the same factor of ten that is seen at the petascale level.

In order to gain confidence in the predictions for an SSD-

based supercomputer, we also tested on a single SSD-based

computer in Table I. A 3 GB checkpoint image was created

there in 7.2 seconds (and restart required 6.2 seconds). This is

an I/O bandwidth of 416 MB/s, close to the ideal bandwidth

of 500 MB/s for SATA 3.0 interface. Since 3 GB is 2.3% of

the 128 GB SSD disk, the predicted ideal checkpoint time is

2.3% of 4.3 minutes, or 5.9 seconds. So, the predicted time of

5.9 seconds compares well with the actual time of 7.2 seconds.

D. A Remark Beyond Research Contributions

In addition to the research contributions above, we were

surprised to discover a counter-intuitive practical issue in

checkpointing at petascale levels. Simply launching a new

computation was found to be excessively slow with 8K cores,

and was found to fail at 16K cores (see Section III-C). This

was tracked down to limitations in the hardware/software

system. The simple act of creating 16K cores was found to

overwhelm the hardware/software system on the Stampede su-

percomputer. In discussions with sysadmins, we found that in

the emphasis on InfiniBand over Ethernet meant that each rack

at Stampede was provided with just a single 10 Gb Ethernet

backbone from each rack. Hence, this appears to have led to

longer delays in the processing of Ethernet by the kernel at

larger scales, and we directly observed processes receiving a

SIGKILL signal from the kernel at 16K cores.

E. Organization of Paper

The rest of this paper is organized as follows. The relevant

background on Lustre, DMTCP, and the various modes used

by MVAPICH2 are presented in Section II. Section III de-

scribes the methodology used to achieve petascale level and

some implications for extending checkpointing to the next

level. The experimental evaluation is presented in Section IV.

Section V describes the scalability issues associated with

petascale checkpointing. The related work is presented in

Section VI, and conclusions appear in Section VII.

II. BACKGROUND

The following three subsections review three critical com-

ponents that affect the performance in the experiments: the

MPI implementation (MVAPICH2 at TACC, and Intel MPI

and Open MPI at CCR — see Section IV), DMTCP itself

as the checkpointing software, and Lustre as the back-end

filesystem.



A. MVAPICH2

We highlight MVAPICH2 [19] as the MPI used in the

majority of experiments. Other MPI implementations typically

have similar features to those described here. MVAPICH2

uses the TCP/IP-based Process Management Interface (PMI)

to bootstrap the InfiniBand end-points using InfiniBand RC.

While PMI is the most straightforward way to establish

InfiniBand connectivity, it leads to poor startup performance

due to the n2 point-to-point connections referred to in the

introduction. For MPI jobs with more than 64 processes,

MVAPICH2 also uses the lazy establishment of “on-demand”

connections using InfiniBand UD [20].

B. DMTCP

Distributed MultiThreaded CheckPointing (DMTCP) [14]

provides a framework for coordinated checkpointing of dis-

tributed computations via a centralized coordinator. Each client

process of the application communicates with the coordinator

via a TCP socket. A checkpointing library is injected into

each process of the target application. This library creates a

checkpoint thread in each process, to communicate with the

coordinator and to copy process memory and other state to a

checkpoint image.

The coordinator employs global barriers to synchronize

checkpoint/restart among multiple nodes, and it provides a

publish-subscribe scheme for peer discovery (e.g., discover

new TCP peer addresses for InfiniBand id during restart).

These are used in combination with wrappers around library

functions to build plugin libraries. The plugin libraries are

injected along with the checkpoint library. They serve to

translate real ids into virtual ids seen by the application, and to

update the virtual address translation table with the new real

ids that are seen on restart [21]. This virtualization capability

operates below the level of the MPI library. A new plugin

capability for this work serves to virtualize the InfiniBand UD

mode (see Section III-A).

C. Lustre

The Lustre filesystem at Stampede plays a critical role in

supporting high-bandwidth writes of checkpoint image files.

Lustre [22] is a parallel object-based filesystem in widespread

use that was developed to support large-scale operations on

modern supercomputers. Lustre attains high I/O performance

by simultaneously striping a single file across multiple Object

Storage Targets (OSTs) that manage the system’s disks. Lustre

clients run the Lustre file system and interact with OSTs for

file data I/O and with metadata servers (MDS) for namespace

operations. The Lustre protocol features authenticated access

and write-behind caching for all metadata updates.

III. ISSUES FOR PETASCALE CHECKPOINTING AND

EXTRAPOLATION TO EXASCALE CHECKPOINTING

In the first subsection, we discuss a key barrier to petas-

cale checkpointing and its solution: support for InfiniBand

UD mode. In the nature of lessons learned, we also present

two additional and unexpected barriers to scalability within the

context of running on the Stampede supercomputer: excessive

runtime overhead at large scale, and the lack of support for

processes employing many TCP sockets.

Finally, the scalability of this approach for future exascale

supercomputers is a key concern. The key question here is the

write bandwidth to the storage subsystem for a full-memory

dump from RAM. Section III-D presents a simple, empirical

model, the Checkpoint-Fill-Time Law, to extrapolate trends,

and predicts that with the adoption of SSD for secondary

storage in supercomputers (and with hard disks being rele-

gated to tertiary storage), expected checkpoint times in the

exascale generation are estimated at 1.6 minutes, ideally, and

16 minutes in real-world applications.

A. Checkpointing Support for UD (Unreliable Datagrams)

Recall from Section II-A that the InfiniBand UD communi-

cation mode is for connectionless unreliable datagrams. Newer

versions of MPI use a hybrid RC/UD scheme for balancing

performance with the memory requirements for the queue

pairs. Thus, transparent checkpointing of modern MPI requires

support for UD and in particular for hybrid RC/UD mode (in

which both types of communication operate in parallel).

Plugin Internal Resources

Shadow address handler of plugin

(ptr to real address handler)

Virtual address handler
(with remote LID)

InfiniBand subnet manager

Target App (user code)

LID of remote HCA

LID of remote HCA

DMTCP libraryInfiniBand ibverbs library

DMTCP InfiniBand Plugin

Kernel driver

HCA Adapter (hardware)

Device−dependent driver in user space

Fnc call to library:

Address handler created by kernel

Fig. 1: Virtualization of address handler and LID (local id)

of remote HCA (hardware channel adapter).

The key to checkpointing UD is to virtualize remote address

of the queue pairs, so that the actual address can be replaced by

a different address after restart. Figure 1 presents an overview

of the situation, to accompany the detailed description that

follows.

The approach here maintains a translation table between vir-

tual and actual addresses, and is implemented using DMTCP

plugins [21]. Further, on each UD-based send, the InfiniBand

LID (local identifier) must also be updated for a possibly

different remote queue-pair address.

In detail, each computer node includes an InfiniBand HCA

(Host Channel Adapter). The HCA provides hardware support



for a queue pair, which refers to a send-receive pair of queues.

Unlike the connection-oriented RC communication mode, UD

has no end-to-end connections. So a local queue pair can send

messages to different remote queue pairs.

The problem of virtualizing a remote UD address is made

more difficult because of the dynamic change of the address

of the remote queue pair, which is identified by a unique

pair (LID (local identifier), qp num ( queue pair number)).

The LID is assigned by the subnet manager, which is unique

only within the local subnet, while the queue pair number is

assigned by the hardware driver, which is unique only within

the local HCA. Since both fields can change after restart, we

need to virtualize both fields in order to identify the remote

UD address.

At the time of restart, all previously created UD queue

pairs (as well as the ones created after restart) will send

their address pairs to the checkpoint coordinator. After the

application resumes, each node must discover the (remote-

LID, queue-pair-number). It was decided to do this by query-

ing the checkpoint coordinator at runtime prior to each UD-

based send for the latest destination LID. Although this adds

to the runtime overhead, UD is not used as the primary

communication channel and so this runtime querying overhead

is negligible in practice.

Note that UD presents a very different situation from the

older RC mode work in [13]. For RC mode it’s safe to build

the connection at restart, because the peer won’t change. But

the destination of a given LID can change after restart. In

the extreme case, each UD-based send can change its peer

queue-pair address, and so there’s no fixed peer. Instead, we

are forced to patch the right remote address on every send.

Finally, the UD protocol refers to an address handler (for

which the remote LID is just one field). So, instead of

virtualizing the remote LID, we must virtualize the address

handler (AH). Hence, we create wrapper functions around all

InfiniBand library calls that refer to an AH. Whenever an AH

is created, we also create a shadow AH. Thus, the application

code only sees pointers to our shadow AH, and our wrapper

functions make corresponding modifications to the actual AH

struct that is passed to the InfiniBand library. On restart, the

shadow AH is redirected to a new, actual AH constructed by

the InfiniBand library. In particular, this technique can account

for any hidden fields in the actual AH, or other examples of

data hiding that an InfiniBand library may use.

B. Reducing RC-mode Runtime Overhead

In testing on the LU.E benchmark, we saw runtime overhead

rise to 9% for 4K CPU cores compared to the 1.7% runtime

overhead at 2K cores reported by [13]. This was due to

the non-scalable tracing of send/receive requests required by

the InfiniBand checkpointing code to shadow hardware state

because InfiniBand devices don’t provide a way to “peek” at

the current state.

We address this scaling problem by updating the model by

relaxing some of the guarantees around send/receive queues.

Instead of computing the exact number of pending send

messages at checkpoint time, we poll the receive queues for a

“reasonable” amount time during checkpointing. If a message

arrives during this time, we wait again. If no messages arrive,

we assume that there are no more messages in flight. For

practical purposes, most message will arrive in the first time

window. There might be a small number of messages arriving

in the second time window if there is a slow network switch.

Since the InfiniBand network is quiesced at this point (because

all processes are going through checkpoint), no new messages

are being scheduled to send. In our experiments, we used

a “one-second window” for draining in-flight messages and

noticed that all “pending” messages arrived within the first

window. No messages arrived in the second window.

C. TCP Congestion Limits during MPI Initialization

While startup time was reasonable for DMTCP with

8K clients, when running with 16K clients, some of the clients

randomly died. We were able to diagnose this by creating

an artificial application unrelated to DMTCP. The application

similarly created a TCP connection between a coordinator and

each client. We observed a SIGKILL being sent to each of the

random processes that died. Since standard user-space tools

failed to indicate the sender of the SIGKILL, The behavior

was reproducible: DMTCP ran well with 8K clients, but was

never observed to run with 16K clients.

In discussions with the sysadmins, they pointed out that

there was a single 10 Gb Ethernet backbone from each rack,

since the cluster emphasized InfiniBand over Ethernet. we

speculate that the Linux kernel had sent the SIGKILL due to

excessive delays seen by the kernel on top of an overloaded

Ethernet backbone.

We then implemented two standard solutions. First, a “stag-

gered sleep” (i.e., network backoff) was used to avoid bursts

of communication over the network when initializing the TCP

sockets. This worked. However, Stampede also sets a per-user

limit of 16K sockets per process (which can be individually

overridden by the system administrator on a per-user basis).

So, in order to scale to 16K MPI processes and beyond,

we then employed a second solution. We created a new mode

using a two-level tree of coordinators. Specifically, a “sub-

coordinator” process was created on each computer node to

relay messages to the main coordinator. In certain cases, the

messages of clients were aggregated by the sub-coordinator

into a single message in order to optimize network overhead.

As shown in section IV, the launch time improved significantly

when using this two-level tree of coordinators.

D. SSDs as a Disk Replacement in the Exascale Generation

As is well known, the bottleneck for a transparent check-

point employing a full-memory dump is the sustained write

bandwidth (sustained transfer rate) to the storage subsystem.

This observation yields a simple equation for predicting the

ideal checkpoint time for a full-memory dump of all of the

aggregate RAM. The relationship is well known, and we

formalize it here as the Checkpoint-Fill-Time Law. We assume



Name Year StorageRAM Storagedisk/SSD Ratio Assumed Assumed single Single disk Ideal ckpt

intro. disk size disk bandwidth fill time (min.) time (min.)

Stampede (TACC) 2014 205 TB 10 PB 0.02 2 TB ?? 100 MB/s 333 6.7

Jaguar (ORNL) 2009 598 TB 10.7 PB 0.056 1 TB 100 MB/s 167 9.4

Titan (ORNL) 2012 710 TB 10.7 PB 0.066 1 TB 100 MB/s 167 11.0

Sunway TaihuLight 2016 1,311 TB ?? 0.05 ?? 3 TB ?? 100 MB/s 500 25.0 ??

CCR (UB) 2015 1.728 TB 500 TB 0.0035 4 TB 100 MB/s 666 2.3

SSD-based 4-core node 2014 16 GB 128 GB 0.125 4 TB ?? 500 MB/s 4.3 4.3

Theoretical Exascale 2020 ?? ?? 0.1 ?? 4 TB ?? 4 GB/s ?? 16 1.6 ??

TABLE I: Predictions using the Checkpoint-Fill-Time Law for a full-memory dump (checkpoint size = StorageRAM ). Since

the size of disks used by the storage nodes is often not reported, it is estimated at half of the largest size disk at the time of

introduction of the computer.

here a write bandwidth (transfer rate) of 100 MB/s for a single

disk.
CkptTime = StorageRAM /Bandwidthdisks

= StorageRAM / (Numberdisks × 100 MB/s)

=
StorageRAM

Storagedisks
×

Storagedisks
Numberdisks

/ 100 MB/s

=
StorageRAM

Storagedisks
× SingleDiskFillTimedisk

Similarly, we can write down such a law for an SSD.

CkptTime =
StorageRAM

StorageSSDs

× SingleDiskFillTimeSSD

There are many inaccuracies in this law. As a minor

example, this formula ignores the existence of redundant disks

in a RAID configuration. The aggressive 100 MB/s transfer

rate is meant to account for that. More seriously, a back-end

storage subsystem such as Lustre includes a back-end network

that usually cannot support the full bandwidth of the aggregate

disks. A back-end storage subsystem is optimized for typical

write loads, which are only a fraction of the maximum write

load with all compute nodes writing simultaneously. Finally,

this law is not intended to be used for small checkpoint images,

since this results in small write blocks that are inefficient for

use with disks, and since there is a large variation in perceived

checkpoint time for small writes due to interference by larger

jobs simultaneously using I/O.

Some examples of predictions are shown in Table I. The

goal of this table is to make a crude prediction on expected

checkpoint times for a future exascale supercomputer based

on SSDs. As will be seen in Section IV-B, the predictions of

the law for Stampede running both HPCG and NAMD are ap-

proximately ten times faster than what is seen experimentally

(after accounting for the fact that the HPCG computation uses

only 1/3 of the available nodes and only 2/3 of the available

RAM per node).

In extrapolating a future exascale SSD-based supercom-

puter, the formula predicts a full-memory dump time of

1.6 minutes. We assume a ratio of RAM to SSD size of 0.1

instead of the historical 0.02 or 0.05 for disks, since SSD is

more expensive than disk. It is assumed that SSD will be used

for secondary storage and disk for tertiary storage. If we accept

a factor of ten difference between ideal, theoretical time and

real-world time (in keeping with the ten-fold penalty seen for

HPCG and NAMD in Section IV-B, then this extrapolation

predicts a real-world 16 minutes checkpoint time for exascale

computing.

The specification of a future SSD at 4 TB with write

bandwidth of 4 GB/s is based on an extrapolation from current

SSDs. At this time, the high-end PCI Express (PCIe) 3.0-

based SSDs can achieve 1.5-3.0 TB/s of sequential writes. The

PCIe 3.0 interface limits one today to 8 GB/s. (The upcoming

PCIe 4.0 promises 16 Gigatransfers/s that typically translate

to 16 GB/s.) We conservatively assume a bandwidth of 4 GB/s

and a 4 TB storage for for commodity SSDs, four years from

now. This is in keeping with Flash density trends in [23,

slide 4] and with [24].

IV. EXPERIMENTAL EVALUATION

We evaluate our approach for: (a) ability to checkpoint

real-world applications (see section IV-B); scalability trends

across a large range in the number of cores used (see sec-

tion IV-C); and (b) applicability to diverse environments (see

section IV-D).

A. Setup

The experiments were run on the Stampede supercom-

puter [15] at TACC (Texas Advanced Computing Center). As

of this writing, Stampede is the #10 supercomputer on the

Top500 list [25]. In all cases, each computer node was running

16 cores, based on a dual-CPU Xeon ES-2680 (Sandy Bridge)

configuration with 32 GB of RAM.

Experiments use the Lustre filesystem version 2.5.5 (see

Section II-C) on Stampede. InfiniBand connections run over

a Mellanox FDR InfiniBand interconnect. A lower bandwidth

Ethernet connection is available for TCP/IP-based sockets. For

all the experiments, uncompressed memory dumps were used.

The largest batch queue normally available at Stampede

provides normally for 16K CPU cores, but special permission

was obtained to briefly test at the scale of 32,752 CPU cores.

Hence, the maximum scale was 2,047 nodes with 16 CPU

cores.

At 32,752 CPU cores, the tests use one-third of the

compute nodes of Stampede. This is sixteen times as

many cores as the largest previous transparent checkpoint

of which we are aware [13]. The Stampede supercomputer

is rated at 5.2 PFlops (RMAX:sustained) or 8.5 PFlops

(RPEAK:peak). [25]. Hence, we estimate our usage during



this checkpoint experiment (using Xeons only) to be a large

fraction of a petaflop.

The experiments at the largest scale were done using a

reservation in which our experiments had exclusive access

to up to one-third of the nodes of Stampede. The system

administrators were careful to monitor our usage during this

period, to ensure that there was no interference with the jobs

of other users. The administrators observed a peak bandwidth

of 116 GB/s to the Lustre filesystem, when we were writing

checkpointing image files at large scale (16K through 32K

CPU cores). The system administrators of Stampede also

observed that they did not find any disturbance in the workflow

of other users during this time.

B. Experiments with Real-world Software

Two software experiments reflect real-world experience with

many CPU cores and with large memory footprints. The High

Performance Conjugate Gradients (HPCG) benchmark repre-

sents a realistic mix of sparse and dense linear algebra [26],

and is intended to provide a good “correlation to real scientific

application performance” [27]. The tests with the molecular

dynamics simulation NAMD then represents performance for

an application not based on linear algebra.

1) Evaluation of HPCG: Table II shows checkpoint and

restart times for HPCG at the scale of 8K, 16K, 24,000, and

32K CPU cores. The 24,000 and 32K core cases were run

with special permission of the system administrators (since

at Stampede, the largest standard batch queue supports only

16K cores), In all cases, the aggregate size of the checkpoint

images per node is 19.2 GB, representing almost two-thirds of

the 32 GB RAM available on each node. The bandwidth for

writing checkpoints progressively diminishes with larger size

computations, except at the largest scale of 32,752 cores. This

last case was run during a maintenance period, with presum-

ably little writing associated with that ongoing maintenance.

Note that the Checkpoint Fill-Time Law predicts an ideal

checkpoint time of 6.7 minutes (see Table I). At 16K cores, the

checkpoint represents 9.4% of the total 6, 400 nodes×32 GB,

and thus, the observed checkpoint time is ten times larger

than the predicted ideal time of 0.628 minutes. When push-

ing Lustre beyond its standard configuration, the checkpoint

for 32,752 cores represents 19.2% of the total RAM of

6, 400 × 32 GB, and thus, the observed checkpoint time of

10.9 minutes is eight times larger than the predicted ideal time

of 1.29 minutes.

Compared to the checkpoint times, the restarts times are

nearly twice as large. We believe this is because when writing

the checkpoint images, Lustre buffers the checkpoint data. On

restart, the checkpoint data needs to be synchronized to the

disk, transferred to each node, and then read into the memory

of each node.

2) Evaluation of NAMD: Table III shows the results of

NAMD for 8K and 16K CPU cores. The input parameters are

taken from a NAMD-based petascale study of biomolecular

simulations [28]. Comparing these results with those for

HPCG, we see that the write bandwidth for Lustre depends

Num. of Checkpoint Restart Total ckpt Write (ckpt)
processes time (s) time (s) size (TB) bandwidth (GB/s)

8192 136.1 215.3 9.4 69

16368 367.4 706.6 19 52

24000 (1) 634.8 1183.8 29 46

32752 (2) 652.8 2539.05 38 60

NOTE: Executed with special permission1; and during Stampede
maintenance2 (mostly exclusive access to the cluster).

TABLE II: Checkpoint and restart trends for HPCG; check-

point image size for each process is 1.2 GB, with 16 images

generated on each computer node.

primarily on the number of CPU cores issuing a sustained

write, and does not vary significantly even though the total

checkpoint sizes are smaller for NAMD. The I/O bandwidths

for NAMD correspond roughly with HPCG, and hence the

actual checkpoint times observed also compare to the ideal

times of Table I in approximately the same ratio. (For NAMD

with 8K processes, the 260 MB per process appears to be a

little small for ideal Lustre I/O.0

Num. of Checkpoint Restart Total ckpt Ckpt (write)
processes time (s) time (s) size (TB) bandwidth (GB/s)

8192 41.4 111.4 2.1 51

16368 157.9 689.8 9.8 62

TABLE III: Checkpoint and restart trends for NAMD with 8K

and 16K cores (one MPI process per core); checkpoint image

size for each process is 260 MB and 615 MB, respectively,

with one checkpoint image per process.

C. Scalability

Num. of Launch
processes time (s)

1K 0.3 - 7.5

2K 0.8 - 10.5

4K 3.2 - 86.7

8K 29.2 - 87.9

16K 99.3 - 120.8

16K (*) 15.2 - 21.6

(*) Launch time for 16K processes with checkpointing using tree of
coordinators.

TABLE IV: Launch time for different number of processes

running with checkpointing.

1) Launch Overhead: Table IV shows the

overhead incurred when starting the NAS/NPB LU

benchmark [29](NPB 3.3.1, Class E) under our proposed

approach. Recall that the approach uses a centralized

coordinator for coordinating checkpointing among distributed

processes and the coordination messages are sent over TCP/IP

network. As a result, we observe that the launch time scales

with the number of processes because of the increased load

on the TCP/IP network. The large variation in the launch time

is due to the congestion on the TCP/IP network that is also

used at Stampede for administrative work. The launch time
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Fig. 2: Runtime overhead for LU.E

improves by up to 85% at the scale of 16K processes when

we switch to using a tree of coordinators. Each compute node

runs an additional sub-coordinator process that aggregates

and relays requests from the processes on the same node to a

root coordinator. This reduces the network connections by a

factor of 16.

Num. of Runtime (s) Runtime (s) Overhead (%)
processes (natively) (w/ checkpointing support)

512 596.6 601.4 0.8

1024 316.2 317.8 0.5

2048 197.6 201.9 2.2

4096 144.0 144.1 0.1

TABLE V: Runtime overhead for NAS benchmark LU.E

(class E): Times are native (without checkpointing support)

and with checkpointing support.

2) Runtime overhead: Figure 2 demonstrates the small

overhead of executing with our approach. To minimize the

variation in communication overhead due to network topology,

for a given problem size, the experiments with and without

checkpoint support were run on the same set of nodes. Even

for a fixed set of nodes, we observed a large variation in the

runtimes in successive runs. We attribute this to the network

congestion on the InfiniBand backend used by Lustre.

Table V shows that the average runtime overhead is less than

1% in all cases, except for 2K processes, where it is 2.2%.

Since runtime overhead returned to 0.1% with 4K processes,

we speculate that the run with 2K processes suffered from

interference by other users on that day.

As noted in the introduction, before introducing the op-

timizations of Section III-B, we had observed a runtime

overhead of 9% with DMTCP for 4K cores. The runtime

overheads reported here are an important advance.

3) Checkpoint-Restart Trends: The scalability trends up to

16K CPU cores are demonstrated for the NAS LU benchmark

in Table VI.

Num. of Checkpoint Restart Checkpoint size
processes time (s) time (s) per process (MB)

1024 14.5 15.8 428

2048 24.2 20.6 342

4096 33.7 36.9 300

8192 65.8 107.6 280

16368 131.8 514.7 285

TABLE VI: Checkpoint and restart trends for LU.E

The checkpoint overhead can be divided into two parts: the

communication between the compute processes and the central

coordinator, and the work to write the checkpoint images.

Since there are only a few small messages that are sent to

coordinate checkpointing, the checkpoint time is dominated

by the time Lustre takes to write the checkpoint images.

Notice that the time to write a checkpoint image differs by

up to 99% at the scale of 16K processes, even though the sizes

of their images are the same. This difference increases with

the number of processes. We attribute this to Lustre creating

and writing meta-data for each file.

The restart overhead also consists of two parts: the time to

build the connection with the coordinator, and the time to read

into the memory the checkpoint images. In the case of restart,

it is the work to build all the connections that dominates the

trend. It follows the same trend as in Section IV-C1, since it

uses the same model to build the connections.

D. Diversity

In this section, we demonstrate the support for different

applications as well as different MPI implementations. Apart

from LU, we test three other NAS benchmarks: BT, SP,

and FT. In addition, we test the Scalable Molecular Dy-

namics (NAMD) real-world application [30]. We also show

the support for two other popular MPI implementations:

Open MPI [31] and Intel MPI [32].

1) Evaluation of NAS/NPB Benchmarks: The performance

of BT, SP, and FT is demonstrated for up to 8k CPU cores.

Together with LU, the checkpoint times and the restart times

are shown in Figures 3a and 3b, respectively.

The memory overhead of the proposed approach is negli-

gible compared with the memory footprint of the application.

As a result, for a given scale the checkpoint times and the

restart times roughly correspond the checkpoint image sizes,

regardless of the application type.

MPI Checkpoint Restart Checkpoint size
implementation time (s) time (s) per process (MB)

Intel MPI 298.9 191.8 775

Open MPI 299.7 128.5 520

TABLE VII: Comparison of two MPI implementations; LU.E

for 500 processes

2) Evaluation of Different MPI Implementations: The ex-

periments with Open MPI and Intel MPI were done at the

Center for Computational Research at the State University

of New York, Buffalo [33]. The results shown in Table VII
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Fig. 3: Checkpoint and Restart Times for Four NAS Benchmarks (note the log-log axes)

demonstrate that the proposed approach is MPI-agnostic.

While the restart times roughly correspond to checkpoint

image sizes, the checkpoint times don’t. This is attributed to

filesystem backend caching.

V. DISCUSSION OF SCALABILITY ISSUES

A. Centralized Coordinator

Our approach uses a single-threaded central coordinator. It

appears that this design does not insert a central point of

contention. In these experiments, the checkpoint coordinator

was always run on a separate compute node with no competing

processes. Total network traffic on each socket was estimated

to be a total of 20 KB during a checkpoint-restart. This traffic

was primarily related to the publish-subscribe database main-

tained by the InfiniBand checkpointing code. Nevertheless, the

CPU load was always measured at less than 5% of the time

for one CPU core.

Separately, the approach uses TCP sockets to communicate

with the peer processes. This represents a design flaw at the

petascale level. Two issues were encountered. First, the use

of multiple TCP writes without an intervening read forced us

to invoke TCP_NODELAY to turn off Nagle’s algorithm [34].

Second, there was a need at larger scale to use a staggered

sleep (network backoff) during initialization of TCP sockets,

so that the many peers would not overwhelm the operating

system (or possibly the switch hardware) in a burst of requests

to create new socket connections.

Additionally, most Linux-based operating systems include a

limit on the number of socket connections per process. Our im-

plementation needed to be extended with a tree-of-coordinators

so that the many peers connecting to the coordinator would

not exceed this limit.

B. Better support from the InfiniBand device drivers

As discussed in III-B, the shadow send/receive queues

provide stronger correctness guarantees but impose a signif-

icant runtime overhead. The proposed alternative is to use a

heuristic-based approach with relaxed correctness guarantees.

A third alternative is possible if the InfiniBand device driver

can provide an API to “peek” into the hardware to learn the

current state of the send/receive queues. While being non-

destructive, the peek operation could significantly simplify the

logic around draining and refilling of the send/receive queues

without imposing a runtime overhead.

C. Fast Restart using Demand-paging

During restart, there is an opportunity to use “mmap” to

map the checkpoint image file back into process memory

(RAM) on-demand. Instead, all memory was copied from

the checkpoint image file to process memory (RAM) during

restart. With “mmap”, the restart could be significantly faster

for a certain class of application that have a smaller working

set. This would allow for some overlap of computation and

demand-paging generated file I/O. Further, there is less of a

“burst” demand on the Lustre filesystem. This mode was not

used, so that the worst-case time for restart could be directly

measured.

VI. RELATED WORK

To the best of our knowledge, the largest previous check-

point was carried out by Cao et al. [13]. That work demon-

strated transparent checkpoint-restart over InfiniBand RC (but

not UD mode) for the first time. Scalable results were demon-

strated for the NAS NPB LU benchmark for 2048 MPI

processes over 2048 CPU cores. That work mostly used local

disk rather than Lustre, showing a maximum I/O bandwidth of

0.05 GB/s when using the local disks of 128 nodes. (The one



Num. of Ckpt Rst Ckpt size
processes time (s) time (s) (MB)

1024 18.8 38.1 675

2025 22.1 29.5 480

4096 36.5 42.1 368

8100 68.3 109.5 331

(a) BT.E

Num. of Ckpt Rst Ckpt size
processes time (s) time (s) (MB)

1024 18.9 23.5 634

2025 19.6 27.4 452

4096 51.28 93.3 368

8100 68.0 106.7 332

(b) SP.E

Num. of Ckpt Rst Ckpt size
processes time (s) time (s) (MB)

1024 36.0 41.5 1200

2048 39.4 54.9 703

4096 55.3 90.6 488

8192 71.1 107.5 385

(c) FT.E

TABLE VIII: Checkpoint and restart trends for various NAS benchmarks

example with Lustre over 512 processes reported an I/O band-

width of just 0.1 GB/s.) The previous work was demonstrated

solely for Open MPI using RC mode, while today most MPI

implementations also take advantage of InfiniBand UD mode

during initialization.

The most frequently used packages for system-level trans-

parent checkpointing today are BLCR [8], [9], CRIU [35],

Cryopid2 [36], and DMTCP [14]. Only DMTCP and BLCR

are used for checkpointing MPI computations. DMTCP is the

only one of the four that supports transparent checkpointing of

distributed computations, and so it supports our current MPI-

agnostic approach toward checkpointing.

In contrast, BLCR is also often used for checkpointing MPI,

but only in combination with an MPI-specific checkpointing

service such as [10] for Open MPI or [11] for LAM/MPI.

BLCR can only checkpoint the processes on a single node.

Hence, an MPI-specific checkpointing service temporarily

tears down the InfiniBand network, and then uses BLCR [8],

[9] to checkpoint individual nodes as standalone computations.

Afterwards, the InfiniBand connections are re-built.

DMTCP is preferred over the combined use of BLCR with

an MPI implementation-specific checkpointing service for two

reasons: (a) It is MPI-agnostic, operating without modification

for most MPI implementations; and (b) the alternative check-

pointing service that tears down the network can incur long

delays when re-initializing the InfiniBand connections upon

resuming the computation and hence limits its performance.

There have been several surveys of the state of the art

for software resilience in the push to petascale and then

exascale computing [1]–[5]. One of the approaches is FTC-

Charm++ [37], which provides a fault-tolerant runtime base

on an in-memory checkpointing scheme (with a disk-based

extension) for both Charm++ and AMPI (Adaptive MPI).

Three categories of checkpointing are supported: uncoordi-

nated, coordinated, and communication-induced.

Because of the potentially long times to checkpoint, a multi-

level checkpointing approach [16] has been proposed. The key

idea is to support local fault tolerance for the “easy” cases, so

that a global checkpoint (potentially including a full-memory

dump) is used as a last resort. Since restart from a global

checkpoint are needed less often, such checkpoints may also

be taken less often.

A popular application-level or user-level mechanism is

ULFM (user-level failure mitigation). By applying recovery

at the user-level, they offer different recovery models, such

as backward versus forward, local versus global and shrinking

versus non-shrinking. [38] reviews the ULFM model, and adds

an application-level model based on global rollback.

Finally, rMPI (redundant MPI) has been proposed for

exascale computing [39]. This has the potential to make

checkpointing less frequent, and thus allow for longer times

to checkpoint. The authors write, “Note that redundant com-

puting . . . reduces the overhead of checkpointing but does

not eliminate it.” The authors provide the example of a fully-

redundant application for which Daly’s equation [40] predicts

a run for 600 hours without failure over 50,000 nodes with

a 5-year MTTI/node. [39, Figure 12] (MTTI is mean-time-to-

interrupt.)

VII. CONCLUSION

The need for a fault-tolerance solution for exascale com-

puting has been a long-time concern [1]–[5]. This work

has demonstrated a practical petascale solution, and provided

evidence that the approach scales into the exascale gener-

ation. Specifically, system-initiated full-memory dumps for

three modern MPI implementations over InfiniBand have been

demonstrated. This required virtualization of InfiniBand UD,

since the previous simpler InfiniBand RC point-to-point mode

did not support modern MPI implementations at scale.

Testing on real-world-style applications of NAMD and

HPCG stressed large memory footprints. The current Lustre

filesystems successfully supported many-terabyte full-memory

dumps. A simple formula in Section III-D allowed for extrapo-

lation to future SSD-based exascale computers. The predicted

ideal checkpoint time was 1.7 minutes, which extrapolates to

under 17 minutes (ten-fold increase) after comparing the ideal

formula against current supercomputers.

In particular, special permission was received to run HPCG

with 32,752 CPU cores (one-third of the Stampede super-

computer), and a 38 TB checkpoint image was created in

10.9 minutes. The system administrator manually monitored

a similar run with 24,000 cores, and reported that it did not

affect the normal use of I/O by other concurrent users.
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