Progress Report Toward a Thread-Parallel Geant4

Gene Cooperman and Xin Dong
High Performance Computing Lab
College of Computer and Information Science
Northeastern University
Boston, Mas%achusetts 02115
USA

{gene,xindong@ccs.neu.edu

Northeastern

U w

ParGeant4

e A parallel version (separate processes) of Geant4 alreasig e

e exanpl es/ ext ended/ paral | el / Par NO2 (and ParN04)

e Master/Worker paradigm

e Utilize TOP-C “Raw Interface”

e Event-level parallelism to simulate separate events omtemrocesses

e For each event, there is a corresponding seed for CLHEP mandmber
generator

e Seeds come from a sequence of random numbers on master
e No recompilation of Geant4 libraries
e Nearly linear speedup

e Reproducibility: Given same initial random seed, ParGeant4 produces
same result.

examples/extended/parallel/ParN02

Northeastern

U N

Goal of Thread-Parallel Geant4

e Efficiency for future many-core CPUs
e Testing and validation on today’s 4-, 8- and 16-core nodes
e New implementation (independent of ParGeant4, but Leveragatgexperience)

e Unlike ParGeant4, requires re-compilation of some of Geant4 satode for thread-
parallel operation

e Preliminary results available based on testing ol CVM5 benchl. g4

Northeastern

U N

Initial Results

Current results:
testing onf ul | CMS benchl. g4 (electromagnetics), 1 master and 3 worker threads:

1. Phase |: multi-threaded implementation; code sharing (sameikiple processes), but

no data sharing
(600 MB: ~ 30 MB text/code + 4x 140 MB) (DONE)

2. Phase II: Sharing of geometry, materials, particles, productits
(400 MB: ~ 30 MB text/code + 80 MB shared geom. +470 MB)
(DONE, UNDERGOING VALIDATION)

3. Phase Ill: Sharing of data for electromagnetic physics processes
(400 MB: =~ 30 MB text/code + 80 MB shared geom. + 70 MB electromagneticsiphy

tables + 4x small(TODO)
4. Phase IV: Other physics processeé®DO)

5. Phase V. General Software Schema: new releases of sequemizdtdGdrive
corresponding multi-threaded releas€®DO)

Phase lll: easy in principle, since physics tables are read-adide from small caches:
Difficulty is that each physics table may have a distinct autlsing a distinct API

Multi-Processing: Forked Processes and Copy-On-Writ

The UNIX fork system call uses copy-on-write semantics (COW) to eraathild process
that shares all data with the paremttil the parent or child writes to a particular page. This

provides easy sharing of those data pages that are acaeggéa read-only modéy parent
and child.

A Copy-On-Write version of Geant4 has been written. Its uses are tldo-fo

1. Reference versiorto compare Multi-Threaded Geant4 with best alternative tedgyol

2. Easy Data Sharingfew assumptions, less dependency on specific Geant4 souree cod

Issues:

e Coarser granularity:If even one field of a C++ object is read-write, then the entire data
page containing the object is not shared.

e When to fork:Geant4 initialization of different components can happenrpaohe first
event, during the first event, or during later events (lazy ii@dion). We chose to fork
after the first evenwhich captures most of the initializations.

»Z Northeastern
U X & v E R S5 1 7TY

Summary of Data Sharing

Measured for one master process/thread and three workers.
Testing orf ul | CMS benchl. g4 (electromagnetics).
Sequential running time: 6 hours

Implementation Total Memory Additional| Total Memory Runtime
on master Memory (master
per Worker + 3 workers)
Multi-Processing (COW) 180 MB 70 MB 400 MB| 2; hours
Multi-Threaded (Phase) 180 MB| 140 MB 600 MB 2%1 hours
Multi-Threaded (Phase 1) 180 MB 70 MB 400 MB 2%1 hours
Multi-Threaded (Phase lll) 180 MB small 180 MB 2%1 hours
(estimate, not completed)

Northeastern

U N

Methodology

e Patch parser.c of gcc to output static and global declamiioiiGeant4
source code; recompile and reinstall gcc

¢ Build Geant4 and collect output of parser.c (similar to UNI>¢g)

1. static variables in each function
2. static class members

3. global variables and if they exist, all correspondingtéexr” declara-
tions

»Z Northeastern
U X & v E R S5 1 7TY

Status and Future Plans

Status:
e 10,000 lines of Geant4 modified automatically

e 100 lines of special cases modified by hand

e months of effort to find last few bugs (tested using fullCMS)

e goal of automatically patching each new Geant4 release
Note: We have seen that Phase | is multi-threaded, but al dathread
private. Hence, no bugs. Phases Il and later introduce sitarof

data. Testing on fullCMS, Geant4 unit tests, and other appgals bugs
(additional special cases to be modified by hand).

Future Plans:
e Tool for automatically finding conflicts in data shared amtmgads.

e Measure cache misses (better indication of true sharing)

e Accurate measure of dynamic data sharing (shared pagessadper
secongl versus non-shared pagasr second

»Z Northeastern
U X & v E R S5 1 7TY

Related Work: Checkpoint-Restart

e DMTCP:http://sourceforge. net/projects/dntcp
(free, open-source)

e DMTCP (Distributed Multi-Threaded Checkpointing) is a toolttans-
parently checkpointing (copying to disk) the state of a catapon

e It operates transparently (no modification of the user lyhar

e In the case of Multi-threaded Geant4 or Multi-Process Gedbwpy-On-
Write), it can checkpoint Geangfterinitialization. Restarting from this
point saves time for production runs.

Recently, we demonstrated checkpointing of runCMS. Run@mSists of
up to 2 million lines of code and up to 700 dynamic shared hig: A
typical case (checkpointing 12 minutes after startup) is:

Size: 600 MB memory image (225 MB compressed on disk)

Dynamic shared libraries in RAM: 540

Time to checkpoint: 25 seconds; Time to restart from disksd@nds

http://sourceforge.net/projects/dmtcp

Northeastern

U N

Questions?

Detalls: Process Image Layout

Northeastern

U N

e Text: This segment, also known as the code segment, holésdaatable
Instructions of a program

e Data: This section holds all initialized data. Initializéldta includes
statically allocated and global data that are initialized

e BSS: This section holds uninitialized data

e Heap: This is used to grow the linear address space of a goces

e Stack: This contains all the local variables that get alieda

Process master and workers:

Text | Data BSS Heap Stack
Text | Data BSS Heap Stack
Text | Data BSS Heap Stack

Northeastern

U N

Details: Thread master and workers

| { |
Text Data BSS Heap Stack Stack | Stack

Master Thread | Thread
worker 1 worker 2

ALTERNATIVE: Child created by forking from master process

e In Linux, child processes are given the same resources as themgdéirecluding the
address space). A child process does not duplicate the parestigrces and instead
shares physical pages with its parent until one of them triegite ¥o a page. At that
time, a copy of the page is made and assigned to the writing ggsoeopy-on-write)

e Disadvantage: Little opportunity for collaboration among timlé child processes;
sharing of data via operating system is at a coarse level: shéire page of RAM
or nothing; Memory bus from cache to RAM becomes a bottleneck.

e With multi-core CPUs, worker threads collaborate to access time saemory at the
same time; fewer bottlenecks to RAM; collaborating threadsgsad of future work

»Z Northeastern

Details: Thread local storage (TLS): An exampl

#include<stdio.h>

#include<pthread.h-

__thread int gvar = 0; //int gvar = O;

void *increase(void *)

{ gvar++;
printf("Value in child thread: %gn”, gvar);

}

Int main(int argc, char* argvl])

{ pthreadt tid;
printf("Value in main thread: %h”, gvar);
pthreadcreate(&tid, NULL, increase, NULL);
pthreadjoin(tid, NULL);
printf("Value in main thread: %h”, gvar);
return O;

}

Value in main thread: 0

Northeastern

U N

Details: The usage of thread local storage (TLS

e tData and tBSS segments

Text Data Heap tData| tBS$

Stack tData tBS$ Stack tData tB$S

Thread worker 1 Thread worker

e statically initialized thread data does not support dyrcamtialization

e “static _thread int I = j;”isnotcorrect whenjis a variable

AL

Northeastern

Detalls: Thread local storage needed in 3 cas=

e Static class members
class G4StateManager

{

static G4StateManager* theStateManager;

}

e static variables
G4double G4Navigator::ComputeStep(
static G4int sNavCScalls=0;

}

¢ global variables
G4Allocatox: G4NavigationLevel aNavigationLevelAllocator;
G4Allocatoxc G4NavigationLevelRep aNavigLevelRepAllocator;

»Z Northeastern

How to initialize a TLS variable dynamically

Fun(int j) Fun(int j)
{ {
static inti=j;| static__thread int* INEW PTR =0;
if('i NEWPTR) {
I_NEW_PTR_ = new Int;
*I_NEW_PTR =j;

}

int & =*I NEW PTR:
|++: |++:
return i; return i;

} }

»Z Northeastern

U N

The rule to add “__thread”

e Use a pointer whose name is new
¢ The initial value of the pointer is NULL

e Allocate space for the pointer only when the value of the t@ins
NULL. Then assign the value with the original right side

e Refer to the value of the pointer using the original name

e This guarantees each variable is initialized once and amtg 0

Northeastern

U N

Questions?

