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Abstract
Large-scale applications rely on resilience mechanisms such
as checkpoint-restart to make forward progress in the pres-
ence of failures. Unfortunately, this incurs huge I/O over-
head and impedes productivity. To mitigate this challenge,
this paper introduces a new technique, Shiraz, which demon-
strates how to exploit differences in the checkpointing over-
head among applications and knowledge of temporal char-
acteristics of failures to improve both the overall system
throughput and performance of individual applications.

1. Introduction
The Problem: Continued increase in computing power has
enabled computational scientists to expedite the scientific re-
search and discovery process in the past. Unfortunately, sig-
nificant rise in the failure rates and a widening gap between
compute and I/O system will significantly limit the usability
of parallel computing systems in the future [13, 18, 25].

Computational science applications rely on resilience
mechanisms such as checkpoint-restart to make forward
progress in the presence of failures. Although checkpoint-
restart mechanisms can keep scientific simulations moving
forward, writing and reading application state incurs large
I/O overhead, which impedes scientific productivity. Cur-
rent large-scale scientific applications spend more than 15%
of the total execution time on resilience mechanisms (e.g.,
checkpoint-restart) [13, 18]. At exascale, computational sci-
ence applications will need to spend more than 40% of exe-
cution time on resilience mechanisms, due to orders of mag-
nitude higher failure rate at exascale [18, 19, 40].

There have been numerous efforts to derive the optimal
checkpointing interval (OCI) for an application, given the
mean time between failures and the application’s check-
pointing overhead [14, 42]. Essentially, OCI attempts to
maximize the amount of useful work done per failure for
a given application. There have been several other studies
that propose further refinements to OCI estimations. How-
ever, previous work has not explored how to maximize the
useful work done per failure from the system’s point of
view, where multiple applications with different checkpoint-
ing overheads are available. To the best of our knowledge,
no previous study has investigated maximizing the system
throughput of a large-scale HPC system by leveraging vari-
ations in OCI’s of scientific applications and knowledge of
temporal characteristics of system failures.

Goal and Key Idea: The goal of this paper is to demon-
strate that variations in checkpointing overhead among
scientific applications and knowledge of temporal char-
acteristics of failures can be exploited to improve the
overall system throughput. The key idea is to schedule ap-
plications with higher checkpointing overhead during peri-
ods of relatively high reliability (with a lower failure rate),
while applications with lower checkpointing overhead are
scheduled during periods with relatively low reliability (with
a higher failure rate). The intuition behind this idea comes
from the following insight. Applications with higher check-
pointing overhead have a relatively large optimal check-
pointing interval and hence, the amount of average lost work
per failure is also higher. Therefore, scheduling an applica-
tion with higher checkpointing overhead during periods of
relatively higher reliability is likely to result in lower over-
all lost work. By scheduling those applications having lower
checkpointing overhead during periods of lower reliability
(higher system failure rate), the amount of lost work per fail-
ure can be decreased. Therefore, these schemes combined
together can increase the useful work done per failure occur-
rence. But, it is challenging to effectively design a scheme
based on this idea for several reasons.

Challenges: First, the scheme relies on timely and accurate
identification of time periods with varying failure rates. Sec-
ond, while the scheme improves the system throughput, it
also needs to ensure that the performance of individual ap-
plications is not degraded. Third, the system failure rate con-
tinually changes over time. Therefore, it is critical to adapt to
the changing failure rate by switching between applications
with different checkpointing overheads.

To this end, this study answers the following questions:
(1) How to accurately identify and quantify changing re-
liability characteristics of a system? (2) How to leverage
the above information to schedule applications with differ-
ent checkpointing overheads, such that the overall system
throughput is improved without hurting individual appli-
cations? Our study is based on real system experiments,
analytical models, and statistical techniques. This work is
grounded by theoretical foundations, driven by extensive
evaluation through real-world experiments and through sim-
ulation, and guided by real-world large-scale HPC system
parameters.
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Figure 1: Temporal failure distribution on weekly basis for multiple HPC systems.

Figure 2: Inter-arrival failure distribution for multiple HPC systems (time between two failures).

Contributions: We leverage information about temporal
characteristics of failures and variations in checkpointing
overhead among applications to improve system throughput.
This work introduces, Shiraz1, a novel scheme, to improve
the overall system throughput (defined as total useful work
done per unit time) by intelligently scheduling applications
with different checkpointing overheads under varying tem-
poral characteristics of system failures. This paper also pro-
poses a novel variant of Shiraz, called Shiraz+, which specif-
ically reduces the overall checkpointing overhead of the sys-
tem while improving the system throughput and maintain-
ing individual application performance levels. Shiraz+ re-
duces the I/O pressure on the back-end and mitigates storage
contention. Therefore, it can also potentially improve the ef-
fective I/O performance for other applications running on a
large-scale HPC system.

Evaluation: Our evaluation results show that Shiraz im-
proves system throughput under a wide variety of circum-
stances: on peta- and exa-scale platforms; on a range of
checkpointing overheads; and with multiple real-world HPC
applications. Our evaluation is based on extensive experi-
mental, modeling, and simulation results, which are guided
by real-world large-scale HPC system parameters. For a rep-
resentative set of real-world large-scale HPC applications,
Shiraz is shown to save up to $285,000 on a petascale sys-
tem and $890,000 on a projected exascale system (with 5
years of anticipated system lifetime) and hence, can effec-
tively pay towards future faster storage subsystem. Shiraz+
reduces the data movement by up to 52% for a variety of ap-
plications and system characteristics, without degrading the
overall system throughput or individual application perfor-
mance (Section 5).

1 Shiraz is a conveniently chosen acronym of SHaring Intelligently
ReliAbility Zones. Shiraz is also a type of red wine whose origin is a curi-
ous case.

2. Motivation
A naı̈ve strategy for improving system throughput would be
to identify periods when the system is distinctly more stable
(or less stable) compared to the average period and schedule
applications with higher checkpointing overhead (or lower
checkpointing overhead). Figure 1 shows that for large-scale
HPC systems such distinct periods of stability may not exist
and brief stable periods are followed by long periods of fluc-
tuation [1]. We also note that waiting for a period when the
system is more reliable can lead to starvation for applications
with large checkpointing overheads.

Fortunately, we can find changing failure rate character-
istics when we analyze failure characteristics at finer gran-
ularity (i.e., inter-arrival times between two failures). Note
that failures considered in this study are ones that cause an
application to crash and recover from last checkpoint. Fig-
ure 2 shows that a large fraction of failures are likely to oc-
cur much before the MTBF. We refer to this as the tempo-
ral recurrence behavior of failures. This has been shown and
modeled extensively for many other current and past HPC
systems [9, 17, 36, 38, 40]. This property is captured by the
hazard rate of the Weibull distribution which changes be-
tween consecutive failures (instead of being constant in case
of the exponential distribution). The shape of the hazard rate
is primarily characterized by the shape parameter (β). For
β < 1, the hazard rate is high right after a failure, but it
decreases over time until the next failure [32].

Multiple prior studies have shown that β varies from 0.4
to 0.7 for HPC systems [9, 36, 38, 40]. We find similar
results, but since determining shape parameter is not a main
contribution of this work, we omit those results. In summary,
one can schedule applications within two failures to exploit
changing reliability characteristics.

Next, we show evidence that large-scale scientific ap-
plications have significant variations in their checkpointing
overhead. Table 1 shows the checkpointing cost of applica-
tions from different scientific domains running at different
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Table 1: Differences in checkpointing cost among large-
scale HPC applications.

Machine Application Domain Checkpointing
Duration (sec.)

Titan (OLCF) Climate Change Simulation 1.5
with the Community Earth
System Model

Hopper (NERSC) 20th Century Reanalysis 2
Franklin (NERSC)

Jaguar (ORNL) Molecular Simulation 6
Hopper (NERSC) in Energy Biosciences

Carver and Computational Predictions 50
Euclid (NERSC) of Trans. Factor Binding Sites

Cori (NERSC) Chombo-crunch 70

Hopper (NERSC) Climate Science for a 150
Sustainable Energy Future

Hopper (NERSC) Laser Plasma Interactions 1800

Hopper (NERSC) Plasma Based Accelerators 2000

Hopper (NERSC) Plasma Science Studies 2700

Figure 3: Normalized cost of checkpointing for CoMD,
SNAP and miniFE applications for different configurations
(experimentally measured using system-level checkpoint-
ing [7], normalized to CoMD config-1).

large-scale HPC centers [5, 6]. The checkpoint durations of
the applications in the table range from a few seconds to
more than half an hour. Other researches have also noted a
difference of orders of magnitude in the checkpointing traf-
fic among large-scale HPC applications [23].

To further confirm the existence of this trend, we con-
ducted a real-system experiment where we experimentally
measured the cost of checkpointing for three representa-
tive applications: CoMD, SNAP, and miniFE [22, 26] using
DMTCP system-level checkpointing [7], under three differ-
ent configurations (Figure 3).

We observed that (1) different applications have widely
varying checkpointing overheads (up to a difference of more
than 40x), and (2) even the same application can exhibit dif-
ferent checkpointing overheads, depending on the input pa-
rameters. These variations in checkpointing overheads open
up opportunities for new optimizations in the presence of
multiple applications performing checkpointing on large-
scale systems that experience system failures.

Next, we will show how Shiraz exploits observations
about temporal recurrence of failures and checkpointing
overhead to improve overall system throughput.

Failure

App 1 Useful Work

App 1 Checkpoint

App 1 Lost Work

App 2 Useful Work

App 2 Checkpoint

App 2 Lost Work

Failure Failure

Figure 4: Conventional scheduling (Baseline): Switch be-
tween applications after every failure.

Failure

App 1 Useful Work

App 1 Checkpoint

App 1 Lost Work

App 2 Useful Work

App 2 Checkpoint

App 2 Lost Work

Failure

Figure 5: Heavy-weight application is likely to have higher
average lost work per failure.

3. Shiraz: Design and Model
In a multi-application environment, a fair scheduler switches
the applications at every failure, as shown in Fig. 4. By
switching at every failure, the scheduler provides each appli-
cation an equal chance to do useful work. This traditional ap-
proach does not exploit the two key factors discussed in Sec-
tion 2: temporal recurrence characteristics of failures, and
variation in checkpointing cost among applications.

First, we point out that the average lost work due to a
failure is different for different types of applications. Fig. 5
shows that an application with higher checkpointing over-
head (referred as heavy-weight application) is likely to have
higher average lost work compared to an application with
relatively lower checkpointing overhead (referred as light-
weight application). This is because the optimal checkpoint-
ing interval (OCI) for the heavy-weight application is larger
than the OCI of light-weight application, according to Daly’s

formula:
√
2Mδ− δ, where M is the system MTBF and δ is

the checkpoint overhead of the application. Thus, larger OCI
leads to higher average lost work due to a failure (Fig. 5).

Implication: It is beneficial to schedule the heavy-weight
application when the system MTBF is higher. Unfortunately,
it is hard to find consistent higher MTBF periods during the
operational time of a system and a suboptimal choice may
result in performance degradation for the heavy-weight ap-
plication (as discussed in Section 2). To address this chal-
lenge, we leverage the non-constant failure rate between two
failures. The hazard rate decreases between two failures and
hence, statistically, the probability of a failure is higher right
after a failure and it decreases over time. This observation
can be exploited by scheduling the light-weight application
before scheduling the heavy-weight application.

Shiraz Key Idea: The key idea is to intelligently sched-
ule applications with different checkpointing overheads be-
tween two failures. Shiraz schedules a heavy-weight appli-
cation during periods with relatively lower system failure
rate, while a light-weight application is scheduled during
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Figure 6: Shiraz switches two applications in between two
failures to reduce the overall lost work per failure by
scheduling the heavy-weight application during periods with
relatively lower system failure rate.

periods with relatively higher system failure rate (as demon-
strated in Fig. 6). Scheduling an application with high check-
pointing overhead (i.e., larger OCI) during the later part of
the failure rate curve is likely to result in lower overall lost
work. Similarly, scheduling a light-weight application (i.e.,
smaller OCI) during the earlier part of the failure rate curve
decreases the amount of lost work per failure. Therefore, it
increases the useful work done per failure occurrence. How-
ever, this creates new challenges.

As Fig. 7 shows, while switching late, in order to avoid
failures, may potentially save large amount of average lost
work per failure for the heavy-weight application, it can also
degrade the performance for the heavy-weight application.
This is because the application cannot produce the same
amount of useful work as in the baseline, where each ap-
plication gets a fair share of the runtime. On the other hand,
switching too soon (1) exposes the heavy-weight application
to a higher failure rate, and (2) degrades the performance of
the light-weight application. Therefore, Shiraz encapsulates
an analytical model that determines the optimal switching
point to dynamically adapt to the failure rate.

The formulation and details of this model are presented
below. We refer to the light-weight application as LW and
the heavy-weight application as HW . Using Daly’s formula,
the OCI’s for the two applications can be expressed as:

OCILW =
√
2MδLW − δ and OCIHW =

√
2MδHW − δ

(1)
Where system MTBF, checkpoint overhead for light weight
application and heavy weight application are denoted by M ,
δLW , and δHW , respectively.

First, we need to estimate the baseline performance for
the two given applications. Recall, that in the conventional
scheme, the applications are switched at every failure. Let
us suppose that both the applications are executed for a total
of Ttotal time. We note that switching at a failure boundary is
equivalent to switching after an infinite amount of time since
the last failure. This helps in developing a unified framework
for modeling both baseline and Shiraz.

Estimating different components of the execution (useful
work, checkpoint overhead, and lost work) requires knowing

Failure FailureSwitch PointShiraz

Shiraz+

Switch Point

App 1 Useful Work

App 1 Checkpoint

App 1 Lost Work

App 2 Useful Work

App 2 Checkpoint

App 2 Lost Work

Figure 7: Effect of different switch points between failures.

the number of failures. The number of failures between two
time instances (tstart and tend) can be estimated as follows:

Failnum
(tstart,tend)

=
Ttotal

M
× (e−(

tstart
λ )β − e−(

tend
λ )β ) (2)

Where λ and β are the scale and shape parameter for
Weibull distribution, respectively (Section 2). We note that
the scale parameter can be derived from the MTBF: λ =

M
Γ(1+ 1

β )
. Eq. 2 can be used to derive the total number of

failures in time Ttotal as follows.

Failnum
total =

Ttotal

M
× (1− e−(

Ttotal
λ )β ) (3)

In the baseline case, where the application gets switched
at every failure, each of the two applications essentially gets
to run for Ttotal

2 time (in the baseline case Ttotal =
Ttotal

2 ). Thus,
the total lost work in the baseline case for both applications
can be estimated as:

T LW
lost-base = ε× (OCILW + δLW)× Failnum

total (4)

THW
lost-base = ε× (OCIHW + δHW)× Failnum

total (5)

Where ε is the average fraction of lost work per failure.
For estimating useful work and checkpointing overhead, we
can divide the time segment between two failures in chunks
of optimal checkpointing interval plus checkpointing over-
head (OCI+δ). For probabilistic modeling, one can imagine
that there are infinite such segments and calculate the prob-
ability of failure after each segment. Note that the average
number of such segments is M

(OCI+δ) . As discussed previ-

ously, the number of failures between time segments i and
i+ 1 is given by Failnum

(i×(OCILW+δLW),(i+1)×(OCILW+δLW))
. As a

short hand notation, we denote this as Failnum
i,i+1(OCILW +

δLW). Successful completion of a segment results in use-
ful work equivalent to the optimal checkpointing interval.
Therefore, the useful work for the two applications in the
baseline case can be mathematically expressed as:

T LW
useful-base =

∞∑

i=1

i× OCILW × Fail
num
i,i+1(OCILW + δLW) (6)

THW
useful-base =

∞∑

i=1

i× OCIHW × Fail
num
i,i+1(OCIHW + δHW) (7)
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Similarly, the checkpointing overhead per successful seg-
ment of (OCI + δ) is equal to the cost of one checkpoint.
Therefore, the I/O overhead in the baseline case is:

T LW
io-base =

∞∑

i=1

i× δLW × Fail
num
i,i+1(OCILW + δLW) (8)

THW
io-base =

∞∑

i=1

i× δHW × Fail
num
i,i+1(OCIHW + δHW) (9)

This approach of modeling leads to an elegant formula-
tion for the Shiraz case as well. The index for the summa-
tion terms does not range from 1 to ∞ now. Instead, for the
light-weight application, the index will range from 1 to the
switching point (k). We refer to the switching point as the
number of checkpoints (say, k) the light-weight application
takes before yielding to the heavy-weight application. Note
that the total time period the light-weight application gets to
run is k× (OCILW +δLW). For the heavy-weight application,
the index will range from k to ∞. Note that for the heavy-
weight application, each of the segments (i, i + 1, . . . ) are
still (OCIHW + δHW) long, but the first such segment starts
after k × (OCILW + δLW) time since the last failure. Now,
we can write the expressions for useful work, checkpointing
overhead, and lost work for the Shiraz case as follows:

T LW
useful-shiraz =

k∑

i=1

i× OCILW × Fail
num
i,i+1(OCILW + δLW) (10)

THW
useful-shiraz =

∞∑

i=k

i× OCIHW × Fail
num
i,i+1(OCIHW + δHW) (11)

T LW
io-shiraz =

k∑

i=1

i× δLW × Fail
num
i,i+1(OCILW + δLW) (12)

THW
io-shiraz =

∞∑

i=k

i× δHW × Fail
num
i,i+1(OCIHW + δHW) (13)

T LW
lost-shiraz = ε× (OCILW + δLW)× Fail

num
LW-fraction (14)

THW
lost-shiraz = ε× (OCIHW + δHW)× Fail

num
HW-fraction (15)

We note that the failure can still occur before k check-
points of the light-weight application. Our model is prob-
abilistic and hence, sums up the probabilities over all the
segments. Failnum

LW-fraction refers to the number of failures ob-
served during the time light-weight application runs (i.e., af-
ter a failure until k checkpoints, summed over all such peri-
ods). Similarly, Failnum

HW-fraction refers to the number of failures
observed during the time heavy-weight application gets to
runs (i.e., after k checkpoints of the light-weight application
until the next failure, summed over all such periods).

Where is optimal point (optimal value of k)?: If the
goal is to simply maximize the system throughput (useful
work done per unit time), one can simply set k to∞ . How-
ever, this results in starvation of the heavy-weight applica-
tion. In this approach, the system throughput improvement
comes from favoring the light-weight application over the

Failure FailureSwitch Point

Shiraz

Shiraz+

2x

x

App 1 Useful Work

App 1 Checkpoint

App 1 Lost Work

App 2 Useful Work

App 2 Checkpoint

App 2 Lost Work

Figure 8: Shiraz+: Reducing the checkpointing overhead.

heavy-weight application at all times. The key constraint is
that both applications should not see any performance degra-
dation compared to the baseline. That is,

T LW
useful-shiraz ≥ T LW

useful-base and THW
useful-shiraz ≥ THW

useful-base (16)

Note that a range of values for k will satisfy Eq. 16. The
highest of the values of k in this range will be the theoretical
optimal switching point. It will result in the maximum use-
ful work done per unit time for the whole system. However,
it will not necessarily be fair to both the applications. Re-
call that increasing k improves the light-weight application’s
performance (useful work done per unit time), however, it
also decreases the heavy-weight application’s performance.
Therefore, choosing the highest such value of k that satis-
fies Eq. 16 will result in zero improvement for heavy-weight
application. To address this issue, Shiraz choose a subopti-
mal value of k that provides fairness, i.e., equal benefits to
both the applications. Therefore, Shiraz uses the following
constraints to derive optimal value of k:

T LW
useful-shiraz − T LW

useful-base = THW
useful-shiraz − THW

useful-base

s.t. (T LW
useful-shiraz − T LW

useful-base) ≥ 0

and (THW
useful-shiraz − THW

useful-base) ≥ 0

Shiraz solves this optimization problem numerically to
determine the optimal switching point (k) such that the
system throughput is maximized but both applications are
treated fairly. Shiraz will return k =∞ if no system through-
put improvement can be achieved in the above equation.

Shiraz+ for reducing I/O overhead: Shiraz model
demonstrates that choosing optimal switching point can lead
to an improvement in system throughput without perfor-
mance degradation for individual applications, but it does
not specifically address the problem of high data movement
caused by checkpointing. Checkpointing causes excessive
pressure and contention on the I/O subsystem. Therefore, re-
ducing checkpointing overhead leads to alleviating the I/O
pressure, reduction in data movement (i.e., higher energy ef-
ficiency), and potentially better performance for other appli-
cations too. Shiraz+ works on top of Shiraz and trades the
additional performance gain obtained by Shiraz to reduce
the checkpointing overhead.

The key idea is to increase the checkpointing interval of
heavy-weight application (Fig 8). The intuition behind this
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Figure 9: Shiraz model matches with the discrete-event based simulator for a wide range of parameters and scenarios.

idea is simple: heavy-weight application observes effectively
higher MTBF and hence, can afford to run at a checkpointing
interval that is larger than its OCI (and thus, reduce the I/O
cost), though at the risk of losing performance.

Determining the new checkpointing interval for heavy-
weight application is a new optimization problem that Shi-
raz and Shiraz+ open up. But, for this work, Shiraz+ takes
a relatively simpler approach and explores increasing the
OCIHW by an integer factor (2×, 3×, . . . ) and evaluating
its impact on performance and checkpointing overhead (Sec-
tion 5). We also note that this is a more practical approach
since it does not require the application programmers to
change the checkpointing interval to some new value (e.g.,
2× stretch in OCI can be emulated at the system level).

Interestingly, Shiraz’s choice of a suboptimal value of
k helps Shiraz+. The suboptimal value of k ensures that
the heavy-weight application’s performance also improves.
This allows Shiraz+ to trade this performance improvement
for a lower checkpointing overhead. If theoretically optimal
value of k was chosen, no such opportunity would exist, and
increasing OCI for the heavy-weight application will lead to
performance degradation.

Shiraz+ does not alter the checkpointing interval of light-
weight application for two reasons: (1) it has a lower impact
on the overall checkpointing overhead (due to the lower cost
of taking one checkpoint); and (2) it requires a re-adjustment
to the the optimal switch point, which would further compli-
cate the determination of optimal switching point. Note that
Shiraz+ has no impact on the performance or checkpointing
overhead of light-weight application. We evaluate Shiraz+
thoroughly under different scenarios, and analyze its impact
on I/O overhead and performance in Section 5.

4. Shiraz Model Validation
In this section, we validate the Shiraz model with a discrete-
event simulator that simulates multiple applications with
different characteristics running on an HPC system.

The goal of the validation is demonstrate that our prob-
ability theory based model has accurate estimations when
compared to the discrete event simulation. This validation
exercise will also form the basis for demonstrating that the
optimal switch point predicted by Shiraz model matches
with the optimal switch point obtained via extensive simu-
lation (Section 5).

Our discrete-event simulator executes an application with
a given checkpointing overhead on a system with a given
MTBF. The application takes periodic checkpoints at opti-
mal checkpointing interval. The application restarts from the
latest checkpoint when a failure strikes. The failures are gen-
erated from a Weibull distribution. Since we are interested in
analyzing the switching points between two different types
of applications, we simulate two scenarios: (1) first applica-
tion: an application is executed first and after some specified
time, it is switched out. From the validation perspective, it
is irrelevant what happens after the application of interest
is switched out. We need to validate the application char-
acteristics for the time frame for which the application of
interest was run; and (2) second application: in this case, af-
ter some specified time, the application of interest is sched-
uled and run. From the validation perspective, it is irrelevant
what happens before the application of interest is scheduled.
Essentially, the goal is to not make any assumptions about
relationship between the two applications being run (for ex-
ample, one light-weight and other heavy-weight).

We simulated a wide range of scenarios and validated
our model against the simulation. For brevity, we show val-
idation results only for representative parameters (Fig. 9).
We ran both the cases described earlier. An application is
switched out or started at different times (expressed as frac-
tion of MTBF for easy interpretation; results were similar
for longer time periods.). We simulated an application for a
total of 1000 hours under different scenarios: MTBF of 20
hours and 5 hours (representative of peta- and exa-scale sys-
tems, respectively), and 30 seconds and 300 seconds check-
pointing overhead. Failure events were generated from the
Weibull distribution using the shape parameter β of 0.6. The
scale parameter is determined by the MTBF and the shape
parameter. We only show the useful work and the check-
pointing overhead here, since the lost work, by definition,
will be validated, if these other two components match. The
average fraction of lost work ε parameter was estimated to be
0.45. These parameter values match with other studies and
are true for many systems [9, 13, 35, 38, 40]. We obtained
similar results with other values in the range.

From Fig. 9, we make several observations. First, Shiraz
model matches closely with the simulation across a number
of parameters and scenarios. We observed similar results for
the time longer than the MTBF and other parameters. For
example, in the case of the second application, the average
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Figure 10: Shiraz identifies optimal switching point and re-
gion of interest. Switching point k varies from 24 to 28 –
region of interest (no performance degradation). Shiraz’s op-
timal k = 26. The total runtime is 1000 hours; the δ-factor is
100×; the MTBF is 5 hours.

difference in the checkpointing overhead between the model
and the simulation for petascale and exascale systems is 0.06
hours and 0.14 hours, respectively.

Second, Shiraz model matches the simulation for both the
application execution cases. For example, the average differ-
ence in the useful work between model and simulation for
first and second applications is 2.1 and 2.2 hours, respec-
tively. One can note the lack of data points in the case of
the first application in Fig. 9. This is because the data points
are limited to integer multiples of application’s OCI. Recall
that when an application is executed first, it can be switched
out only after a checkpoint, and it can invoke a maximum of
MTBF

OCI
checkpoints before getting switched out. However, for

second application case, we can assume any arbitrarily small
OCI for the application that ran first and was switched out.
This implies that we can switch in the second application at
any point resulting in a smoother validation curve.

Finally, the model matches well for both applications for
both useful work and checkpoint overhead. For example, ap-
plication with 300 sec checkpointing overhead for petascale
system observes less than 3 hours and 0.5 hours of average
difference between model and simulation. This is critical as
the choice of an optimal switching point relies on accurate
estimation of both components.

5. Evaluation
In this section, we answer the following questions:
Q1. Does an optimal switching point between two applica-
tions with different checkpointing overheads exist?
Q2. Can Shiraz determine optimal switching point accu-
rately and improve the overall system throughput?
Q3. Is Shiraz effective with real-world applications and pro-
duce significant energy savings?
Q4. Can Shiraz+ reduce the data movement caused by
checkpointing under different scenarios? If so, what is the
impact on system throughput and application performance?
Q5. Are Shiraz and Shiraz+ effective in improving
throughput and reducing I/O overhead for representative
applications on a real-system?

Optimal Switching Point: First, we show that an optimal
switching point exists, given two applications with different
checkpointing overhead, such that the overall useful work is

Table 2: Shiraz model predicts the optimal switching point
correctly across scenarios.

System δ-factor Model Optimal Sim Optimal
Type Switch Point Switch Point
Exascale 5× 6 6

Exascale 25× 13 13

Exascale 100× 26 26

Exascale 1000× 81 79

Petascale 5× 12 11

Petascale 25× 26 24

Petascale 100× 51 51

Petascale 1000× 161 161

increased without degrading the performance of individual
applications. To demonstrate this, we use Fig. 10 as an ex-
ample. Fig. 10 illustrates that Shiraz finds an optimal point
(i.e., k = 26) and Shiraz improves the overall useful work by
33 hours at this optimal point for the two given applications
with a checkpointing overhead ratio (δ-factor) of 100×. The
total runtime is 1000 hours and the MTBF is 5 hours. We use
20 hours and 5 hours MTBF to represent the failure rate of a
petascale and exascale systems, respectively [13, 25]. Note
that these failure rates are conservative estimates.

For deeper analysis, Fig. 10 also shows region of interest
where none of the two applications is being hurt and there
is an opportunity for improving the overall system through-
put. Simulation results (which can take more than a few
hours in some cases) confirm the same optimal point as the
model predicts (which takes a few seconds). In fact, Table 2
shows that Shiraz model estimates the same optimal switch-
ing point as the simulation across different scenarios — the
maximum difference in the estimations is 2, which results
in a difference of less than 0.5% in the throughput improve-
ment. The δ-factor is the ratio of checkpointing overheads
of the heavy-weight and the light-weight applications (the
heavy-weight application’s checkpoint takes 30 mins).

In summary, Shiraz model can successfully identify re-
gions of benefit and determine the optimal switching point
much more quickly than extensive simulation based method.
The next question to investigate is: how does the improve-
ment vary across scenario and the reasons behind that?

Impact of Shiraz on system throughput and individual
application performance: Next, we demonstrate that Shi-
raz improves overall system throughput without hurting in-
dividual applications’ performance for different situations.
Fig. 11 shows that Shiraz’s optimal switching point improves
system throughput (overall useful work done per unit time)
(a) as the scale of the system changes (MTBF changes),
and (b) as the checkpointing overhead ratio between the
heavy-weight and light-weight application changes (δ-factor
changes). From Fig. 11, we make following observations:

(1) Shiraz improves the system throughput in all cases
and does not penalize individual applications. In fact, Shi-
raz improves the performance of individual applications in
all cases. In the exascale case, both light-weight and heavy-
weight applications on an average observe approximately
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Figure 11: Shiraz provides improvements across different scenarios. For all the cases, the total runtime is 1000 hours, and the
checkpoint duration (δ) of the heavyweight application is 0.5 hours.
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Figure 12: Shiraz improves throughput across system scale
with heavyweight application checkpoint duration (δ) of
0.25 hours.

14 hours of individual performance improvement on aver-
age, leading to an overall average improvement of 28 hours.
Therefore, Shiraz improves both system throughput and in-
dividual performance (latency).

(2) Shiraz’s overall improvement in useful work increases
as the δ-factor increases. This is expected since a high δ-
factor provides more potential for Shiraz to eliminate lost
work. Interestingly, the overall improvement in useful work
increases as the MTBF decreases. For example, the overall
improvement in useful work increases from 19 hours to 33
hours as the system changes from petascale to exascale when
the δ-factor is fixed at 100. Essentially, Shiraz minimizes the
lost work due to failures and this opportunity is higher with
a low MTBF. This demonstrates that Shiraz will continue to
be effective on future systems.

(3) Shiraz’s optimal switching point also increases as the
checkpointing overhead ratio between the heavy-weight and
light-weight application (δ-factor) increases. For example,
Fig. 11 shows that the switching point increases from 6 to 83
when δ-factor increases from 5 to 1000. This is because the
light-weight application is able to perform more checkpoints
in the same time period.

Shiraz’s optimal switching point also increases with
MTBF for a fixed δ-factor factor. For example, Fig. 11 shows
that that the switching point increases from 6 to 12 when sys-

tem changes from exascale to petascale. This is because be-
tween two failure points, the hazard rate drops less quickly
with a higher MTBF and hence, it is beneficial to run the
light-weight application for a longer time.

Finally, we note that Shiraz delivers improvement in
overall useful work as the checkpointing overhead of the
heavy-weight application varies. We reduce the checkpoint-
ing overhead of the heavy-weight application from 0.5 hours
to 0.25 hours. Fig. 12 shows that the total throughput im-
provement is 21.8 hours with 5 hours MTBF system and 12.9
hours with 20 hours MTBF system.

Interestingly, our analysis reveals that the optimal switch-
ing point is not necessarily half of the MTBF value. As an
example, the optimal switch point is 6 when the δ-factor is
5× and the MTBF is 5 hours (Fig. 11). This implies that the
switch happens at 6.6 hours, which is higher than the MTBF.
Similarly, for the 20 hours MTBF case, the switching hap-
pens after 25.2 hours. As discussed in Section 3, since the
light-weight application observes effectively higher MTBF,
it needs to run for a longer duration in the beginning to gain
improvement in the overall useful work. A naı̈ve strategy to
switch applications at half of the MTBF or slightly a higher
value will lead to a significant decrease in the overall useful
work. This demonstrates the need and efficacy of Shiraz.

Analysis of impact of Shiraz+ on checkpointing over-
head: Next, we evaluate and analyze the effect of Shiraz+
on the overall checkpointing overhead and throughput. Re-
call that Shiraz+ increases the checkpointing interval of the
heavy-weight application (Section 3). Thus, it is intuitive
that it will reduce the checkpointing overhead. However, this
may also result in a loss of throughput, since the heavy-
weight application is no longer operating at its OCI.

Fig. 13 shows that when Shiraz+ is applied on top of
Shiraz, it significantly reduces the overall checkpointing
overhead across different scenarios. Note that Shiraz+ op-
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Figure 13: Impact of Shiraz+ on checkpointing overhead and useful work: checkpointing interval is increased by different
factors (2× - 4×) under varying system scale and checkpoint overhead ratios. The checkpoint duration of the heavy weight
application is set to be 30 minutes. The baseline refers to switching between applications at every failure.

erates at the optimal switching point determined by Shiraz.
From Fig. 13, we make several observations. First, as the
checkpointing interval is stretched from 2× to 4× for the
heavy-weight application, the checkpointing overhead re-
duces drastically. This observation is true across changes in
different parameters: system MTBF, application checkpoint-
ing overhead, and δ-factor. The average reduction in check-
pointing overhead is approximately 40%. When the OCI-
stretch factor is 4×, the checkpointing overhead reduces by
more than 60% in many cases.

Second, interestingly, while the checkpointing overhead
drops significantly, the corresponding performance degra-
dation is minimal. In fact, using a 2× OCI-stretch always
keeps a part of the performance improvement obtained by
Shiraz; in some cases, the throughput improvement remains
up to 5.6% (with no performance degradation for any appli-
cation). Even with 3× and 4×OCI-stretch factors, the maxi-
mum performance degradation across petascale and exascale
systems is less than 1.4% and 4.8%, respectively. The under-
lying insight is that Shiraz schedules the heavy-weight ap-
plication in a lower failure rate region (i.e., effective higher
MTBF) and hence, the effective OCI also increases. We note
that Shiraz+ also has the opportunity to eat off the perfor-
mance improvement provided by Shiraz and hence, sees no
performance degradation in the 2× OCI-stretch case.

In this work, we do not explicitly determine the optimal
OCI-stretch factor for different situations, since application
programmers and system resource managers are likely to in-
crease the checkpointing interval by an integer factor. Due to
practical constraints, many applications do not adopt tech-
niques that alter the checkpointing interval dynamically. In
other words, Shiraz+ has chosen to value practical feasibility
over theoretical optimum point — which will be an interest-
ing avenue for future work.

Shiraz in multi-application environment and energy sav-
ings: Shiraz can determine the optimal switching point be-
tween two given applications and improve the overall sys-
tem throughput. The next question is: can Shiraz scale and
be effective in the presence of multiple applications? Fortu-
nately, it turns out that Shiraz can be naturally scaled to the
multiple applications scenario. It can be achieved in multi-
ple possible ways. One easy way to achieve this is to make
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Figure 14: Shiraz provides improvement in real-world multi-
application mix selected from Table 1 and simulated for
year-long time period (left). The horizontal lines denotes
the average improvement in useful work per application.
Shiraz+ decreases checkpointing overhead significantly for
the same mix of applications (right).

pairs of applications with different checkpointing overheads
and run one such pair between two failures using Shiraz, and
switching to a different pair after every failure. Optimal strat-
egy to make such pairs is to combine the application with the
highest checkpointing overhead with the application with the
lowest checkpointing overhead, until we exhaust the avail-
able applications. The theoretical proof is not provided for
brevity; the intuition behind such a strategy is simple: it max-
imizes the average of the ratios of checkpointing overheads.
We also experimented with another strategy: making random
pairs. We found that while it may not deliver the maximum
possible improvement, it is relatively easier to implement.

To evaluate Shiraz in a multi-application environment, we
experimented with the latter strategy using 10 applications
and noted the corresponding throughput gains. The applica-
tion list is composed from the real-world application char-
acteristics from Table 1. We used the Shiraz model to ob-
tain the optimal switch point for the different application
pairs, and simulated the scenario where these applications
ran for one calendar year (8,700 hours). To ensure that our
results are statistically stable, we repeated the simulation
over 15,000 times and report average of all runs.

Figure 14 (left) shows the overall system throughput im-
provement and impact on individual job performance for all
the 10 applications. We make a few interesting observations.
First, no application suffers a performance degradation, and
the average throughput improvement is 15 hours. Second,
Shiraz improves the total useful work by approx. 91 hours
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and 157 hours for the petascale and the exascale systems,
respectively.

Our results also demonstrate that Shiraz+ is also effective
in the multi-application scenario. Figure 14 (right) shows
that Shiraz+ (with 3× OCI stretch factor) decreases the
checkpointing overhead by up to 52%, without incurring any
loss in the overall system throughput for both exascale and
petascale systems. When the OCI stretch factor is increased
to 4×, only then the system incurs degradation (less than
1%) the total useful work, while the checkpointing overhead
decreases by up to 60%.

To show the results in a conservative scenario, we conduct
an experiment with 40 jobs, with 5 heavy-weight applica-
tions, and the rest 35 light-weight applications. The 35 light-
weight applications are selected at random from the three
least heavy applications from Table 1. Shiraz improves the
total useful work done 57 hours and 89 hours for the petas-
cale and the exascale systems, respectively.

Finally, we evaluate the potential energy savings enabled
by Shiraz for the exascale (5 hours MTBF) and the petascale
systems (20 hours MTBF). Since Shiraz increases the useful
work done per unit time at the whole system level, it effec-
tively saves energy that would have been spent on lost work
(due to failures). In order to simplify the evaluation and in-
terpretation, we estimate the yearly energy savings. Taking a
conservative electricity rate of $0.1 per kW-Hour [2], the en-
ergy and monetary savings on the exascale (5 hours MTBF
and 20MW power consumption) system would translate to
1.78 MW-Hour and $178,000 per year, respectively. For the
petascale (20 hours MTBF and 10MW power consumption)
system, the energy and monetary savings would translate to
0.57 MW-Hour and $57,000 per year.

These savings could be invested towards faster storage
systems and more computing power in the future — which
would further increase the profits due to faster comple-
tion times. For the petascale system, the cost savings due
to energy expenditure cuts enabled by Shiraz translate to
$285,000 over 5 years (anticipated lifetime of a system).
At 0.2 GB/USD for SSD-based burst buffers [3, 4] (the to-
tal cost of infrastructure pessimistically assumed to be 3×
of the hardware cost due to packaging, assembly, firmware
and integration cost), the monetary savings could pay for
5.7% of the cost of the burst buffers (0.285M USD out of
5M USD) for the petascale system, with 1 PB of storage.
For the exascale system, the cost savings enabled by Shiraz
would amount to $890,000 over 5 years. We note that this
analysis is on the conservative side, as it does not include
the energy cost reduction due to the reduction in data move-
ment enabled by Shiraz+.

We note that in a multi-application environment, Shiraz
can produce different individual performance improvements
for the same application depending upon on the pairing and
application-mix since the runtime improvement provided by
Shiraz depends on the δ-factor. This can possibly lead to
small amount of unpredictability in the runtime, although
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Figure 15: Prototype of Shiraz and Shiraz+.

Shiraz will improve the individual runtime in all such cases.
Improving predictability in a dynamic application-mix will
be a worthy goal for future works.

In summary, our results show that Shiraz leads to signifi-
cant energy and monetary saving for real-world applications
that can act as positive feedback loop and result in com-
pounded returns over years.

Prototype implementation and evaluation of Shiraz and
Shiraz+ using system-level checkpointing: We developed
a prototype of Shiraz and Shiraz+ to evaluate its effective-
ness on real-world applications. We developed a scheduler
plug-in that implements the core scheduling algorithm of
Shiraz and Shiraz+. It maintains records of the checkpoint-
ing overhead for different applications, temporal charac-
teristics of system failures, and takes checkpoints using a
system-level checkpointing package, and schedules applica-
tions based on the Shiraz model. To demonstrate the effec-
tiveness, we evaluated the prototype using two real-world
HPC applications: Co-Design Molecular Dynamics Proxy
(CoMD) [26] and Finite Element Solver (miniFE) [22].
CoMD represents a variety of scientific applications includ-
ing SPaSM, and miniFE is an approximation of unstructured
finite element and finite volume codes including HPCCG
and pHPCCG. We used DMTCP [7], a system-level check-
pointing library, to perform checkpoints, and the optimal
switch point was decided based on the checkpointing over-
head obtained experimentally. We note that our plugin is not
tied to a particular implementation of checkpointing library
and can be ported across systems and resource managers
(e.g., SLURM) (schematic shown in Figure 15). The ratio
of the checkpointing overhead of miniFE (heavyweight ap-
plication) to that of CoMD (lightweight application) is 30x,
as experimentally measured using DMTCP.

Statistically sound evaluation of such a prototype imple-
mentation is challenging since it requires dedicated time (in
order of months) on a large-scale supercomputer. To address
this challenge, we emulated the setting by feeding a failure
trace with the same characteristics as large-scale supercom-
puters (discussed in Section 2) but at a higher frequency.
We also scaled down the program input size to ensure that
the runs completed on a local cluster within a month. We
performed an effectively 200-hour long run by scaling the
failure-frequency and program size, and did this run 30 times
for each point, to obtaining stable results. We injected er-
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Figure 16: Impact of Shiraz+ on CoMD and miniFE appli-
cation performance and checkpointing overhead.

rors in the local cluster that crash the application and used
checkpoints to recover from errors without any human inter-
vention during the experiments. At the end of run, we col-
lected runtime statistics (useful work, checkpoint overhead,
and lost work) to compare Shiraz with the baseline.

We found that Shiraz results in 10.2% more useful work
system-wide using CoMD and miniFE application, com-
pared to the baseline case, where applications are switched
at every failure. Since these experiments take prohibitively
long, we did not explore the optimal switching point using
experiments. Instead, we used the Shiraz model to obtain op-
timal point offline and results show improvements.

We also evaluated Shiraz+ using this prototype. Fig. 16
shows that Shiraz+ reduces the checkpointing overhead sig-
nificantly with minimal or no performance degradation. For
example, the overall checkpointing overhead is reduced by
approximately 35.8% when using a 2× OCI-stretch factor,
while still maintaining the overall improvement in useful
work at approximately 7%. When Shiraz+ applies 3× and
4× OCI-stretch, the overall checkpointing overhead is re-
duced by 69.6% and 77.6%, respectively, while the per-
formance degradation is under 3%. Overall, the evaluation
shows that when operating at the optimal switching point
obtained by Shiraz model, Shiraz+ is effective in reducing
the data movement caused by checkpointing and still retains
some of the performance benefits provided by Shiraz.

6. Related Work
A large number of previous HPC works have focused on
performing failure analysis and developing checkpointing
methods for fault tolerance. HPC system and application
logs are extensively studied to extract information about the
characteristics of failures [11, 17, 21, 31, 35, 36]. More
recent studies have used neural networks, statistical learning
and big-data analytics to model failure characteristics and
provide potential root causes [33, 34].

In order to improve the checkpointing overhead, past
studies have provided different derivations for application-
specific OCI [14, 24, 30, 38, 40, 42]. Our work relies on and
is complementary to these studies as it schedules jobs us-
ing the proposed OCI values to improve system throughput.
Some recent studies have also proposed to use multi-level
checkpointing: a strategy that checkpoints at different lev-
els (memory, SSD, PFS) to tolerate different types of fail-
ures, based on the temporal and spacial distribution of the
failures [10, 15, 16, 27]. Another method called incremen-
tal checkpointing proposes to only store the state of the data

which has been modified since the last checkpoint, thus po-
tentially reducing I/O overhead [20, 29]. On the other hand,
several studies have seeked to use faster storage options such
as SSD-based burst buffers to reduce the overhead of writ-
ing the checkpoint files [8, 23, 37]. All of the above opti-
mizations, which target different methods of reducing check-
pointing overhead, can be used in conjunction with Shiraz,
which targets efficient scheduling as a way to improve sys-
tem throughput and decrease the checkpointing overhead.

Bouguera et al. [12] propose an application-oriented re-
silience scheme that combines predictive, proactive and pre-
ventive checkpointing by tracking and drawing correlation
graphs between faults and failures. Several other works have
developed reliability-aware task scheduling strategies that
optimize the degree of job replication to reduce communica-
tion interference and/or energy consumption [28, 39, 41, 43].
However, replication for increased reliability also increases
consumption of valuable compute and energy resources. Ti-
wari et al. [40] introduced Lazy checkpointing that uses
temporal locality of failures to dynamically adjust the check-
pointing frequency of an application to reduce I/O overhead.

Lazy checkpointing results in non-equidistant check-
points because the rate of increase of interval depends on
the hazard rate. Unfortunately, non-equidistant checkpoints
are unattractive for many applications because some domain
scientists may use checkpoints to monitor the progress of the
simulation; non-equidistant checkpoints make it difficult to
monitor such progress. On the contrary, both Shiraz and Shi-
raz+ provide equidistant checkpoints. Shiraz+ shows that it
is possible to increase the OCI by a factor, reduce I/O over-
head and still achieve significant performance improvement
unlike Lazy checkpointing. Therefore, techniques proposed
in this work are more practical strategies, which improve
performance, I/O overhead and work even when scheduling
multiple applications unlike Lazy checkpointing [40].

In the above implementations, applications tune their in-
ternal parameters to improve resilience, reduce I/O over-
head, and increase their useful work. However, no work ex-
plores how these individual optimizations can be combined
together, without disrupting an application’s local optimiza-
tion methods such as OCI tuning, to improve the system’s
throughput. This work proposes a scheduling technique that
exploits failure characteristics and works with multiple ap-
plications, while ensuring individual performance fairness.

7. Conclusion
This paper introduced, Shiraz, a novel scheme, to improve
the overall system throughput by intelligently scheduling
applications with different checkpointing overheads. This
paper also introduced, Shiraz+, a novel scheme to reduce
checkpointing overhead. Evaluation results show that Shiraz
improves system throughput under a wide variety of circum-
stances. Shiraz can save up to $285,000 over the lifetime
of a petascale supercomputer and Shiraz+ reduces the data
movement by up to 52% for a variety of applications.
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