
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 11, 1993

Combinatorial Tools for

Computational Group Theory

GENE COOPERMAN AND LARRY FINKELSTEIN

Abstract. A variety of elementary combinatorial techniques for permuta-
tion groups are reviewed. It is shown how to apply these techniques to yield
faster and/or more space-efficient algorithms for problems including group

membership, normal closure, center, base change and Cayley graphs. Em-
phasis is placed on randomized techniques and new data structures. The
paper includes both a survey of recent algorithms with which the authors

have been associated, and some new algorithms in the same spirit that have
not previously appeared in print. Many of the results include both com-
plexity bounds and pseudo-code, along with comments for faster software
implementations.

Contents

1. Introduction
1.1. Notation and Basic Concepts

2. Random Subproducts
2.1. Random Schreier Subproducts: Elementary Group

Membership
2.2. Random Normal Subproducts: Elementary Normal

Closure
2.3. Reduction of Generators
2.4. Random Prefixes: Normal Closure Revisited

3. Nearly Optimal Group Membership
3.1. Nearly Optimal Group Membership
3.1.1. Short Schreier Trees
3.1.2. Cube Schreier Trees
3.1.3. Local Expansion (Babai)
3.2. Group Membership: Large and Small Base

1991 Mathematics Subject Classification. Primary 20B02, 20B04; Secondary 20P05.
The authors were supported in part by NSF Grants # CCR-8903952 and CCR-9204469.

This paper was published in the Proceedings of the DIMACS Workshop on Groups and

Computation, DIMACS-AMS 11, 1993, pp. 53–86.

c©1992 American Mathematical Society
0000-0000/92 $1.00 + $.25 per page

1

2 GENE COOPERMAN AND LARRY FINKELSTEIN

3.3. Elementary Near Optimal Group Membership
4. Base Change
5. Reduction of Other Constructions to Group Membership
6. Compact Data Structures: Cayley and Schreier Coset Graphs
7. Software Implementations
A. Randomized Algorithms: Terminology (Appendix)

1. Introduction

The traditional approach in developing algorithms for computing with permu-

tation group has been to study several disjoint problems such as group member-

ship, base change and normal closure as distinct computational problems. While

certain themes do appear in more than one context, such as the point stabilizer

sequence, or possibly a base change, it has not been clear that progress on one

front would necessarily result in progress on a different front. This had been

our own viewpoint while searching for improved low-level data structures and

algorithmic “subroutines”. Each of those “building blocks” was tailored to a par-

ticular higher goal, such as group membership [5, 6, 21], base change [18, 22], a

strong generating test [17], normal closure [20], and spanning lattices for Cayley

graphs [16].

We no longer view these “building blocks” as algorithmic subroutines, but

as solutions to fundamental problems in their own right. These fundamental

problems tend to be the bottlenecks in deriving faster algorithms for the higher

level problems.

Three examples suffice to illustrate the point. The first is the construction of

a suitable data structure for the computation of coset representatives for G/Gx,

where G is a permutation group acting on Ω and x ∈ Ω. The choice of such a data

structure is a critical component of most group membership algorithms. The

tradeoff typically made in designing such a data structure is the time to recover

an arbitrary coset representative versus the number of permutations which must

be stored to accomplish this task. Finding the right balance is crucial in reducing

the time complexity of group membership while still working within reasonable

space constraints and motivated the work described in [6].

The second example is the construction of group elements with properties

similar to random group elements [5, 22, 24]. It has long been known that

the availability of truly random group elements leads to a very efficient group

membership test [2, 29, 22].

The third example is reduction of a generating set to one of smaller size.

Construction of a chain of subgroups often leads to combinatorial explosion in

the number of generators. Although it has been known for some time how to

manage this in the case of permutation groups, the methods developed in [5]

are sufficiently general to be applied to other domains, such as matrix groups

over finite fields. This is useful for many algorithms which test for a certain

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 3

property by successively constructing generators for a chain of subgroups. This

happens, for instance, in testing for solvability, where one must compute the

normal closure of the set of commutators formed from the generating set for

each successive subgroup in the derived series. Unless care is taken, the number

of generators for each subgroup in the derived series will be at least the square

of the number in its predecessor.

This paper illustrates this philosophy through a survey of recent results. Some

have been previously published and some are new. Those methods that previ-

ously appeared in the literature are only sketched here, with pointers to a fuller

description in the literature. Greater detail is provided for the “new” results.

To fix notation, The permutation group is denoted G, and its degree is n. The

new results include:

• an elementary O(n4 log2 n) group membership algorithm with at least 1 −

exp(−n) reliability (§2.1).

• an elementary O(n3) normal closure algorithm (with generators as output)

with at least 1− exp(−n) reliability (§2.2).

• a single, moderately elementary O(n2 log |G| log n) group membership algo-

rithm with at least 1− 1/n reliability (§3.3).

The new results were chosen to emphasize the intuitive simplicity and purely

combinatorial nature of the tools involved. The final complexity often represents

only a modest improvement or alternative development as compared to our pre-

viously published algorithms [5, 6]. The new results may also lend themselves

to faster implementations in some situations. We distinguish between small base

groups (families of groups satisfying log |G| = O(logc n) for some constant c) and

large base groups (all other families of groups).

We frequently employ the notation O∼(f(n)) ≡ O((f(n)) (logc′ n)) for some

constant c′ (read as “soft oh” of f(n)). We also employ the related nota-

tion g(n) = Ω(f(n)) and g(n) = Θ(f(n)). g(n) = Ω(f(n)) if and only if

1/g(n) = O(1/f(n)) and g(n) = Θ(f(n)) if and only if both g(n) = Ω(f(n))

and g(n) = O(f(n)). The reliabilities have been included to better estimate the

time-reliability tradeoffs. More detailed asymptotic estimates are provided in

the body of the paper.

§2 develops the theme of random subproducts, a solution to the second of the

three “building block” examples above. As an immediate application, we de-

scribe the elementary group membership and normal closure algorithms referred

to above. These continue to be the fastest algorithms with exponential reliabil-

ity, although Babai, Luks and Seress have recently announced a deterministic

group membership algorithm with running time O∼(|S|n3).

§3 reviews our recent work on group membership algorithms for both large [5]

and small [6] base, which are nearly optimal in a complexity sense made precise

in that section. This work is joint with Babai, Luks and Seress. Additional com-

binatorial techniques, which were required to achieve those results, are developed

first.

4 GENE COOPERMAN AND LARRY FINKELSTEIN

§3 also describes a near optimal elementary group membership algorithm with

further small improvements in complexity. The new algorithm is particularly

interesting because it continues a trend towards simplifying the mathematical

basis for group membership algorithms. Babai, Luks and Seress had introduced

a O∼(n4) algorithm [8] by using the classification of finite simple groups, and a

structure forest analysis in terms of transitivity and primitivity. The O(n3 log4 n)

Monte Carlo algorithm introduced in [5] requires only the structure analysis. The

new approach leads to a O(n3 log2 n) Monte Carlo algorithm and requires neither

the classification nor the structure analysis. By introducing a variant of Sims’s

“sifting” (or “stripping”), the new algorithm returns to some of the simplicity

of Sims’s original O(n6) algorithm [35].

Next, §4 reviews a sequence of results on base changes which are especially

useful for the case of small base groups. §5 reviews joint work with Luks allow-

ing transformations of other problems into group membership, often via a base

change. §6 discusses a non-polynomial-time algorithm for computing and stor-

ing Cayley graphs and Schreier coset graphs, which we have found important in

applications. The more applied tone is continued in §7 with a short discussion of

our experience at software implementation of some algorithms presented in this

paper.

1.1. Notation and Basic Concepts.

Let G be a permutation group acting on an n-element set Ω with G specified

by a generating set S, and let α = (α1, α2, . . . , αn) be a fixed ordering of the

points of Ω. The point stabilizer sequence of G relative to α is the chain of

subgroups

G = G(1) ⊇ G(2) · · · ⊇ G(n) = {1}

where G(i) = Gα1,... ,αi−1
, 1 ≤ i ≤ n. S is called a strong generating set for G

relative to α if

〈S ∩G(i)〉 = G(i), 1 ≤ i ≤ n.

The central problem for group membership is the construction of a strong

generating set. This allows one to efficiently construct a right transversal T (i)

for G(i)/G(i+1) for each i, a set of right coset representatives for G(i)/G(i+1).

Construction of a strong generating set S is usually carried out through a varia-

tion of Schreier generators. Given a transversal T (i) and generators S(i) for G(i),

G(i+1) is generated by the Schreier generators

{tgtg
−1

: t ∈ T (i), g ∈ S(i)},

where tg is the unique element of T (i) such that tgtg
−1
∈ G(i+1). With a family

of such transversals {T (i)} and with g ∈ Sym(Ω), either one can express g as a

factored word, gn−1gn−2 · · · g1, for gi ∈ T (i), or else g /∈ G.

§2 relies on the fact that one can efficiently construct a transversal from the

strong generators S(i). The time for this construction depends on the data

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 5

structure for group membership being used. Specific data structures for group

membership are defined at the beginning of §3.

The point αi is called a base point relative to α if |αG(i)

i | 6= 1. The sequence

of all base points B = (αi1 , αi2 , . . . , αib
), with i1 < i2 < . . . < ib, is called an

(ordered) base for G relative to α. The significance of a base is that each element

g of G is uniquely determined by its base image (αg
i1

, αg
i2

, . . . , αg
ib

). Note that

b ≤ min(log |G|, n− 1). The size of a base may vary with the ordering α, but it

is easy to show that two bases relative to two different orderings differ in size by

at most a log n factor.

Finally, since many of the algorithms will be randomized ones, it is useful

to review some terminology. A Monte Carlo algorithm is a randomized algo-

rithm whose reliability (probability of success) can be increased at the cost of

additional time. A Monte Carlo algorithm is Las Vegas, if it never returns an

incorrect answer. (Hence, a Las Vegas algorithm may only return a correct an-

swer or “don’t know”.) An algorithm is exponentially reliable if the probability

of returning an incorrect answer or “don’t know” is bounded above by exp(−n),

for n the input parameter. A formal development of these definitions and their

consequences is contained in the appendix.

Finally, for convenience, we will often say that a Monte Carlo algorithm runs

in O(f(n)) time with with fixed but arbitrarily high probability. This is shorthand

for saying that for any constant p with 0 < p < 1, there is a constant c dependent

on p such that if the algorithm runs for at most cf(n) time, then it will return

a correct answer with probability at least p.

2. Random Subproducts

It is known that efficient construction of random group elements would allow

efficient randomized algorithms for many group constructions [2, 22,29]. Un-

fortunately in permutation groups, construction of truly random group elements

usually depends on first constructing a strong generating set. (Babai has intro-

duced an alternative approach toward approximately random group elements [4]

which is sufficiently general to work over arbitrary black box groups.) This sec-

tion introduces random subproducts, which can be efficiently constructed without

knowing a strong generating set. Random subproducts were first defined for use

in orbit calculations by Babai, Luks and Seress [8]. Their use in developing ran-

domized algorithms for general group computations was first described in [5].

Definition. Given a generating set S = {g1, . . . , gr} for a group G, a random

subproduct on S is an element w of the form

w = ge1
1 ge2

2 · · · g
er
r ,

where ei = 0 or 1 with probability 1/2.

6 GENE COOPERMAN AND LARRY FINKELSTEIN

Proposition 2.1. (from [5, Lemma 2.2]) Let S generate a group G and let

H be an arbitrary proper subgroup of G. Then a random subproduct w on S is

not a member of H, with probability at least 1/2.

Proof. Let S = {g1, . . . , gr}. There is a largest i for which gi /∈ H (since

H 6= G). So, w can be decomposed into the form w = ugei

i v, with gi+1, . . . , gr ∈

H. Hence, v ∈ H.

We consider two cases. First, assume u ∈ H. With probability 1/2, ei = 1,

and so w = ugiv /∈ H. In the second case, assume u /∈ H. With probability 1/2,

ei = 0, and so w = uv /∈ H. This proves the proposition. �

The parameter L, an upper bound on the length of subgroup chains for a

group G, plays an important role in applications of random subproducts. For

permutation groups, Cameron, Solomon and Turull [14] have shown, using the

classification of finite simple groups, a bound L < 3n/2 on the length of maximal

subgroup chains. (Babai [3] had previously demonstrated a bound of 2n−3 solely

using elementary techniques.) For small base groups, L = O∼(1). For subgroups

of the general linear group GL(n, q), there is an upper bound of L = n2 log q.

As an illustration of the use of random subproducts, consider an arbitrary

finitely generated group G = 〈S〉 with upper bound L on the length of a subgroup

chain. By using Proposition 2.1, we are able to show that for c > 4, cL random

subproducts generate G with probability at least 1 − exp(−(1 − 4/c)2cL/8).

Hence, a generating set S can be replaced by a generating set of size cL in

the time for O(L|S|) group multiplications. A stronger version of this result is

presented in §2.3.

From this initial idea of random subproducts, a series of strikingly improved

randomized algorithms have been developed, that use little more than this basic

idea and some combinatorics. (The parameter n is the permutation degree and

S is the generating set. For simplicity, the generating sets are assumed to be of

size O(n) for the first three results, and the fourth result shows how to efficiently

find such a generating set. The dependence on the size of the generating set and

the reliability is given later in the paper.)

• §2.1: Elementary group membership: O(n4 log2 n) (exponential reliability)

• §2.2: Elementary normal closure: O(n3) (exponential reliability)

• §2.4: Normal closure using random prefixes: O∼(n2)

• §2.3: Reduction of a generating set S to size O(n): O(|S|n log n)

• §2.3: Testing solvability of matrix groups over finite fields in polynomial time

The first two algorithms are based on simple extensions of random subprod-

ucts, random Schreier subproducts and random normal subproducts. In both

cases, an element formed using these extensions has probability at least 1/4 of

enlarging the subgroup being incrementally constructed. The resulting chain of

subgroups terminates in the target group. Random prefixes are a non-trivial

variation of random subproducts.

The methods also apply to arbitrary black box groups. Black box groups

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 7

were first introduced by Babai and Szemerédi [10]. Informally, they can be

described as a representation for elements of an abstract group for which group

multiplication, group inverse, and recognition of the identity element can all be

“effectively” computed. The black box versions are stated in terms of L, a bound

on the length of chains of subgroups.

• §2.2: Elementary normal closure of H in G where H and G have generating

sets of size s and t respectively: O((s + t)L) multiplications and inverses

• §2.3: Reduction of a generating set S for G to size O(L): O(|S| log L) multi-

plications

• §2.4: Normal closure using random prefixes where H and G are given by

generating sets of size O(L): O(L log4 L) multiplications

2.1. Random Schreier Subproducts: Elementary Group Member-

ship.

For groups H ⊆ G, a transversal of H in G is a set of coset representatives

of H in G. Let G be a finitely generated group with a generating set S =

{g1, g2, . . . , gs}, let H ⊆ G be a subgroup of finite index, and let T = {t1, . . . , tn}

be a transversal of H in G. For g ∈ G, let g be the unique element t ∈ T such

that gt−1 ∈ H. A random Schreier subproduct for H with respect to S and T is

an instance of a product (t1gt1g
−1

)e1(t2gt2g
−1

)e2 · · · (tngtng
−1

)en where g is a

random subproduct of S, and the ei are independent random variables uniformly

distributed over {0, 1}. Note that a random Schreier subproduct requires at most

|S| − 1 multiplies to compute the random subproduct g and at most 3(|T | − 1)

additional multiplies to complete the computation, hence O(|S|+ |T |) multiplies

overall. (We are assuming that each tig can be computed without any multiplies

for each i, 1 ≤ i ≤ n.) Random Schreier subproducts were first discovered in

1990, but have only recently appeared in print [24].

Lemma 2.2. Let G = 〈S〉 for finite S, and let H ⊆ G be a subgroup of finite

index. Let T be a transversal for H in G. Then a random Schreier subproduct h

for H with respect to S and T can be computed at the cost of O(|S|+ |T |) group

multiplications and inverses. Further, for any proper subgroup K ⊂ H,

Prob(h /∈ K) ≥ 1/4.

Proof. Let K be an arbitrary proper subgroup of H. Given a generating set

S = {g1, . . . , gs} for G, there exists a maximal index i and a σ ∈ T , such that

σgi(σgi)
−1 /∈ K. This follows from the fact that K ⊂ H is a proper subgroup,

and the Schreier generators generate all of H. By assumption, τgj(τgj)
−1 ∈ K

for all τ ∈ T and j > i.

Given a random subproduct g on S, we show that with probability at least

1/2 there exists a τ ∈ T such that τg(τg)−1 /∈ K. Let u and v be prefixes and

suffixes of g uniquely defined by g = ugei

i v. The calculations below implicitly use

the fact that τy = τy and hence τy(τy)−1 = τy(τy)−1. The argument divides

into two cases. In the first case, τu(τu)−1 ∈ K for all τ ∈ T . So, with probability

8 GENE COOPERMAN AND LARRY FINKELSTEIN

1/2, ei = 1, which implies g = ugiv (and so σu−1g = σgiv) and

σu−1g(σu−1g)−1 = σu−1uσ−1

︸ ︷︷ ︸
∈K

σgi(σgi)
−1

︸ ︷︷ ︸
/∈K

σgiv(σgiv)−1

︸ ︷︷ ︸
∈K

/∈ K.

In the second case, there is a σ′ ∈ T such that σ′u(σ′u)−1 /∈ K. So with

probability 1/2, ei = 0, which implies g = uv and

σ′g(σ′g)−1 = σ′u(σ′u)−1

︸ ︷︷ ︸
/∈K

(σ′u)v(σ′uv)−1

︸ ︷︷ ︸
∈K

/∈ K.

Let h be a random subproduct on {τg(τg)−1: τ ∈ T}. If τg(τg)−1 /∈ K for

some τ ∈ T , then h /∈ K with probability at least 1/2. Since the exponents

{e′i} ⊆ {0,1} for the random subproduct h are chosen independently of the {ei}

for g, there is an overall probability of at least 1/4 that h /∈ K. �

An important application of Lemma 2.2 occurs in efficiently finding generators

of H ⊆ G when only generators for G and a transversal of H in G are known.

This is the case in finding generators of a point stabilizer subgroup. The proof

of reliability requires Chernoff’s bound [15].

Chernoff’s Bound. Let St be a random variable equal to the number of

successes in t independent Bernoulli trials in which the probability of success is

p (0 < p < 1). Let 0 < ǫ < 1. Then

Prob(St ≤ ⌊(1− ǫ)pt⌋) ≤ e−ǫ2pt/2.

Theorem 2.3. Let G be a (possibly infinite) group with finite generating

set S, let L be an a priori upper bound on the length of subgroup chains in G,

and let T be a transversal for H ⊆ G. Given a constant c > 4, one can construct

a set of cL generators for H with probability at least 1 − exp(−(1 − 4/c)2cL/8)

using at most cL(|S|+ 3|T | − 4) group multiplications and inverses.

Proof. We will construct a set {h1, . . . , hcL} of random Schreier subprod-

ucts, which generates H with the stated probability. The construction of each

random Schreier subproduct takes at most |S| + 3|T | − 4 group operations and

so the bound on the number of group operations follows directly. Define the

generation of each hi as a trial, and define the event Ei as the condition that

either hi /∈ 〈{h1, . . . , hi−1}〉 or 〈{h1, . . . , hi−1}〉 = H. Then by Lemma 2.2,

Prob(Ei) ≥ 1/4 for all i. Note that Prob(H = {h1, . . . , hcL}) is bounded

below by the probability that Ei holds for at least L distinct i. If the gen-

eration of each hi is a trial, and the event Ei is a “success”, then this prob-

ability is in turn bounded below by the probability of at least L successes

in cL Bernoulli trials with parameter p = 1/4. Setting t = cL, p = 1/4,

and ǫ = 1 − 4/c in Chernoff’s bound, we can estimate the probability as

Prob(St > L) ≥ 1− exp(−(1− 4/c)2cL/8). �

For permutation groups, G, of degree n, one can apply Theorem 2.3 to finding

generators of a point stabilizer group, Gx. For this case, |T | ≤ n and L =

3n/2 [14], yielding the following corollary.

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 9

Corollary 2.4. Let G be a permutation group of degree n, generated by S.

Given c > 4, one can construct a set of cn generators for a point stabilizer

subgroup of G with probability at least 1 − exp(−(1 − 4/c)2(3/16)cn) using at

most (3/2)cn(|S|+ 3n− 4) group multiplications and inverses.

An algorithm to construct the full point stabilizer sequence can be derived

through n− 1 applications of Corollary 2.4. In the following procedure, the sub-

routine First-point-moved is called with a set U of permutations and returns

either the first point j < n moved by some element of U or n if each element of

U is the identity permutation.

Procedure Construct-SGS

Input: A generating set S for G

Output: A list (S(i1) . . . , S(im)) of generating sets for the point stabilizer se-

quence of G where i1 < i2 < . . . < im and S(ij) generates G(ij)

Let β1 ← First-point-moved(S)

If β1 = n then return()

Else set S(β1) ← S

Set j ← 1

Loop:

Let T be a transversal for (〈S(βj)〉)βj
in S(βj)

Let U be a set of 18n random Schreier subproducts

with respect to S(βj) and T

Let βj+1 ← First-Point-Moved(U)

If βj+1 = n then return(S(β1), . . . , S(βj))

Else set S(βj+1) ← U , set j ← j + 1, and goto Loop

Corollary 2.5. Given a permutation group G = 〈S〉 of degree n, procedure

Construct-SGS will return a strong generating set for G in time O(n4 + n2|S|)

with probability at least 1− exp(−n).

Proof. The proof is by repeated application of Corollary 2.4. The time

to compute the first transversal and the 18n random Schreier subproducts with

respect to S = S(β1) is O(n2|S|+n3), and |S(β2)| = O(n). The time for each later

iteration is O(n3). The probability that 〈S(βi)〉 = G(βi) is at least 1− exp(−2n)

by application of Corollary 2.4 with c = 18. The probability that this will hold

for all βi is at least (1− exp(−2n))n ≥ 1−n exp(−2n) = 1− exp(log(n)− 2n) ≥

1− exp(−n). �

Remark. The procedure Construct-SGS can be upgraded to an O(n4) Las

Vegas group membership algorithm by applying the strong generating test pre-

sented in [17].

2.2. Random Normal Subproducts: Elementary Normal Closure.

In applications to group membership, one often needs only to find genera-

tors (not necessarily strong) of a normal closure. In this case, algorithms that

10 GENE COOPERMAN AND LARRY FINKELSTEIN

are faster than group membership are available [5]. An elementary algorithm

(O(n3)) is presented first, followed by a more complicated O(n2 log4 n) algorithm

in §2.4. The O(n3) normal closure algorithm uses the idea of incremental sub-

group construction described in §2. However, instead of random subproducts, it

uses random normal subproducts. Random normal subproducts were discovered

in 1990, but have not yet appeared in print. Since the techniques described here

apply to black box groups, the discussion will be formulated in terms of a known

upper bound L for the length of chains of subgroups.

The problem of constructing strong generators for a normal closure is distinct

from finding any generating set, and has long had an unclear relation to the

problem of group membership. Our recent work with Luks [20], discussed in §5,

showed that for permutation groups, normal closure can be efficiently reduced to

group membership. In particular, construction of strong generators of a normal

closure requires O∼(n3) time in general and O∼(n) time for a small base group.

Let H ⊆ G, with H = 〈U〉 and G = 〈S〉. A random normal subproduct with

respect to U and S is a conjugate of the form hg where h is a random subproduct

on U and g is a random subproduct on S.

Lemma 2.6. Let H = 〈U〉 and G = 〈S〉 be subgroups of a (possibly infinite)

group K Suppose that H is not normalized by G. Let hg be a random normal

subproduct with respect to U and S. Then

Prob(hg ∈ 〈HG〉 \H) ≥ 1/4.

Proof. By hypothesis, the normalizer NG(H) of H in G is a proper subgroup

of G. Hence if g is a random subproduct on S, then Prob(g /∈ NG(H)) ≥ 1/2

by Lemma 2.2. So, Hg ∩ H is proper in Hg with probability at least 1/2.

Let h be a random subproduct on U = {h1, h2, . . . , ht}. The random normal

subproduct hg = (h1
e1 · · ·ht

et)g = (h1
g)e1 · · · (ht

g)et , hg can also be viewed as

a random subproduct on {h1
g, . . . , ht

g}, a generating set for Hg. Note that

the choice of the random {e1, . . . , et} ⊆ {0,1} is independent of those chosen

for g. Given that Hg ∩H is proper in Hg, it follows again from Lemma 2.2 that

Prob(hg /∈ H) = Prob(hg /∈ Hg∩H) ≥ 1/2. Combining this with the probability

Prob(Hg ∩H 6= Hg) ≥ 1/2 yields Prob(hg 6∈ H) ≥ 1/4. �

Theorem 2.7. Let H and G be groups with H = 〈U〉 and G = 〈S〉, and let

L be an a priori upper bound on the length of a chain of subgroups of 〈HG〉. Let

c > 4 be a given constant. Then one can construct a set of cL generators for

〈HG〉 with probability at least 1− exp(−(1− 4/c)2cL/8) using at most cL(|S|+

|U |+ (cL + 1)/2) group multiplications and inverses.

Proof. Let U ′ = U initially. Let hg be a random normal subproduct with

respect to U ′ and S, and then augment U ′ to U ′ ∪ {hg}. Repeat the process

cL times. By Lemma 2.6, while 〈U ′〉 is not normalized by G, each new random

normal subproduct added to U ′ has probability at least 1/4 of enlarging the

subgroup 〈U ′〉. The proof now follows as in Theorem 2.3. �

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 11

The following corollary uses the fact that if b is the size of an arbitrary base for

a permutation group G of degree n and L is the length of a maximal subgroup

chain in G, then L ≤ b log n. (This can be easily shown by first noting that

L ≤ log(|G|) and then observing that |G| ≤ nb, hence log(|G|) ≤ b log(n).)

Corollary 2.8. Let H and G be permutation groups of degree n with H ⊆ G

and let G have a base of size b. Assume that both H and G are given by generating

sets of size at most b log n. Then for a given constant c > 4, a generating set of

size at most cb log n for 〈HG〉 can be obtained with probability at least 1− 1/nkb

for k = c(1−4/c)2(log2 e)/8, using cb2 log2 n group multiplications and inverses.

In particular, if G is a small base group, then the algorithm runs in time O∼(n).

2.3. Reduction of Generators.

Reduction of generators to a set of size O(L) is an important principle when

an algorithmic construction yields too many generators. Two examples are pre-

sented to illustrate this principle: an elementary group membership algorithm

which runs in time O∼(n4); and a polynomial time test for solvability and nilpo-

tence of a matrix group defined over a finite field.

The proof of the result on reduction of generators uses a random subproduct

on S of length ℓ, a random subproduct on a sequence of of length ℓ, with elements

randomly drawn (with replacement) from S. The proof is based on ideas first

presented in [5, Theorem 2.3]. It avoids the explicit computation of one of the

constants for purposes of brevity.

Theorem 2.9. (from [5, Theorem 2.3]) Let G = 〈S〉 be a finite group. Let

L be a known upper bound on the length of all subgroup chains in G. Then for any

fixed parameter p such that 0 < p < 1, with probability at least p one can find a

generating set S′ with |S′| = O(L log(1/(1−p))), using O(|S| log L log(1/(1−p)))

group operations.

Proof. Let |S| = s. Assume s > 4L or else there is nothing to do. Starting

from S′ = ∅, successively place in S′, cL random subproducts on S, each of

length s/L, for some c > ⌈4e⌉. We claim that after this initial phase, with

probability at least 1− e−cL/(16e) > 1− e−c/(16e), fewer than L of the elements

of S are outside of 〈S′〉. (e is the base of the natural logarithm.)

The claim can be rephrased in the language of indicator functions. Let

g1, g2, . . . , gcL denote the random subproducts on S produced by the proce-

dure. Let ξi be the indicator variable taking value ξi = 1 if gi /∈ 〈g1, . . . , gi−1〉

or if |S \ 〈g1, . . . , gi−1〉| < L. Otherwise, set ξi = 0. Note that by the definition

of L,
∑cL

i=1 ξi > L⇒ |S \ 〈g1, . . . , gcL〉| < L.

Next, we compute a uniform lower bound for Prob(ξi = 1), independent of i

and {g1, . . . , gi−1}. If |S \ 〈g1, . . . , gi−1〉| ≥ L, then at least L of the s elements

of S are not in 〈g1, . . . , gi−1〉. So, a random sequence on S (with replace-

ment) of length s/L contains at least one element of S \ 〈g1, . . . , gi−1〉 with

probability at least 1− (1− L/s)s/L > 1/e. Since gi is a random subproduct

on S of length s/L, by Proposition 2.1 gi /∈ 〈g1, . . . , gi−1〉 with probability at

12 GENE COOPERMAN AND LARRY FINKELSTEIN

least 1/(2e). Thus, in the case that |S \ 〈g1, . . . , gi−1〉| ≥ L, Prob(ξi = 1) =

Prob(gi /∈ 〈g1, . . . , gi−1〉) > 1/(2e). In the other case, if |S \ 〈g1, . . . , gi−1〉| < L,

then Prob(ξi = 1) = 1. Hence, Prob(ξi = 1) > 1/(2e) for all i, independently of

{g1, . . . , gi−1}.

This implies Prob(ξi = 1 | ξ1 = a1, . . . , ξi−1 = ai−1) > 1/(2e) independently

of a1, . . . , ai−1. So, Prob(
∑cL

i=1 ξi ≥ L) is bounded below by the probability of at

least L successes in cL Bernoulli trials with probability parameter p′ = 1/(2e).

Therefore one can apply Chernoff’s bound (§2.1). Taking ǫ = 1−1/(cp′), t = cL

and St =
∑cL

i=1 ζi, we have

Prob(|S \ 〈S′〉| < L) ≥ Prob(

cL∑

i=1

ξi > L) ≥ 1− e−ǫ2p′t/2.

For c > 4e, ǫ > 1/2 and so Prob(|S \ 〈S′〉| < L) ≥ 1−e−cL/(16e) ≥ 1−e−c/(16e).

Note that as c goes to infinity, the lower bound on the last probability goes to 1,

independently of s and L.

After this initial phase, we choose a new constant c′ and continue for log2 L

more rounds. After round i − 1 assume that |S − 〈S′〉| < L/2i−1. The set

S′ will be augmented by c′L/2i products of random sequences of S of length

2i−1s/L during round i. We shall show that with a suitable reliability, |S −

〈S′〉| < L/2i after round i. If |S − 〈S′〉| < L/2i already after round i − 1,

nothing need be proved. Otherwise, L/2i ≤ |S − 〈S′〉| < L/2i−1, and define

ñ = 2i−1s/L, p̃ = |S − 〈S′〉|/s ≥ L/(2i−1s), and q̃ = 1 − p̃ > (1− L/(2i−1s)).

So, a random sequence of S (with replacement) of length ñ = 2i−1s/L will include

exactly one element of S−〈S′〉 with probability ñp̃q̃ñ−1 > (2i−1s/L) (L/(2is))×

(1− L/(2i−1s))(2
i−1s/L)−1 > (1/2e) (1− L/(2i−1s))−1 > 1/(2e). If a product of

the elements of the random sequence is added to S′, then |S−〈S′〉| is diminished

by at least one with probability at least 1/(2e). So we form c′L/2i such random

sequences and add the corresponding products to S′. For a sufficiently large

constant c′, if |S−〈S′〉| < L/2i−1 was true after round i−1, then |S−〈S′〉| < L/2i

in round i, with probability at least 1− 2−L/2i+1

.

After round number log2 L, |S−〈S′〉| = 0 and S′ generates G. The probability

of error on any round subsequent to the initial one is at most
∑log2 L

i=1 2−L/2i+1

<

1/2. Finally, it is clear from Chernoff’s bound that any fixed probability p of the

theorem can be achieved by always taking a multiple of log2(1/(1− p)) times as

many random subproducts and products over random sequences as indicated in

the proof. �

Remark. The algorithm in the proof of Theorem 2.9 is Monte Carlo, since

any probability p of correctness can be achieved at the cost of extra time.

In application of Theorem 2.9 to the construction of subgroup chains such

as the point stabilizer sequence or the commutator series, each subgroup in the

chain is usually constructed using a generating set for its predecessor in the chain

together with some defining condition. Without taking care to reduce the size of

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 13

the generating set used for the construction, it is possible to have an exponential

blowup in the number of generators as one proceeds down the subgroup chain.

As a first illustration of the importance of reduction of generators, we sketch

an elementary O(n3k log2 n) group membership algorithm [5], where k is the

maximum orbit length. The algorithm consists of at most n point stabilizer

constructions according to the algorithm described in Corollary 2.10 below. In

this case, L < 3n/2. The algorithm associated with Corollary 2.10 consists of

forming Schreier generators (of which there are at most nk), and then applying

Theorem 2.9 to find O(n) generators of the point stabilizer subgroup.

Corollary 2.10. (from [5, Corollary 2.8]) Let G = 〈S〉 be a permuta-

tion group of degree n. Assume |S| = O(n). Let x ∈ Ω. Then for any fixed

parameter p such that 0 < p < 1, with probability at least p one can find a set

of O(n log(1/(1 − p))) generators of the point stabilizer subgroup Gx in Monte

Carlo time O(n2k log n log(1/(1− p))) where k is the length of the G-orbit of x.

To achieve the elementary group membership, one forms the O(n) point sta-

bilizer subgroups using Corollary 2.10 with p = 1−1/(2n). Each point stabilizer

requires O(n2k log2 n) time and achieves a reliability of at least 1−1/(2n). Thus,

one achieves a strong generating set in O(n3k log2 n) Monte Carlo time with re-

liability at least 1/2.

A second illustration of the use of reduction of generators is a Monte Carlo

polynomial time test for solvability and nilpotence of a matrix group G = 〈S〉

with S a set of n × n matrices over GF (q). The crude bound L = n2 log(q)

suffices. The algorithm alternates between reducing the size of the generating set

and computing generators for the next group in the derived series or descending

central series via the normal closure algorithm. The reduction of generators

employs probability of success p = 1 − 1/(2L). After at most L iterations, if

each of the resulting generators is the identity, then the test is satisfied and the

algorithm asserts that the group is solvable or nilpotent respectively. Constants

can be chosen so that the probability of error is most some constant p. Since

each iteration takes polynomial time in n and log q and since there are at most

L iterations with L = n2 log q, the combined test is polynomial in n and log q.

This gives rise to the following proposition.

Proposition 2.11. (from [5, Corollary 1.4].) A subgroup of GL(n, q) can

be tested for solvability and nilpotency by a Monte Carlo algorithm in the time

for O(L3 log2 L) multiplications and inverses, with L = n2 log q.

The estimate of L = n2 log q is asymptotically tight. To see this, note

that if q = pn, for p a prime, then a Sylow p-subgroup of GL(n, q) has order

p(logp q)n(n−1)/2. Hence for p fixed, only r varies, and L = (logp q)n(n− 1)/2 =

Ω(n2 log q).

2.4. Random Prefixes: Normal Closure Revisited.

14 GENE COOPERMAN AND LARRY FINKELSTEIN

An alternative normal closure algorithm which runs in time O∼(n2) for per-

mutation groups of degree n will now be discussed. The key idea is the use of

random prefixes to produce new elements for the group under construction.

Definition. A random prefix of a sequence of group elements (g1, g2, . . . , gk)

is an instance of a product of the first i elements, for i a random integer from 1

through k.

To see how random prefixes are used in the normal closure algorithm, assume

that the maximal length of a chain of subgroups of G is L and that G and H

are each given by generating sets of size O(L). For a suitably large m (m =

Θ(L log2 L)), form lists SG and T of length m initialized with the generating

sets for G and H respectively and padded to the end with the identity element.

Let r = Θ(log(m)) and let π1, . . . , πr be random permutations of {1, . . . ,m}

chosen at the beginning of the computation. Apply randomly chosen elements

πi and πj to SG and T respectively, let g be a random prefix of Sπi

G and h a

random prefix of Tπj . Replace one of the original identity elements of T by

hg. Then with fixed but arbitrarily high probability, after O(mr2) rounds, the

list T will contain generators for 〈HG〉. In §2.3, we showed how to reduce the

generating set T to one of size O(L).

The proof of correctness depends on being able to “spread out” the distance

between two arbitrary elements in the list SG or T using some permutation in

Sm. A set of permutations having this property is called a set of ǫ-spreaders.

The proof shows that the set of random permutations {π1, . . . , πr} ⊆ Sm is in

fact a set of ǫ-spreaders. This relies on the construction of special permutations

in Sm, called ǫ-spreaders. Given an arbitrary subset of generators, at least one

of log L ǫ-spreaders is guaranteed to permute a list of m generators, so that the

sum of distances of each element of the arbitrary subset to its nearest neighbor

from the same subset is bounded below by ǫ. Efficient deterministic construction

of ǫ-spreaders remains an important open question. An answer would allow a

modified normal closure algorithm achieving both exponential reliability and a

smaller time complexity.

Theorem 2.12. (from [5, Theorem 3.5]) Let G and H ⊆ G be finite groups

and assume all subgroup chains in G have length at most L. Assume further that

G and H are given by generating sets of size O(L). Then one can construct O(L)

generators for 〈HG〉 with fixed but arbitrarily high probability using O(L log4 L)

group operations.

Corollary 2.13. (from [5, Theorem 3.5]) Let H and G be permutation

groups of degree n with H ⊆ G. Assume that both H and G have generating sets

of size at most O(n). Then a generating set of size O(n) for 〈HG〉 can be obtained

with fixed but arbitrarily high probability using O(n log4 n) group multiplications

and inverses. If G is a small base group (log |G| = O∼(1)), then O∼(1) such

group operations are required.

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 15

3. Nearly Optimal Group Membership

This section reviews our work on “nearly optimal” group membership algo-

rithms. The general group membership algorithm [5] operates in O∼(n3) time

for generating sets of size O(n). It is nearly optimal in the sense that its time

approaches the time for Gaussian elimination. Gaussian elimination for ma-

trices over a finite field is in some sense equivalent to a special case of this

algorithm, and Gaussian elimination requires O(n3) time. The more specialized

group membership algorithm for small base groups [6] operates in O∼(n) time

for generating sets of size O∼(n). The time O∼(n) is the same as the time to

read the input, in the sense of “soft O”, and so is considered nearly optimal

for small base groups. Finally, a novel, elementary group membership algorithm

is described, which duplicates the “near optimality” achieved [BCFLS] with a

small gain in complexity.

The nearly optimal algorithms are all Monte Carlo. However, an exponentially

reliable (or Las Vegas or deterministic) algorithm continues to elude us. This is

an important open question, which would be solved by either an exponentially

reliable or Las Vegas strong generating test operating in O∼(n3) time. (Note

that a deterministic O∼(n3) strong generating test brings no special advantage,

since, when combined with a Monte Carlo O∼(n3) group membership algorithm,

it would yield a new group membership algorithm that is still only Las Vegas.)

To date, we have presented a O(|S|n3) deterministic strong generating test [17],

and Babai, Luks and Seress have also derived a O∼(|S|n3) deterministic strong

generating test [8].

3.1. Efficient Data Structures for Schreier Trees and Group Mem-

bership.

Let G = 〈S〉 be a permutation group acting on Ω = {α1, α2, . . . , αn}. Schreier

trees are often used for their space-efficiency in storing coset representatives of

Gα in G for α ∈ Ω.

A Schreier tree for G(i) is a directed labeled tree T with root node αi, nodes

from αG(i)

i , and edge labels chosen from a label set of permutations S ⊆ G(i).

A label g for the directed edge (β, γ) satisfies βg = γ. Coset representatives

are obtained by taking the product of edge labels along a path from the root

to the specified node. A Schreier vector data structure for G relative to the

ordering α is a sequence {T i}
n
i=1 of Schreier trees, where T i is a Schreier tree

relative to G(i). T i is complete if the set of nodes of Ti coincides with αG(i)

i and

the Schreier vector data structure is complete if T i is complete for 1 ≤ i ≤ n.

Schreier trees were first discovered by Sims [35], where they were called Schreier

vectors. We have revised the terminology in keeping with more recent computer

science concepts.

The permutation g is said to sift through {T i}
n
i=1 if we can write g in the form

g = gn−1gn−2 · · · g1,

16 GENE COOPERMAN AND LARRY FINKELSTEIN

where gi is a coset representative obtained from {T i} (using the procedure de-

scribed above) and α
gg1

−1···gi−1
−1

i = αgi

i . The number of multiplications and

inverses required to sift an element is proportional to the sum of the depths

of the Schreier trees. In the case where the Schreier vector data structure is

complete, the above factorization has two important implications. The first is

the ability to generate random elements of G according to the uniform distri-

bution. This is achieved by creating an element g whose factorization has the

above form with the elements gi chosen at random according to the uniform

distribution from amongst the cosets for G(i+1) in G(i) defined by T i. The sec-

ond implication is a test for membership in G of an arbitrary permutation. The

test consists of attempting to factor an arbitrary permutation through {T i}
n
i=1.

The factorization will succeed if and only if the element belongs to G. This was

Sims’s original group membership test [35].

Efficient Schreier trees must satisfy two goals. They must use a relatively

small number of labels from G. This becomes critical as n approaches 1,000,000.

Second, they must have shallow depth, so as to make recovery of a coset repre-

sentative efficient.

It has been argued that Schreier trees built up by breadth-first search on some

generating set are usually shallow. Nevertheless, there are important counter-

examples. For example. just consider a Schreier tree for the cyclic group Zn

with one generator, for n large. Another example is PSL(2, q), acting naturally

on the points of the projective line, where the last point stabilizer subgroup is

cyclic of order (q−1)/(2, q−1). Another natural example is the symmetric group

with generating set of size n− 1, {(1 2), (2 3), . . . , (n−1 n)}.

3.1.1. Short Schreier Trees.

In the special case when random elements are available, one can build short

Schreier trees with O(log n) labels and O(log n) depth. This is always the case, in

the context of a base change, and was the basis for a fast randomized base change

algorithm [18, 22]. The following key observation was discovered independently,

but variations of it have appeared from as early as 1965 [1, 7, 25].

Let G act transitively on Ω. For fixed P ⊆ Ω and random g ∈ G,

E(|P g − P |) = |P | |Ω\P |/n.

We identify P with the current nodes of a partially built Schreier tree. As long

as fewer than half of the elements of Ω are in the tree, each random element has a

fixed positive probability of expanding the tree by a constant factor. Thereafter,

with fixed positive probability, each random element will decrease by a constant

factor the number of nodes of Ω not yet in the tree.

This observation is the basis of the following theorem.

Proposition 3.1. (from [22, Theorem 3.5]) Let O = αG. Then there

exists a constant c > 0 (we can take c = 21) such that for all δ ≥ 1, ⌈δc log2 |O|⌉

random group elements suffice to build a short Schreier tree, with probability at

least 1− 1/|O|2δ
.

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 17

It is still an open problem to deterministically build short Schreier trees (depth

O(log n)) efficiently. This would eliminate the need for a source of random

elements, and possibly further improve the time. We have almost accomplished

this goal in the important class of small base permutation groups, as discussed

in the next section.

3.1.2. Cube Schreier Trees.

Cubes [10] were originally invented by Babai and Szemerédi in the theoretical

context of black box groups. A constructive adaptation was provided in [6] for

building cube Schreier trees (Schreier trees of depth O(log |G|) with O(log |G|)

labels). The construction is deterministic, and also is the basis for a fast deter-

ministic cyclic base change [19] discussed in §4.

Given a sequence R = (g1, . . . , gr), define the cube

C(R) = {ge1
1 ge2

2 · · · ger
r : ei ∈ {0, 1}}.

It is easy to see that for g ∈ G

g /∈ C(R)−1C(R) ⇐⇒ |C(R ∪ {g})| = 2|C(R)|.

Choosing such a g is made efficient by noting that

αg
1 /∈ α

C(R)−1C(R)
1 ⇒ g /∈ C(R)−1C(R).

Thus, while α
C(R)−1C(R)
1 6= Ω, we can double the size of the cube |C(R)| by

appending a gr+1 such that α
gr+1

1 /∈ α
C(R)−1C(R)
1 . After at most log2 |G| such

steps, α
C(R)−1C(R)
1 = Ω and length(R) ≤ log2 |G|. A Schreier tree with depth

at most 2 log2 |G| can then be built using labels R−1 ∪ R in the obvious way.

Any Schreier tree with upper bound 2 log2 |G| on its depth and the number of

labels is a cube Schreier tree. If one has a cube Schreier tree for each G(i) for

1 ≤ i ≤ n − 1, then the family of such trees is a cube Schreier vector data

structure.

The cube Schreier trees have important implications for implementations.

They were shown [6] to be one of the keys to a O∼(n) algorithm for group

membership. However, for efficient implementation, the obvious construction

can be modified to the pseudo-code below, while preserving the same asymptotic

time and space complexity. As compared to a breadth-first search to building

Schreier trees, the cube approach below can often be faster in implementations

by selectively adding new group elements that are guaranteed to at least double

the size of the cube. At the same time, it provides a theoretical guarantee

against very deep Schreier trees. This can be illustrated if the reader applies the

following code to the case of Zn with a single generator.

Procedure Build-Cube-Schreier-Tree(S, x)

Input : A generating set S for G and point x ∈ Ω.

Output : A cube Schreier tree T for xG with the property that Labels(T) =

R ∪R−1, where C(R) is a non-degenerate cube and depth(T) ≤ 2|R|.

Initialize R← ()

18 GENE COOPERMAN AND LARRY FINKELSTEIN

Set root(T)← {x}, Labels(T)← ()

While there exists g ∈ S such that Nodes(T)g 6= Nodes(T) do

Let y ∈ Nodes(T) such that yg /∈ Nodes(T)

Let h =Coset-rep(T , y)

Append hg to R

Build a new T using breadth first search with R ∪R−1 to level 2|R|

Return{T }

Proposition 3.2. (from [19, Proposition 2.3]) Procedure Build-Cube-

Schreier-Tree is correct and takes time O(n log2 |G|+ n|S| log |G|).

3.1.3. Local Expansion (Babai).

Babai’s “local expansion lemma” [4] is the basis for an efficient randomized

strong generating test for permutation groups [6], which requires only O∼(|S|n)

time for small base groups with generators S. As with most strong generating

tests, when the generating set is not strong, the algorithm exhibits an element

that does not sift through a group membership data structure based on the

current generating set.

Lemma 3.3. (from [4, Local Expansion]) Let G = 〈S〉, and let T = S ∪

S−1 ∪ {e}. Let T t be the set of t-term products of T . Then any subset D ⊆ T t

of a group G satisfying |D| ≤ |G|/2 also satisfies

|Dg\D| / |D| ≥ 1/(4t)

for at least one generator g ∈ S.

Babai and Szegedy [9] recently found an inequality,

|DT \D| / |D| ≥ 2/(2t + 1),

under suitable hypotheses, that is superior in many applications. In addition,

by replacing the original hypothesis by the requirement that the diameter of the

Cayley graph G with generators S be strictly larger than the diameter of the

embedded subgraph D, they achieve the improved inequality [9],

|DT \D| / |D| ≥ 2/(t + 2).

The principle of the strong generating test is to identify D with all factored

words of G in S according to some group membership data structure such as

Schreier trees. Assuming a base of size b, and assuming Schreier trees of depth f ,

t can be bounded by t ≤ bf = O(logc n). So if |D| ≤ |G|/2, there is a g ∈ S such

that for random d ∈ D, dg /∈ D with probability at least 1/4t. Alternatively,

if |D| ≤ |G|/2, for random g ∈ S and d ∈ D, dg /∈ D with probability at least

1/(4t|S|). This test is repeated for each point stabilizer subgroup G(i) and strong

generating set G(i) ∩ S.

Random subproducts further improve the strong generating test. Instead of

testing if dg ∈ D for random d ∈ D and for each g ∈ G, it suffices to test if

dw ∈ D for w a random subproduct of the generating set S. If |D| ≤ |G|/2,

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 19

then dw /∈ D with probability at least 1/(64t) [6, Lemma 3.4], which can be

improved to 1/(16t) using the newer constant for local expansion. This result

should be compared with the probability of at least 1/(4t|S|) in the previous

paragraph.

3.2. Group Membership: Large and Small Base.

From a complexity viewpoint in computational group theory, group mem-

bership is probably the problem most studied. Originally, in practical imple-

mentations, the formal algorithms were not competitive with a straightforward

heuristic algorithms such as random Schreier Sims [29]. Using the new ideas

described here, and in collaboration with Babai, Luks and Seress, we now have

competitive Monte Carlo implementations for both the large and small base case

based on new algorithms with provable complexities [5, 6]. (The timing in the

first theorem is revised from the original.)

Theorem 3.4. (from [5, Theorem 4.1]) Given O(n2) generators of a finite

permutation group G acting on n points, one can construct a strong generating set

for G in O(n3 log4 n) Monte Carlo time. The space requirement of the procedure

is O(n2 log2 n).

Theorem 3.5. (from [6, Theorem 6.2]) Let G = 〈S〉 ≤ Sym(Ω) be a group

with |Ω| = n, and suppose that b is the maximal size of a non-redundant base.

Then there is a Monte Carlo algorithm that returns a strong generating set for

the case of transitive G in O(n log3 |G|+b3 (log b) (log3 |G|) (log n)+n|S| log |G|)

time. For intransitive G, an extension of the algorithm returns a strong generat-

ing set in O(n log3 |G|+ nb2 log2 |G| log(b + log n) + b3 (log b) (log3 |G|) (log n) +

n|S| log |G|) time. The constructed strong generating set supports membership

testing in O(n log |G|) time and the memory requirement is O(nb log |G|+ n|S|)

during the construction.

We have written straightforward implementations of about one to two thou-

sand lines for both algorithms in our LISP system. Seress and Weisz have done

the same in C, and report on their experience in this proceedings [34]. At this

time, Leon’s heuristic implementation [29] of randomized Schreier Sims is usu-

ally faster, but does not provide a theoretical guarantee of correctness under

polynomial time bounds as do the newer implementations. However, at this

stage we have not spent significant resources to achieve the fastest possible im-

plementations, and still hold out the hope of combining heuristic speed with a

theoretical proof of correctness.

3.3. Elementary Near Optimal Group Membership.

This section provides a general framework for a randomized group membership

algorithm. The algorithm is presented in greater detail, since it has not yet

appeared in the literature. The underlying principles of this algorithm are all

rather elementary in comparison to the algorithm described in [5] yet we are

still able to achieve a reduction in the time complexity from O(n3 log4 n) to

O(n2 log |G| log n) with reliability at least 1− 1/n.

20 GENE COOPERMAN AND LARRY FINKELSTEIN

In effect, the algorithm of this section provides a theoretically sound mech-

anism for a fast Sims-type group membership using random elements. It has

been observed by several authors, both theoretically [2] and heuristically in im-

plementations [29], that if one could efficiently construct random elements of an

arbitrary group, G, from generators of G, then one could derive a faster group

membership algorithm. Typically, such an algorithm finds random generators of

G(2) according to some distribution, and then repeats the process. This section

continues that tradition, but also invokes the idea of cubes [10], as specialized to

Schreier trees [6] (see §2.7), and maintains several global data structures, S(i),

C(i), and D(i).

The global data structure S(i) represents a set of group elements of G(i) to

be constructed, such that ∪n−1
j=i S(j) generates G(i). C(i) is the cube over S(i).

(For S(i) = {gi,1, . . . , gi,k}, C(i) = ge1
i,1 · · · g

ek

i,k for ej ∈ {0, 1}.) The cube D(i) =

C(n−1)C(n−2) · · ·C(i) is derived from C(i), and is used purely as a notational

convenience to describe the algorithm. Initially, S(i) = ∅ and D(i) = C(i) = {1}.

One need not store any data structure corresponding to D(i). The points {αi}

are the permutation domain. Sets such as αC(i)

i and αD(i)−1
D(i)

i are re-computed

whenever needed (although caching schemes are possible).

The algorithm is presented in a top-down manner. The overall control struc-

ture is that of a Sims-type algorithm: development of the point stabilizer se-

quence in a top-down fashion. The auxiliary routine Random-Point-Stabilizer-

Element returns randomized elements of the point stabilizer subgroup, that play

the role of Schreier generators. The auxiliary procedure Deep-Sift is used for

“sifting” or “stripping” these pseudo-Schreier generators. Calculation of the

pseudo-Schreier generators requires prior calculation of a transversal for the point

stabilizer subgroup. This is the job of Complete-Fundamental-Orbit.

The algorithm is described in a somewhat general setting because we believe

that the control structure can be modified to work with more specific classes of

groups, such as small base groups, by invoking a different version of the auxiliary

routine Random-Point-Stabilizer-Element. This routine should have the property

that while 〈D(i+1)〉 6= G(i+1), Random-Point-Stabilizer-Element(i) returns an

element of G(i+1) \ 〈D(i+1)〉 with probability at least p. The implementation of

Random-Point-Stabilizer-Element returns a random Schreier subproduct which

works in all cases with p = 1/4 by Lemma 2.2. If a different version is used, then

it may require a different value for p. Additionally, the two constants c and c′

must be chosen based on the differing probability p.

Procedure Strong-Generating-Set(S, r)

Input: generating set S ⊆ G and r ≥ n

Parameters: constants c > 0, 0 < c′ < 1 chosen appropriately

Output: strong generating set {S(i)}

Time: O(nb log |G| log r + k′b log r + n|S| log |G|),

where k′ is the time for a single call to Random-Point-Stabilizer-Element

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 21

Reliability: at least 1− 1/r, provided r ≥ n

For i← 1 to n− 1 do

Initialize S(i) ← ∅

Initialize C(i) ← {1}

Set S(1) ← S

For i← 1 to n− 1 do

If S(i) 6= ∅ then [S(i) constructed during previous calls to Deep-Sift]

Complete-Fundamental-Orbit(i)

[We now have generators for G(i)

and coset representatives for G(i)/G(i+1)]

Repeat

Initialize successes← failures← 0

Loop for c log r iterations [c appropriate constant]

Set g ← Random-Point-Stabilizer-Element(i + 1)

[While 〈D(i+1)〉 6= G(i+1), Prob(g ∈ G(i+1) \ 〈D(i+1)〉) ≥ p.]

Deep-Sift(i+1, g)

If Deep-Sift returned “success” then

successes← successes + 1

Else failures← failures + 1

Until successes < c′(successes + failures) [for a constant c′ < p]

[Now, 〈D(i+1)〉 = G(i+1)]

Return({S(i)})

Procedure Deep-Sift(i, g)

Input: 1 ≤ i ≤ n− 1; g ∈ G(i)

Output: Either a level i′ ≥ i and g′ ∈ G(i′) such that |α
C(i′){g′,1}
i′ | = 2|αC(i′)

i′ | or

else “fail”; “fail” occurs only if g ∈ D(i)−1
D(i)

Time: O(n log |G|)

If |α
C(i){g,1}
i | = 2|αC(i)

i | then [g /∈ C(i)−1
C(i)]

Set S(i) ← S(i) ∪ {g}

Set C(i) ← C(i){g, 1}

Return(i, g)

Else if i = n− 1 then

Return(“fail”)

Else [αC(i)g
i ∩ αC(i)

i 6= ∅]

Set u← arbitrary element of C(i) such that αi
u ∈ αi

C(i)g−1

Set u′ ← arbitrary element of C(i) such that αi
ug = αi

u′

Return(Deep-Sift(i+1, ugu′−1))

Verifying the output property of Deep-Sift reduces to demonstrating that the

property g /∈ D(i)−1
D(i) is preserved in recursive calls. To see this, note that

g /∈ D(i)−1
D(i) ⇒ D(i)g∩D(i) = ∅ ⇒ D(i+1)ug∩D(i+1)u′ = ∅ ⇒ D(i+1)ugu′−1∩

D(i+1) = ∅ ⇒ ugu′−1
/∈ D(i+1)−1

D(i+1). Let j be the smallest k such that

22 GENE COOPERMAN AND LARRY FINKELSTEIN

D(k) = C(k). If g /∈ D(i)−1
D(i) then Deep-Sift returns (i′, g′) for which i ≤ i′ ≤ j

and g′ ∈ G(i′) \ C(i′)−1
C(i′). This satisfies the output property.

Further, it will be crucial in later arguments to observe that no matter how

often Deep-Sift is successively called with different arguments, there can never

be more than log |G| successful calls to Deep-Sift. This follows from observing

that the number of elements added to the cube C(i) can never grow to more

than ⌊log ni⌋ for each i. Further, the bound log ni on the length of the cube C(i)

shows that O(n log ni) time is spent at the ith level, and O(n log |G|) time can

be spent over all recursive calls from Deep-Sift.

Procedure Complete-Fundamental-Orbit(i)

Input: 1 ≤ i ≤ n− 1

Output: {C(i)} such that αD(i)−1
D(i)

i = α
〈D(i)〉
i

Time: O(n log |G|+ k), where k is the time for all subsequent calls to Deep-Sift

While αD(i)−1
D(i)

i 6= α
〈D(i)〉
i do

[Note that 〈D(i)〉 = 〈∪j≥1S
(j)〉]

Let u ∈ 〈D(i)〉 be such that αi
u /∈ αD(i)−1

D(i)

i

Deep-Sift(i, u)

Return({C(i)})

Since the length of D(i) will always be bounded by log |G|, computation of

images of αi can be done in O(n log |G|) time. At most one such set of com-

putations occurs without a corresponding call to Deep-Sift, and the remaining

computations are clearly dominated by time for the corresponding call to Deep-

Sift, O(n log |G|). Hence the overall time of O(n log |G|+ k) follows.

Theorem 3.6. Assume that Random-Point-Stabilizer-Element(i + 1) (as de-

scribed in the code for Strong-Generating-Set) produces a g satisfying Prob(g ∈

G(i+1)\〈D(i+1)〉) ≥ p (for fixed p with 0 < p < 1) whenever 〈D(i+1)〉 6= G(i+1). If

k′ is the time for a single call to Random-Point-Stabilizer-Element, then Strong-

Generating-Set completes in time O(nb log |G| log r+k′b log r+n|S| log |G|) with

reliability O(1− 1/r) for r ≥ n for appropriate values of the constants c and c′.

Proof. Note that Strong-Generating-Set makes at most ((1/c′) log |G| +

cb log r) calls to Deep-Sift. This is seen by noting that the “Until” condi-

tion of the the “Repeat . . . Until” block will not trigger while successes ≥

c′(successes + failures). Thus, this condition will hold on all except the last

iteration of the block. On these earlier iterations, successes + failures ≤

(1/c′)successes ≤ (1/c′) log |G| over the life of the algorithm. This follows

since successes can be identified with the number of successful calls to Deep-

Sift, which was previously shown to be bounded by log |G|. Beyond that, when

successes < c′(successes + failures), there are exactly b iterations of the “Re-

peat . . . Until” block with c log r calls to the inner “Loop”. Thus, there are at

most ((1/c′) log |G|+ cb log r) calls to Deep-Sift.

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 23

The time for each call to Random-Point-Stabilizer-Element and Deep-Sift is

k′ and n log |G|, respectively. From the previous paragraph, we know that they

are each called at most ((1/c′) log |G| + cb log r) times. So, over the life of the

algorithm, the calls to those routines from Strong-Generating-Set account for

at most ((1/c′) log |G|+ cb log r) (n log |G|+ k′) = O(nb log |G| log r + k′b log r)

time when r ≥ n.

Next, we must bound the time for calls to Complete-Fundamental-Orbit. Since

there are at most O(log |G| + b log r) calls to Deep-Sift over the life of the al-

gorithm, the time bound is O(nb log |G| + nb log |G| log r + k′b log r), which is

dominated by the previous times for r ≥ n.

Finally, we prove the stated reliability. At level i, as long as G(i+1) 6= 〈D(i+1)〉

throughout the execution of the “Repeat. . . Until” block, we would like the prob-

ability that successes ≥ c′(successes + failures) to be sufficiently high. This

will ensure that the termination criteria will not be invoked prematurely and

the algorithm will not proceed incorrectly to level i + 1. By the above analy-

sis, there are at most (1/c′) log |G|/(c log r) = log |G|/(cc′ log r) blocks for which

successes ≥ c′(successes + failures). In order to have at least 1 − 1/r overall

reliability, the probability of exiting a single block with the termination criterion

successes < c′(successes+ failures) while G(i+1) 6= 〈D(i+1)〉 should be at most

1/(r log |G|/(cc′ log r)).

We invoke Chernoff’s bound (see §2.1) with t = successes+failures = c log r

and St = successes. Set c′ = (1 − ǫ)p. (The parameter p is determined by the

particular procedure Random-Point-Stabilizer-Element.) To ensure an overall

probability of error of at most 1/r among all log |G|/(cc′ log r) blocks, or an error

of at most 1/(r log |G|/(cc′ log r)) for each block, we invoke Chernoff’s bound to

satisfy

Prob(St < c′t) ≤ Prob(St ≤ ⌊(1− ǫ)pt⌋)

≤ e−ǫ2pc(log r)/2 ≤
1

r
·

1

log |G|/(cc′ log r)
, for c′ = (1− ǫ)p.

If r ≥ n (which implies r ≥ b ≥ log |G|/ log r), this will be true if ǫ2pc(log r)/2 ≥

ln(r2/(cc′)) for some value of c, since ln(r2/(cc′)) ≥ ln(r log |G|/(cc′ log r)). The

inequalities r log r ≥ log |G| and |G| ≥ 2 imply that r > 1.5, and it is clear that

some value of c will satisfy the previous inequality for r > 1.5. This will then

yield the reliability of 1− 1/r. �

Corollary 3.7. If the procedure Random-Point-Stabilizer-Element returns a

random Schreier subproduct, then for r = n ≥ 10 and parameter values c′ = 0.05

and c = 20, the algorithm Strong-Generating-Set performs in O(n2 log |G| log n+

n|S| log |G|) time with reliability at least 1− 1/n.

Proof. Note that a random Schreier subproduct has probability at least

p = 1/4 of lying in G(i+1) \ 〈D(i+1)〉. The time O(n2) for a random Schreier

subproduct will enter into the time k′ = O(n log |G|+n2) for Deep-Sift. However,

24 GENE COOPERMAN AND LARRY FINKELSTEIN

the term k′b log r will still be bounded by n2 log |G| log n. The rest is easily seen

by setting ǫ = 0.8, noting that c′ = (1−ǫ)p, and verifying the Chernoff inequality

of the previous proof for c = 20. �

4. Base Change

Let G be a subgroup of Sn and let S be a strong generating set for the point

stabilizer sequence of G relative to an ordering α = α1, . . . , αn of {1, 2, . . . , n}.

A change of base is the construction of a strong generating set S′ for G relative to

a new ordering α′. Base change is a crucial algorithm in many important group

computations and plays an especially important role in many of the backtracking

algorithms currently used to solve problems for which efficient algorithms are not

currently known. A cyclic base change occurs when α′ is obtained from α through

a right cyclic shift. In this case, α and α′ satisfy the relationship

α = α1, . . . , αr−1, αr . . . , αs−1, αs, αs+1, . . . , αn

α′ = α1, . . . , αr−1, αs, αr, . . . , αs−1, αs+1, . . . , αn

It is this special case of base change that is usually required in many backtracking

algorithms [12, 13, 30].

We quickly review existing algorithms for performing a change of base and

then describe new deterministic and randomized results for the special case of

cyclic base change.

The first algorithm for performing a change of base was given by Sims [35].

This algorithm employs a clever trick and uses a Schreier vector data structure

for representing the point stabilizer sequence. Sims’s trick was generalized in [11]

to show that a deterministic cyclic base change could be performed in time O(n2)

using O(n2) space. This improved the running time of Sims’s algorithm from

O(n5) to O(n3). This speedup was due in part to the use of a new data structure

for representing the point stabilizer sequence, first described by Jerrum [28] and

referred to as a labeled branching,

The labeled branching data structure requires Θ(n2) storage for transitive

G and so is impractical when n is large. In the context of a base change, one

already has a strong generating set S for G relative to α and a Schreier vector

data structure {T i}
n
i=1 which can be used to compute random elements of G.

Ideally, one would like to use {T i}
n
i=1 to compute random elements in time

O(n log |G|). If the sum of the depths of T i is O(log |G|), then this is the case

and {T i}
n
i=1 is said to be a short Schreier vector data structure. Under this

assumption, the randomized base change algorithm described in [18] takes time

O(n log2(|G|)) and builds a short Schreier vector data structure relative to α′.

The following result ensures that with some additional preprocessing time, one

can always assume that {T i}
n
i=1 is short.

Proposition 4.1. (from [19, Theorem C]) Given a strong generating set

S for G relative to α, one can compute with reliability 1− 1/n a short Schreier

vector data structure in time O(n log2 |G|+ n|S|+ n log n).

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 25

The proof of Proposition 4.1 uses the methods of §3.1.1 and §3.1.2 in a novel

way to achieve the time bound. For insight into how this is accomplished, assume

that {T j}
n
j=i+1 is a short Schreier vector data structure for G(i+1) (relative to

α) which we want to extend to G(i). Let ni = |αi
G(i)

|. The first step is to build

a sequence R of elements of G(i) such that |G(i+1)C(R)| = |G(i+1)|2|R|. If R is

a maximal length sequence with this property, then |R| ≤ log ni and

αi
G(i)

= αi
C(R)−1G(i+1)C(R).

Since each element of G(i+1) can be written as a word in the labels of T j , j < i,

of length at most c log(|G(i+1)|), it then follows that each coset representative

of G(i) can be computed as a word of length at most c log |G(i)|. In particular,

a random element for G(i) can be computed using at most c log|G
(i)| multiplies.

We can now use Proposition 3.1 to build a short Schreier tree T i for αi
G(i)

using

at most c log ni random elements. The timing for the ith iteration can be shown

to be O(n log |G(i)| log ni) (assuming that |S| ≤ log |G|) and this leads to the

final result.

Theorem 4.2. (from [18, Theorem 5.3]) Given a strong generating set S

for G relative to an ordering α, one can with reliability 1 − 1/n perform a base

change relative to an arbitrary ordering α′ in O(n log2 |G|+ n|S|+ n log n) time

using O(n log |G|) space. Furthermore the algorithm returns a short Schreier

vector data structure with respect to the new ordering.

The next series of results concerns the important case of a cyclic base change.

A cube Schreier vector data structure is one for which each Schreier tree can

be represented by a cube C(i) of length at most log |G(i)| such that αG(i)

i =

αC(i)−1
C(i)

i .

Theorem 4.3. (from [18, Theorem A]) Given a strong generating set S

for G, a deterministic cyclic base change algorithm can be described that requires

O(n log2 |G| + n|S| + n log n) time and O(n log |G|) space. Furthermore, the

algorithm returns a cube Schreier vector data structure for G relative to the new

ordering.

The key to the proof of Theorem 4.3 is the technique described in [11] in

conjunction with the following result on the construction of cube Schreier trees.

Proposition 4.4. (from [19, Proposition 2.3]) Let S be a strong gener-

ating set for G relative to some ordering α. Then one can compute, in time

O(n log2 |G| + n|S| + n log n), both a sequence R of group elements of G such

that C(R) is non-degenerate and a complete cube Schreier vector data structure

{T i}
n
i=1 with the following property. For each T i, Labels(T i) ⊆ Ri∪R−1

i where

Ri = G(i) ∩ R is a prefix of R of length at most log |G(i)|, for 1 ≤ i ≤ n. In

particular, {T i}
n
i=1 requires O(n log |G|) space.

The proof of Proposition 4.4 follows easily from the ideas used in the procedure

Build-Cube-Schreier-Tree. It is interesting to note that within the same time

26 GENE COOPERMAN AND LARRY FINKELSTEIN

bound, one can build a sequence R with C(R) non-degenerate, such that every

orbit of G(i), 1 ≤ i ≤ n, can be represented by a cube Schreier tree with labels

chosen from a suitable prefix of R.

Using randomized methods one can give a substantial theoretical improvement

to Theorem 4.3 under the hypothesis of availability of fast generation of random

group elements. This is satisfied if a short Schreier vector data structure is

available.

Theorem 4.5. (from [19, Theorem B]) Assume random elements can be

computed in time O(n log |G|). Let b be the size of a base relative to some ordering

α and let α′ be an ordering obtained from α by a right cyclic shift. Then a

randomized cyclic base change algorithm can be described which has probability

at least 1 − 2/n of using O(nb log2 n) time and O(nb log n) space. Furthermore

the algorithm returns a short Schreier vector data structure with respect to the

new ordering.

The proof of Proposition 4.5 depends on the following observation: If H is a

subgroup of a finite group G, U a complete set of right coset representatives for H

in G and S ⊆ G a set of mutually independent uniformly random elements of G,

then T = {gḡ−1: g ∈ S} is a set of mutually independent and uniformly random

elements of H. (For g ∈ G, ḡ is the unique element of U so that Hḡ = Hg.)

This observation is applied in the context of sifting down a subgroup chain of

a permutation group G. The subgroup chain is chosen consistently with the

problem of performing a right cyclic shift. Initially, we have a set of c log n

mutually independent elements of G for some constant c. As we move down

the subgroup chain, each element is multiplied by a suitable coset representative

to produce a set of c log n mutually independent random elements for the next

subgroup in the chain. These random elements are sufficient to build a short

Schreier tree for that next subgroup using Proposition 3.1.

5. Reduction of Other Constructions to Group Membership

Another important construction [20] shows how to reduce certain group con-

structions to the point stabilizer construction (equivalent to group membership).

In some situations, a partial strong generating set will already be known, and

efficiency will be further improved through a base change algorithm. By care-

fully choosing generators of an initial group, and constructing a point stabilizer

sequence with respect to a specified ordering of the points, one can then change

the ordering and extract other groups. This method turns out to be surprisingly

powerful, yielding efficient algorithms for normal closure, center, commutator

subgroups and intersection of two groups, when one group is contained in the

normalizer of the other. Further, all constructions yield a strong generating set

for the constructed group in essentially the time to carry out the point stabilizer

sequence, or less.

Let G and H be distinct permutation groups acting on an n-element set A. Let

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 27

Ã = A1∪̇A2, where A1 and A2 are copies of A. Let D be the subgroup of Sym(Ã)

consisting of all elements of the form {(g, g): g ∈ G}. Let K = 〈D ∪ (1×H)〉 ⊆

G × G. Since each element of K can be written uniquely in the form (g1, g2)

for suitably chosen elements g1 ∈ G, and g2 ∈ 〈H,G〉, we can define projection

maps f1:K → G, and f2:K → 〈H,G〉 according to the rules f1((g1, g2)) = g1

and f2((g1, g2)) = g2. Finally, let K1 = f1(KA2
) and K2 = f2(KA1

) where KA1

and KA2
are the pointwise stabilizer subgroups in K of A1 and A2 respectively.

To fix notation, for elements x, y of a group we refer to x−1yx as the conjugate

of y by x and denote it by yx.

Theorem 5.1. (from [20, Theorem 2.1]) Under the above conditions, K1 =

〈HG〉 ∩G and K2 = 〈HG〉.

Proof. Observe that for sufficiently large k, an arbitrary element of K can

always be expressed in the form ḡ0h̄1ḡ1h̄2ḡ2 · · · h̄kḡk, where ḡ1, · · · , ḡk ∈ D and

h̄1, · · · , h̄k ∈ 1 ×H. Letting ḡi = (gi, gi) and h̄i = (1, hi) (1 is the identity), it

follows that

K = {(g0g1 · · · gk, g0h1g1h2g2 · · ·hkgk) | gi ∈ G,hi ∈ H}

= {(g0g1 · · · gk, g0g1 · · · gkhg1...gk

1 hg2···gk

2 · · ·hgk

k) | gi ∈ G,hi ∈ H}.

The last equation is similar to the one used to prove Schreier’s lemma [26,

Lemma 7.2.2]. In light of this description of K, we can “solve for g0” in order

to find the following characterizations of K1 and K2.

K1 = {g0g1 · · · gk | g0g1 · · · gkhg1···gk

1 hg2···gk

2 · · ·hgk

k = 1, gi ∈ G,hi ∈ H}

= {(hg1···gk

1 hg2···gk

2 · · ·hgk

k)−1 | (hg1···gk

1 hg2···gk

2 · · ·hgk

k)−1 = g0g1 · · · gk ∈ G,

gi ∈ G,hi ∈ H}

= 〈HG〉 ∩G

K2 = {g0g1g2 · · · gkhg1···gk

1 hg2···gk

2 · · ·hgk

k | g0g1 · · · gk = 1, gi ∈ G,hi ∈ H}

= {hg1···gk

1 hg2···gk

2 · · ·hgk

k | g1, . . . , gk ∈ G,h1, . . . , hk ∈ H are arbitrary}

= 〈HG〉 �

One of the most interesting deductions from this method is that construc-

tion of strong generators for a normal closure is no harder than construction of

strong generators for a group of degree at most twice the original degree. Since

group membership is in O∼(n3) time for large base groups, the time for normal

closure is approximately a factor of 8 times slower than group membership. For

small base groups, group membership is in O∼(n) time, and the time will be

approximately a factor of 2 slower.

The utility of the theory has been enhanced by our recent results. Consider

the situation where G normalizes H. Under this assumption, it follows that K

can be factored as K = D(1 × H). If in addition, strong generating sets are

known for G and H respectively, then this factorization can be used to directly

28 GENE COOPERMAN AND LARRY FINKELSTEIN

compute a strong generating set for K [20, Lemma 2.2]. This reduces the

computation of G∩H to that of a base change. Strong generating sets for G and

H can be computed in time O(n2 log(|G||H|) log n + n(|SG|+ |SH |) log(|G||H|))

(Corollary 3.7) with reliability at least 1−1/n. Note that |K| ≤ |G||H|. Applying

Theorem 4.2 allows one to perform a randomized base change on K in time

O(n log2(|G||H|) + n(|SG| + |SH |) + n log n), which then yields the following

enhancement of [20, Theorem 1(iii)].

Theorem 5.2. Suppose G and H act on n points and G normalizes H. Let G

and H be generated by SG and SH respectively. Then a strong generating set for

G∩H can be computed in time O(n2 log(|G||H|) log n+n(|SG|+|SH |) log(|G||H|))

with reliability at least 1− 2/n.

In a journal version of [20], the authors together with Luks will in fact extend

the method described in Theorem 5.1 to show that additional group construc-

tions may be reduced to the point stabilizer sequence. One that is particularly

interesting and indicates the flavor of the method is the construction of the com-

mutator subgroup. Using the notation earlier, let G ⊆ Sym(A) and and let

Ã = A1∪̇A2∪̇A3, where A1, A2 and A3 are copies of A. Let D1 ⊆ Sym(A1∪̇A2)

consist of all elements of the form {(g, g): g ∈ G} and let D2 be the analogous

subgroup of Sym(A2∪̇A3). Let K = 〈(D1 × 1)∪ (1×D2)〉. Then the projection

K3 of KA1∪̇A2
onto A3 is the commutator subgroup of G.

6. Compact Data Structures for Cayley and Schreier Coset Graphs

Given a generating set Φ for a group G, the minimum word problem is to

express an arbitrary element of G as a word in Φ of minimal length in Φ∪Φ−1.

This problem is known to be P-space complete [27]. Nevertheless, one practical

solution is to calculate a minimum depth spanning tree of the Cayley graph for

the group relative to Φ. The Cayley graph of G with respect to generators Φ is

a labeled graph G̃ such that the nodes of G̃ correspond to the group elements

of G, and an edge (g, h) of G̃ (for g, h ∈ G) is labeled by a generator φ ∈ Φ∪Φ−1

such that gφ = h.

We have developed two distinct techniques [16] to construct spanning trees.

One is more space-efficient. It requires log2 5 bits per node (|G|(log2 5)/8 bytes)

plus a much smaller amount of additional space for temporary data structures.

However, as part of a space-time tradeoff, it operates in time O(|G|(d + |Φ|b2))

instead of the O(|G||Φ|) time of a traditional breadth-first implementation. (Here

b is the base size of G represented as a permutation group of degree n, and d is the

diameter of the Cayley graph.) The second technique is more CPU-efficient than

the traditional breadth-first implementation, while retaining comparable space

usage. While we have analyzed the formal worst-case complexity in terms of some

more obscure parameters, the typically observed time in computer experiments

is more relevant. It was Θ(|G|(b + d)). Computer experiments have convinced

us that for most computers and groups, space is more of a bottleneck than time,

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 29

and so the first technique is the more valuable one.

Because the space-efficient data structure requires log2 5 bits per node of in-

termediate storage and log2 3 bits of final storage, we have referred to this as a

2-bit data structure, where log2 4 = 2 bits was jokingly considered as an average

of log2 3 and log2 5 bits. An alternative formulation exists that uses only 2 bits

per node for intermediate storage, but at the cost of some additional time.

The 2-bit data structure was used [23] to enumerate the group of order

3,674,160 for Rubik’s 2-cube using only 1 megabyte of RAM on a SUN-3. Where

|G| is still larger, even the space-efficient method runs out of space, and approx-

imate solutions (short words) need to be obtained by using a chain of subgroups

and developing spanning trees for the respective Schreier coset graphs [16]. Fi-

nally, the techniques can often be generalized to other abstract groups containing

an effective group multiplication and an effectively computable dense mapping

between the group elements and the integers.

The 2-bit method can best be understood by comparison with a standard

breadth-first search algorithm for building a spanning tree for a Cayley graph.

Such an algorithm would require an array of length |G|. It might use hashing

into an array to determine if a node labeled by a permutation has previously

been seen. Pointers to neighbors, or at least to the parent, could then be stored

in each entry.

There are two important principles for designing the 2-bit data structure.

First, we assume a perfect, invertible hashing function, f . This is an encoding

function f : G → {0, 1, . . . , |G| − 1} along with its inverse. It is well known in

computational group theory [16] that such a function is efficiently computable.

This provides an implicit index into the array, so that the key (the permutation)

need not be stored for each array slot.

Second, each array entry need not store pointers to some of the adjacent

nodes. Instead, it suffices to store one of five values in each entry. (Hence,

the requirement for log2 5 bits per node.) The numbers 0 to 2 indicate that

the distance is known from the current node to the root modulo 3. (This is

equivalent to the depth, if we view the data structure as representing a tree.)

The number 3 represents a (frontier) node which is adjacent to a node with label

from 0 to 2. The number 4 is for all other (unexplored) nodes.

Note that this construction suffices to find a shortest path from a node g to h.

When considering the path as a sequence of labels drawn from the generating

set Φ, this is the same as a path from the node h−1g to the identity. So, the

problem reduces to finding a shortest path from a node to the root. Shortest

paths are determined by repeatedly determining parent nodes until the root node

is reached. Formally, the process reduces to calling parent(), initially on f(h−1g),

and then calling it repeatedly on the result until the root node is reached. The

function parent and associated data structures are defined as follows.

Let D be an array with |G| entries (indexed from 0 to |G| − 1) capable of

30 GENE COOPERMAN AND LARRY FINKELSTEIN

storing 5 distinct values. For i ∈ [0, |G| − 1], let

node-neighbor(i) = {j ∈ [0, |G| − 1]: f−1(i) g = f−1(j) for some g ∈ Φ}.

For i such that D[i] ∈ {0, 1, 2}, define parent(i) = {j ∈ node-neighbor(i): D[j] =

D[i] − 1 mod 3}. Note that for all nodes except the root node, parent(i) must

be non-empty, since D[i] can be interpreted as the depth of a spanning lattice.

parent(i) may have more than one element, and so the data structure should be

interpreted as a spanning lattice rather than a spanning tree.

Procedure Build-Compact-Data

Input: A generating set Φ for G

Output: The array D giving the 2-bit data structure.

Global Variables: A labeled branching data structure for G relative to α (or

any other data structure, such as a Schreier vector, for computing f and f−1 in

node-neighbor).

Initialize D[0]← 0 and all other entries in D ← 4 [unexplored]

For each k ∈ node-neighbor(0), set D[k]← 3 [frontier]

Set level← 0

[Loop through nodes which are at the current level.]

LOOP:

Set level← level + 1

For i← 0 to |G| − 1 do

If D[i] = 3 then

If ∃j ∈ node-neighbor(i) with D[j] = level − 1 mod 3 then

Set D[i]← level mod 3

For each k ∈ node-neighbor(i) with D[k] = 4 do

Set D[k]← 3 [frontier]

If any new nodes were set to 3 in current loop, go to LOOP

Else return D

Theorem 6.1. (from [16, Theorem 4.3]) Let T be the time for each call to

the encoding function f , and T ′ the time for each call to f−1. Then the array D

can be constructed in time O(|G|(d + |Φ|T + T ′)) using space of log2 5 bits per

node plus space and time required for building group membership data structures

associated with f .

The Schreier coset graph of G with respect to a subgroup H and generating

set Φ is a labeled graph G̃ such that the nodes of G̃ correspond to the set of

right cosets G/H of G, and an edge (Hg,Hḡ) of G̃/H (for Hg,Hḡ ∈ G/H)

is labeled by a generator φ ∈ Φ ∪ Φ−1 such that Hgφ = Hḡ. The 2-bit data

structure for storing Cayley graphs extends to Schreier coset graphs relative to

a subgroup H as long as there is an efficiently computable 1 − 1 function fH :

G/H → {0, 1, . . . , |G|/|H|−1}. In the case of permutation groups, we developed

such a function [16]. Previously, Richardson had developed a technique [31] for

finding lexicographically smallest elements of a left coset suitable for hashing of

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 31

cosets. This function fH acts as a perfect hash function, and requires the newer

cyclic base changes of §4 for efficiency. Since the inverse of fH is not necessarily

efficiently computable, in many interesting examples a better alternative is the

use of an intermediate subgroup K with H ⊂ K ⊂ G such that |G/K| and

|K/H| are sufficiently small to support an encoding function based on factoring.

7. Software Implementations

Most of the tools and algorithms described here have been implemented in

our LISP system, comprising approximately 25,000 lines, built up with limited

manpower over about five years. Primarily, this manpower consisted of ourselves

and our Ph.D. student, Namita Sarawagi, all working on a very part-time basis.

The system was also used for small projects done by other students. LISP was

chosen because the interactive environment coupled with an integrated debugger

is convenient for rapid prototyping, while not sacrificing speed in compiled mode.

In a small number of time-critical routines (primarily permutation multiply and

permutation inverse), C routines are linked in to achieve close to optimal speed.

A second important feature is a wide variety of data types, and flexible coercion

between those data types. This has been especially important in experimenting

with new data structures.

Having our own software system available was especially important in the be-

ginning, in exploring the effect of using different low-level data structures. This

facility has given us valuable insights into why certain data structures sometimes

behave better than others in practice. Conversely, better theoretical understand-

ing of algorithms has often led us to improved implementations.

Thus, we are often able to closely correlate our experimental times with the-

oretically derived asymptotic complexities. This has been especially true in

the case of randomized algorithms, where the worst case examples tend to be

“blurred” by the randomness, and the probabilistic worst case analysis tends to

be close to the average case. For example, this was our experience with a ran-

domized base change algorithm [18], where, after scaling by a constant factor,

experimental times agreed with theoretically predicted times within a factor of

1.5. This comparison was carried out over 10 permutation groups with orders

ranging from 107 through 1055, degrees ranging from 48 to 106,080, and base

sizes ranging from 4 to 52.

Appendix. Randomized Algorithms: Terminology

Although the terminology below and its motivation are widely understood in

theoretical computer science, some of it is less widely known among those in

computational group theory. Since it is difficult to find a standard exposition,

this brief review is included.

A randomized algorithm is one which, for a fixed input, may require varying

amounts of time and return different outputs upon different invocations. In the

32 GENE COOPERMAN AND LARRY FINKELSTEIN

absence of statements to the contrary, there is no guarantee that a randomized

algorithm will return a correct answer.

Definition M1. A randomized algorithm is a Monte Carlo algorithm if there

is a function f(n) such that for any probability p < 1, there is a reliability

parameter t such that if the algorithm is allowed to run for time tf(n) on an

input whose size is parametrized by n, then it computes the correct answer for

that input with reliability (probability of success) at least p. In such a situation,

one says that the algorithm runs in f(n) Monte Carlo time.

In descriptions of a Monte Carlo algorithm, the reliability parameter, t, is

sometimes omitted as an explicit input if the algorithm is to be run with a fixed

reliability. A Monte Carlo algorithm is Las Vegas if it never returns an incorrect

answer. Hence, a Las Vegas algorithm may only return a correct answer or

“don’t know”. We say that an algorithm runs in O(g(n)) Monte Carlo (Las

Vegas) time, if it is a Monte Carlo (Las Vegas) algorithm running in f(n) time

with f(n) = O(g(n)).

Definition M2. (exponential reliability) A Monte Carlo algorithm has expo-

nential reliability if there is a function f(n) and a reliability parameter t such

that if the algorithm is allowed to run for time tf(n) on an input whose size

is parametrized by n, then it computes the correct answer for that input with

reliability (probability of success) at least 1− e−n. In such a situation, one says

that the algorithm runs in f(n) Monte Carlo time with exponential reliability.

The next theorem motivates the importance of exponential reliability over

multiple invocations of an algorithm.

Theorem A.1. Suppose algorithm A runs in O(f(n)) Monte Carlo (Las

Vegas) time with exponential reliability. If algorithm A′ consists of invoking

A for g(n) ≥ 3 times on an input of size at most n + ln(g(n)), then a variation

of algorithm A′ runs in O(f(n+ln(g(n))) g(n)) Monte Carlo (Las Vegas) time

with exponential reliability. If f and g are both polynomial functions, then the

variation of algorithm A′ runs in O(f(n)g(n)) polynomial time.

Proof. Note that for a fixed input size n, an exponentially reliable algorithm can

achieve higher reliability by simulating a larger input size (larger n). Hence, a

variation of algorithm A′ can simulate an input to A of size n + ln(g(n)). The

variation then runs in the stated time. The probability of error of each invocation

of A is at most e−(n+ln(g(n))), and so the overall probability of error is at most

g(n)e−(n+ln(g(n))) = e−n, as stated in the theorem. �

In many applications, the reliability does not increase exponentially with the

input size, but it does increase exponentially with the amount of time allotted

to it (the reliability parameter t). The next theorem addresses that. It assumes

that each invocation receives an input of the same size, and is allowed to run for

the same time. It is clear how to extend this to more general settings.

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 33

Theorem A.2. Let algorithm A be a Monte Carlo algorithm such that if it is

allowed to run for ctf(n) time for some constant c and some reliability parameter

t, then its reliability will be exponential in t (at least 1−e−t). If algorithm A′ con-

sists of invoking A for g(n) ≥ 3 times and allowing A to run for 2ct ln(g(n))f(n)

time per invocation, then algorithm A′ runs in O(tf(n)g(n) ln(g(n))) Monte

Carlo (Las Vegas) time with reliability exponential in t.

Proof. Let t = 2t′ ln(g(n)) be the reliability parameter for A (for t′ an arbitrary

parameter). If algorithm A′ is an invocation of algorithm A for g(n) ≥ ⌈e⌉ times

with each invocation running for ctf(n) time, and if algorithm A′ is allowed to

run for g(n)ctf(n) time, then the probability of an error in A′ over the g(n)

trials of A is at most g(n)e−t = g(n)/(g(n))2t′ ≤ 1/(g(n))t′ ≤ 1/et′ . So, A′

has reliability at least 1 − e−t′ , and A′ is a O(f(n)g(n) ln(g(n))) Monte Carlo

algorithm with reliability parameter t′. �

Note that a O(tf(n)) Monte Carlo algorithm that is exponentially reliable in

the reliability parameter t can also be considered as a O(nf(n)) Monte Carlo

algorithm that is exponentially reliable (in the input n). However, the previous

theorem provides a finer estimate for such algorithms.

Acknowledgements

The authors would like to acknowledge many important discussions with

László Babai, Gene Luks, Namita Sarawagi, and Ákos Seress. The authors

would also like to acknowledge William Kantor for his careful reading and many

helpful comments in earlier versions of this manuscript.

References

[1] D. Aldous, On the Markov chain simulation method for uniform combinatorial distribu-

tions and simulated annealing, Prob. Eng. and Informational Sciences 1 (1987), 33–46.

[2] L. Babai, Monte-Carlo algorithms in graph isomorphism testing, Université de Montréal
Tech. Rep. D.M.S. 79-10, Dep. Math. et Stat., 1979.

[3] , On the length of chains of subgroups in the symmetric group, Comm. in Algebra

14 (1986), 1729–1736.

[4] , Bounded round interactive proofs in finite groups, SIAM J. Discr. Math. (to
appear).

[5] L. Babai, G. Cooperman, L. Finkelstein, E.M. Luks, and Á. Seress, Fast Monte Carlo

algorithms for permutation groups, Proc. 23rd ACM STOC, 1991, pp. 90–100.

[6] L. Babai, G. Cooperman, L. Finkelstein, and Á. Seress, Nearly linear time algorithms

for permutation groups with a small base, Proc. of the 1991 International Symposium on
Symbolic and Algebraic Computation (ISSAC ’91), Bonn, 1991, pp. 200–209.

[7] L. Babai and P. Erdős, Representation of group elements as short products, Annals of
Discrete Mathematics 12 (1982), 27–30.

[8] L. Babai, E. Luks, and Á. Seress, Fast management of permutation groups, Proc. 29th

IEEE FOCS, 1988, pp. 272–282.

[9] L. Babai and M. Szegedy, Local expansion in symmetrical graphs, Combinatorics, Prob-

ability and Computing 1 (1992) (to appear).

[10] L. Babai and E. Szemerédi, On the complexity of matrix group problems I, Proc. 25th

IEEE FOCS, 1984, pp. 229–240.

34 GENE COOPERMAN AND LARRY FINKELSTEIN

[11] C.A. Brown, L. Finkelstein, and P.W. Purdom, A new base change algorithm for permu-

tation groups, SIAM J. Computing 18 (1989), 1037–1047.

[12] G. Butler, Computing in permutation and matrix groups II: Backtrack Algorithm, Math.

Comp. 39 (1982), 671–680.

[13] G. Butler and C. Lam, Isomorphism testing of combinatorial objects, J. of Symbolic

Computation 1 (1985), 363–381.

[14] P.J. Cameron, R. Solomon and A. Turull, Chains of subgroups in symmetric groups, J. of
Algebra 127 (1989), 340–352.

[15] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the

sum of observations, Annals of Math. Statistics 23 (1952), 493–507.

[16] G. Cooperman and L. Finkelstein, New methods for using Cayley graphs in interconnec-

tion networks, Discrete Applied Mathematics 37/38 (1992), 95–118 (to appear).

[17] , A strong generating test and short presentations for permutation groups, J. Sym-
bolic Computation 12 (1991), 475–497.

[18] , A random base change algorithm for permutation groups, J. Symbolic Computa-
tion (to appear).

[19] , A fast cyclic base change for permutation groups, Proceedings of the International
Symposium on Symbolic and Algebraic Computation (ISSAC 92), 1992.

[20] G. Cooperman, L. Finkelstein and E. Luks, Reduction of group constructions to point

stabilizers, Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation (ISSAC 89), ACM Press, 1989, pp. 351–356.

[21] G. Cooperman, L. Finkelstein and P.W. Purdom, Fast group membership using a strong

generating test for permutation groups, Computers and Mathematics (E. Kaltofen and
S.M. Watt, eds.), Springer-Verlag, 1989, pp. 27–36.

[22] G. Cooperman, L. Finkelstein and N. Sarawagi, A random base change algorithm for

permutation groups, Proc. of 1990 International Symposium on Symbolic and Algebraic
Computation, (ISSAC 90), ACM Press and Addison-Wesley, 1990, pp. 161–168.

[23] , Applications of Cayley graphs, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes (AAECC-8) (S. Sakata, ed.), Lecture Notes in Computer Science 508,

Springer-Verlag, 1991, pp. 367–378.

[24] G. Cooperman, L. Finkelstein and B. York, Parallel implementations of group membership

and the method of random subproducts, Proc. of 1992 Dartmouth Institute for Advanced
Graduate Studies in Parallel Computation Symposium (DAGS’92) (also Northeastern
University Technical Report NU-CCS-90-17) (D. Johnson, F. Makedon, and P. Metaxas,
eds.), 1992, pp. 94–100.

[25] P. Erdős and A. Rényi, Probabilistic methods in group theory, J. d’Analyse Math. 14
(1965), 127–138.

[26] M. Hall, Jr., The Theory of Groups, Macmillan, 1959.

[27] M. Jerrum, The complexity of finding minimal length generator sequences, Theoretical
Computer Science 36 (1985), 265–289.

[28] , A compact representation for permutation groups, J. Algorithms 7 (1986), 60–78.

[29] J. Leon, On an algorithm for finding a base and strong generating set for a group given

by a set of generating permutations, Math. Comp 35 (1980), 941–974.

[30] , Computing automorphism groups of combinatorial objects, Computational Group
Theory (M. D. Atkinson, ed.), Academic Press, 1984, pp. 321–337.

[31] D. Richardson, GROUP: A Computer System for Group-theoretical Calculations, M.Sc.
Thesis, Univerity of Sydney, 1973.

[32] N. Sarawagi, G. Cooperman and L. Finkelstein, Group membership for groups with prim-

itive orbits, this volume.

[33] , Computational Group Theory and Applications to Search, Ph.D. Thesis, North-

eastern University.

[34] Á. Seress and I. Weisz, PERM: A Program Computing Strong Generating Sets, this vol-
ume.

COMBINATORIAL TOOLS FOR COMPUTATIONAL GROUP THEORY 35

[35] C.C. Sims, Computation with permutation groups, Proc. Second Symposium on Symbolic

and Algebraic Manipulation (S.R. Petrick, ed.), ACM Press, 1971, pp. 23–28.

College of Computer Science, Northeastern University, Boston, MA 02115

E-mail address: gene@ccs.neu.edu and laf@ccs.neu.edu

