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Abstract—Graphics Processing Units (GPUs) are becoming
the workhorse of scalable computations. MADNESS is a sci-
entific framework used especially for computational chemistry.
Most MADNESS applications use operators that involve many
small tensor computations, resulting in a less regular organiza-
tion of computations on GPUs. A single GPU kernel may have
to multiply by hundreds of small square matrices (with fixed
dimension ranging from 10 to 28). We demonstrate a scalable
CPU-GPU implementation of the MADNESS framework over
a 500-node partition on the Titan supercomputer. For this
hybrid CPU-GPU implementation, we observe up to a 2.3-times
speedup compared to an equivalent CPU-only implementation
with 16 cores per node. For smaller matrices, we demonstrate
a speedup of 2.2-times by using a custom CUDA kernel rather
than a cuBLAS-based kernel.

I. INTRODUCTION

Titan, at Oak Ridge National Laboratory, will likely be the

largest supercomputer in the world by the end of 2012 [1].

At that time it will offer up to 18,688 CPU-GPU nodes. Each

compute node consists of a 16 core CPU and an NVIDIA

Fermi GPU. Titan currently offers 960 CPU-GPU nodes. As

of November 2011, 3 of the 10 fastest supercomputers in the

world used GPUs [2]. Also, 5 of the world’s 10 most power-

efficient supercomputers used GPUs [3]. Hence, adapting

irregular computations to large clusters of hybrid CPU-GPU

nodes is a priority for high-performance computing.

This work focuses on adapting the MADNESS [4], [5],

[6], [7], [8] scientific framework to large hybrid CPU-GPU

clusters. In an experiment for 4-dimensional tensors on a

500-node partition, we demonstrate a speedup of 1.9 times

by using the GPUs of the cluster over using only the CPUs of

the cluster. Further, we demonstrate a speedup of 2.3 times

over the CPU-only version by dispatching tensor operations

to both the CPU and the GPU. In an experiment on the

3-dimensional tensors using 100 nodes, a custom CUDA

kernel for tensor operations is used to demonstrate a 1.44-

times speedup over an equivalent implementation using the

cuBLAS DGEMM routine.

MADNESS (Multiresolution ADaptive Numerical Envi-

ronment for Scientific Simulation) is a simulation framework

∗ This work was partially supported by the National Science Foundation
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that implements a set of basic operations that are used in

computational chemistry, nuclear physics and other related

fields employing quantum mechanics.

Because other packages do not use adaptive multiresolu-

tion methods, they have a tendency to do additional work

for the same accuracy. Because the additional work is more

regular than that for MADNESS, it tends to parallelize

well on GPUs. Parallelization of MADNESS tends to suffer

from many small tasks. Hence, other packages will achieve

higher speedups on GPUs because they begin with a lower

performance on CPUs for a given accuracy.

Hence, for a given accuracy, MADNESS already

achieves good performance on CPU-based clus-

ters. The challenge for MADNESS is to achieve

enough speedup on GPUs so as to retain its

performance advantage for a given accuracy.

Most applications running on MADNESS use 3- and

4-dimensional tensors1. The four most common operators

in MADNESS are Apply, Compress, Reconstruct

and Truncate. These four operators suffice for many

MADNESS applications. Only Apply is CPU-intensive and

the time for calls to Apply dominates over the other three.

The Apply operator involves many small tensor multi-

plications often running into the hundreds. This results in a

less regular organization of computations on GPUs. CUDA

kernels that perform many tensor operations without leaving

the GPU are the key to obtaining high performance for these

less regular computations.

A naive CPU-GPU port of a MADNESS operator would

replace each call to a matrix multiplication on the CPU with

an equivalent GPU routine. However, this would result in

low GPU occupancy and high CPU-GPU transfer latency.

Also, CPU-GPU transfer would optimally use page-locked

memory, but the overhead of page-locking for the transfer

of a single matrix would be excessive. The solution is:

• to separate compute-intensive code from data-intensive

code;

• to aggregate the computation; and

1Tensors are higher dimensional generalizations of standard 2-
dimensional matrices.



Figure 1: The MRA approach can be viewed as a telescoping series of
grids. Grid V0 is the coarsest. The finer the grid, the more information is
captured about the wave function in the specific area. The more irregular
the function in a certain area, the finer the grid that is necessary to represent
it.

Figure 2: Multiresolution Analysis over benzene dimer.

• to aggregate the data inputs.

Due to the irregular nature of the computations, even

hand optimization of the MADNESS operators for the GPU

does not utilize the full power of the GPU. Hence, it was

important:

• to overlap CPU computation with GPU computation.

MADNESS on a cluster already efficiently handles com-

munications between compute nodes and Titan does not

introduce additional bottlenecks.

A. MADNESS — a Scientific Simulation Framework based

on Multiresolution Analysis

This work focuses on adapting the MADNESS [4], [5],

[6], [7], [8] scientific framework to hybrid CPU-GPU clus-

ters.

MADNESS employs a Multiresolution Analysis (MRA)

methodology to reduce the computational complexity of

the problem and achieves high precision by performing an

adaptive mesh refinement over the simulation volume. The

different levels of refinement have different accuracy and

the number of levels depends on the precision (accuracy)

requested by the user (see Figure 1).

Figure 2 shows grids having finer resolution over the

regions of a molecule where the probability of finding elec-

trons (electron density) is higher and have coarser resolution

over empty regions.

This helps in concentrating most of the compute power to-

wards relevant computations, thereby reducing overall com-

putational complexity. The level of refinement is improved

by progressively generating new levels using the previous

levels until the desired accuracy is achieved.

A multiresolution grid is represented in MADNESS as a

highly unbalanced tree (see Figure 1). The nodes of the tree

are distributed across the nodes of a cluster. The distribution

is done using a tree-node to compute-node mapping. There

are much more tree-nodes than compute-nodes and a tree-

node resides on a single compute-node. Distributed trees are

implemented in MADNESS with distributed hash tables.

MADNESS operators (such as Apply, Compress,

Reconstruct, or Truncate) take as input a distributed

tree, which they explore and modify.

B. Adapting Scientific Simulation Frameworks for CPU-

GPU clusters

Among packages supporting molecular dynamics, MAD-

NESS is unique in using adaptive multiresolution analysis

to solve molecular dynamics problems larger than ever

before. The adaptively refined tree (see Figure 1) leads

to computations at multiple scales. This involves irregular

computations over small matrices.

The multiple levels and scales for MADNESS are one of

its strengths. The only competitive approach is BigDFT [9].

However, BigDFT only has two levels of resolution (coarse

and fine). This makes it significantly less flexible than

MADNESS. BigDFT performs a higher amount of compu-

tation and uses much larger matrices for similar problems,

compared to MADNESS.

Some of the competing scientific simulation frameworks

that have been ported to CPU-GPU architectures are [10]:

BigDFT (a pseudopotential density functional theory (DFT)

framework that expresses Kohn-Sham wavefunctions in

Daubechies wavelet bases), TeraChem (Gaussian orbitals

that implement ab initio molecular dynamics and DFT meth-

ods), GAMESS (also an ab initio computational chemistry

framework), AMBER (a framework for classic molecu-

lar dynamics), NAMD (molecular dynamics), GROMACS

(molecular dynamics for protein and bio-molecule simula-

tion), LAMMPS (classic molecular dynamics) and QMC-

PACK (continuum quantum Monte Carlo methods).

C. Organization of Paper

Section II presents our extensions to the MADNESS

Library to support CPU-GPU clusters. Experimental results

are presented in Section III. Related work relevant to hybrid

CPU-GPU cluster computing is presented in Section IV.

Section VI presents our conclusions and discusses future

work.

II. EXTENDING MADNESS TO CPU-GPU CLUSTERS

Extending MADNESS to CPU-GPU Clusters requires

modifications to the underlying control flow of MADNESS

operators. Keeping the current control flow for a CPU-

GPU execution would be inefficient, since launching a GPU



kernel on-demand is slow, because of: high CPU-GPU

transfer latency, low CPU-GPU transfer bandwidth without

page-locking, slow on-demand page-locking, and low GPU

occupancy. Our modified MADNESS operators are fully

compatible with the rest of the framework, that was not

modified.

A. Modifications to the Control Flow of a MADNESS Op-

erator

As described in the introduction, MADNESS employs

many small tasks as opposed to a few large tasks. One

MADNESS task applies an operator to a single node in

the multiresolution tree and it can pass the result to other

tree-nodes, modify the current tree-node, remove it and even

create new tree-nodes. A node of an n-ary tree consists of

an n-dimensional tensor along with extra information.

The most important modification made to the control

flow of MADNESS operators for CPU-GPU execution is

the asynchronous batching of MADNESS tasks and task

inputs. Asynchronous batching is critical for solving the high

latency, slow transfer and GPU occupancy issues.

Asynchronous Batching of Data: Asynchronous batch-

ing enables the aggregation of data inputs for GPU tasks.

Data inputs are aggregated into a few large pre-allocated

buffers, which are then transferred to the GPU in a single

step. The CPU-GPU latency penalty is thus paid only once

for the entire batch as opposed to once for each task input.

Moreover, the pre-allocated transfer buffers are page-

locked at the beginning of the computation. Page-locking

ensures that the buffer stays resident in RAM, and it also

leads to at least double the transfer speed. Page-locking

can efficiently be done only on a few large buffers, since

it is slow (0.5 milliseconds). Page-unlocking (the reverse of

page-locking) is even slower (2 milliseconds), in the context

in which the execution of a single typical MADNESS 3-

dimensional CUDA kernel is on the order of 1 millisecond.

Asynchronous Batching of Computation: Besides in-

put data, the compute-intensive MADNESS tasks also are

asynchronously batched. A batch of tasks can be more

efficiently scheduled on the streaming processors (SMs) of

the GPU than individual tasks. Having a batch of tasks

readily available allows launching multiple tasks of the same

kind on the GPU concurrently in the case of small tasks, that

individually occupy only a fraction of the GPU.

Moreover, informed decisions can be made about how to

divide work between the CPU and the GPU when a large

computation batch is available.

MADNESS Library Extensions for Asynchronous

Batching: It is not desirable to perform batching of all

MADNESS tasks. The goal is to batch only those MAD-

NESS tasks that are compute-intensive. The MADNESS

algorithms developer has to identify these tasks and expose

them to the MADNESS Library extensions. Specifically,

Figure 3: The control flow of a hybrid CPU-GPU MADNESS operator.

the developer can split a task of interest into three sub-

tasks: preprocess, compute and postprocess. The MADNESS

Library extensions will ensure that the preprocess sub-task

will be executed by a CPU thread. It will also ensure that

the output data of preprocess is batched together with other

output data of the same kind, to serve as input data for

compute tasks.

The execution of the multiple compute tasks waiting for

input data is delayed until a timer expires. At this point there

are multiple batches of compute waiting to be executed (one

batch per kind2 of compute task). Batches of compute tasks

will be executed one by one at this point.

A dispatcher CPU thread will split each batch of compute

tasks between the CPU threads and the GPU. A compute

task must have both a CPU- and a GPU-version. By knowing

the relative performance of the GPU code compared to the

CPU code for a certain operator, a MADNESS developer

can decide what is the ratio of CPU to GPU work. Consider

that a CPU-only run takes time m and a GPU-only run

takes time n. The minimal computation time can be achieved

by an optimal CPU-GPU computation overlap. The optimal

overlap occurs when the CPU and GPU remain fully loaded

throughout. The minimal time is calculated by minimizing

max(mk, n(1 − k)), with k ∈ [0, 1]. This means that a k-
fraction of tasks are sent to the CPU and the rest to the

GPU. The optimal CPU-GPU work overlap is achieved when

mk = n(1 − k), so k = n/(m + n). The minimal runtime

is thus m×n
m+n

.

Newly generated compute tasks continue to be batched

while the CPU and the GPU do work. The dispatcher also

drives the execution of the GPU computation batches.

The control flow of a MADNESS operator that uses

asynchronous batching for hybrid CPU-GPU execution is

presented in Figure 3.

Next we present the CPU-GPU version of the MADNESS

Apply operator.

B. The Apply Operator

The most computationally intensive operator in MAD-

NESS is Apply. It consists of computing a Gaussian opera-

2The “kind” of a task is given by a combination of the memory address of
the compute function and the result of a user-defined hash function applied
to the input data.



tor on each tensor node in a tensor tree and accumulating the

local results of the Gaussian to compute an approximation

of a version of Green’s function.

The computational part of the Apply operator can be

expressed as:

Formula 1: Integral Kernel

ri1i2...id =
M∑

µ=1

2k−1∑

j1=0

2k−1∑

j2=0

· · ·

2k−1∑

jd=0

sj1j2...jdh
(µ,1)
j1i1

h
(µ,2)
j2i2

. . . h
(µ,d)
jdid

Here r and s are output/input d-dimensional tensors,

respectively. s is a tensor from the input MADNESS mul-

tiresolution tree, while r is a tensor that will be used to

update the input tree. The h operators are 2-dimensional

tensors that are either computed as needed, or obtained from

a software cache. Typical values of M and k are 100 and

10–20, respectively.

Algorithm 1 describes the MADNESS Apply algorithm

for CPUs at a high level. Here we are interested in identi-

fying the data-intensive and compute-intensive parts of the

code, in order to reorganize them for efficient CPU-GPU

execution.

Algorithm 1 The “Apply” Algorithm

Input: The current coefficients tree.
Output: The coefficients tree after computing a Green’s convolution.
1: for each node sj1j2...jd in the coefficients tree do
2: Obtain displacements.
3: for each displacement do
4: neighbor = Compute neighbor of sj1j2...jd based on displace-

ment.
5: Tensor ri1i2...id = integral operator(sj1j2...jd ).
6: Accumulate tensor ri1i2...id into neighbor.
7: end for
8: end for

Algorithm 2 FUNCTION integral operator (sj1j2...jd )

9: Initialize result tensor ri1i2...id .
10: for each µ = 0 to convolution rank do

11: Obtain the h 2-D tensors (h
(µ,1)
j1i1

, h
(µ,2)
j2i2

, . . . h
(µ,d)
jdid

).

12: Apply Formula 1 to sj1j2...jd and the h tensors and add the result
to ri1i2...id .

13: end for
14: return ri1i2...id .

To take advantage of the MADNESS Library extensions

for CPU-GPU, the Apply operator presented in Algorithm 1

has to be split into three parts that are implemented by three

tasks: preprocess, compute and postprocess.

The preprocess task obtains the addresses of all the 2-

dimensional h tensor operators. The compute task uses the

preprocessed inputs, performs the necessary s × h tensor

products and adds the results into tensor r. The postprocess

task accumulates the result tensor r into a neighbor tensor

in the tree.

The bulk of the data is comprised of the two-dimensional

tensor operators h. Many of the 2-D tensor operators will be

reused multiple times by transformations applied to various

different input d-dimensional tensors. Therefore, in order

to avoid redundant data transfers to the GPU, a write-

once software cache containing the already transferred 2-

D tensors has been implemented. This write-once cache

has been modeled after a CPU software cache present in

MADNESS for similar purposes.

Algorithm 3 The CPU-GPU Version of the “Apply” Algo-

rithm

Input: The current coefficients tree.
Output: The coefficients tree after computing a Green’s convolution.
1: for each node sj1j2...jd in the coefficients tree do
2: Obtain displacements.
3: for each displacement disp do
4: Asynchronously call integral preprocess(sj1j2...jd , disp).
5: end for
6: end for

Algorithm 4 FUNCTION integral preprocess(source ten-

sor, displacement)

7: neighbor = Compute neighbor of source tensor based on displacement.
8: for each µ = 0 to convolution rank do

9: Obtain the h 2-D tensors (h
(µ,1)
j1i1

, h
(µ,2)
j2i2

, . . . h
(µ,d)
jdid

).

10: end for
11: Asynchronously call integral compute(source tensor, neighbor, h ten-

sors).

Algorithm 5 FUNCTION integral compute(source tensor,

neighbor, h tensor)

12: Initialize result tensor ri1i2...id .
13: for each µ = 0 to convolution rank do
14: Apply Formula 1 to sj1j2...jd and the h tensors and add the result

to ri1i2...id .
15: end for
16: Asynchronously call integral postprocess(ri1i2...id , neighbor).

Algorithm 6 FUNCTION integral postprocess(result,

neighbor)

17: Accumulate tensor ri1i2...id into neighbor.

After all the necessary data has been transferred to or

located on the GPU, independent CUDA computational

kernels are launched on the NVIDIA device in separate

CUDA streams. For 3-dimensional tensors, the use of CUDA

streams helps occupy the GPU fully.

The hybrid CPU-GPU version of Apply, based on asyn-

chronous batching, is presented in Algorithm 3.

C. CUDA Kernels for Apply

We present custom CUDA kernels that take advantage

of shared memory, L1 and L2 cache locality, and register

locality on NVIDIA GPU devices, and employ coalesced

memory access.

For small 3-D tensors the custom CUDA kernels use

only two or three Streaming Multiprocessors (SMs) of the

16 available SMs on a high-end NVIDIA Fermi device.

CUDA streams are used to concurrently launch five to eight

independent CUDA kernels.



The efficiency of the custom CUDA kernels lies mainly in

the fact that many computational steps are embedded within

the kernels. A traditional approach would implement these

computational steps by launching a separate matrix multi-

plication kernel (provided by a linear algebra library, such

as cuBLAS) for each step. However, launching a separate

kernel for each computational step cannot take advantage of

shared memory locality, since all locality is lost between two

consecutive calls. Also, the CUDA kernel launch overhead

is an issue, since for small matrix multiplications there is

too little computation to hide the kernel launch overhead.

Instead, by embedding several computational steps within

a single CUDA kernel we alleviate these issues and obtain

better performance (see the results in Tables III and IV).

The h tensors in Formula 1 are stored as 2-dimensional

small square matrices, while the s n-dimensional tensor

is stored as a highly rectangular 2-dimensional matrix.

Formula 1 is highly computationally intensive. The amount

of necessary computation can be reduced by exploiting some

properties of the h matrices.

For 3-dimensional tensors the CPU implementation of

matrix multiplication is highly efficient, achieving up to

6 GFLOPS on a single core. For higher-dimensional tensors

the CPU implementation is less efficient, since tensors

overflow L2 cache.

Our custom CUDA kernel that implements Formula 1 is

described in Algorithm 7.

Algorithm 7 The Custom CUDA Kernel for Formula 1

Input: The s, h
(µ,d)
jdid

tensors and rank(M ) described in Formula 1.

Output: The result tensor r.
1: Initialize result r.
2: for each mu < rank do
3: for each d < NDIM do
4: Load s from global memory in coalesced manner.
5: Load the current h tensor into shared memory in coalesced

manner.
6: Perform an optimized matrix multiplication.
7: Save the result of the multiplication in shared memory.
8: Write the result to global memory in coalesced manner.
9: Interblock synchronization using atomic ops.
10: end for
11: r = r + s.
12: end for

Our custom CUDA kernel uses only a small number

of thread blocks for the 3-dimensional case (two or three

thread blocks). Each thread block achieves good occupancy

of one SM and uses all the resources of the single SM.

This prevents two thread blocks from being scheduled on

the same SM concurrently. As a consequence, an inter-block

synchronization mechanism (originally developed by Xiao

and Feng [11]) is used as a barrier mechanism for all thread

blocks of the same CUDA kernel. Each instance of the

custom CUDA kernel is run by a CUDA stream, to achieve

task parallelism on the GPU.

s tensor tensorh

Figure 4: Rank reduction for an s and h tensor. h is a 2-dimensional
tensor. s is a higher-dimensional tensor projected onto 2 dimensions. The
hashed areas mark the rows and columns that are reduced. Note that
reducing the rows and columns does not change the dimension of the result
matrix.

D. CPU Optimization: Rank Reduction

MADNESS introduces a separated representation that

speeds up higher-dimensional computations, but also ex-

pands the rank [8]. For this reason, some of the h tensors in

Formula 1 can be approximated by matrices of lower rank.

MADNESS implements a CPU optimization in which, for

each s × h multiplication, certain rows and columns of s
and h can be omitted (see Figure 4). This optimization is

called rank reduction. This MADNESS optimization can

reduce the amount of computation on the CPU only by up

to 2.5-times in typical cases.

Rank reduction was also implemented for the custom

CUDA kernel, but did not have a noticeable effect on

performance. The reason is that, unlike for the CPU, GPU

resources are allocated at CUDA kernel launch time. Our

custom CUDA kernel typically performs hundreds of mul-

tiplications using the same input s tensor, but hundreds of

input h tensors, as needed by Formula 1. (Recall that typical

values of M and k are 100 and 10–20, respectively, in

Formula 1.) Each multiplication uses two or three SMs,

due to the lack of enough storage for the computation

in the shared-memory and registers of a single SM. The

custom kernel must reserve in advance the two or three SMs.

For some of the multiplications, rank reduction allows the

multiplication to be computed by a single SM. However, the

GPU gains nothing from this, since the two or three SMs

were already reserved by the kernel.

The dynamic parallelism featured in the future CUDA 5

release could help alleviate some of the rank reduction issues

on GPUs. This future facility allowing the launch of sub-

kernels from running kernels seems the most helpful for

rank reduction. However, this will only be available for the

Kepler GPU.

III. EXPERIMENTAL RESULTS

Experiments were run on nodes of the Titan supercom-

puter at Oak Ridge National Laboratory. One compute node

consists of a 16-core AMD Opteron 6200 Interlagos at

2 GHz frequency, 16 or 32 GB of DDR3 RAM and an

NVIDIA Tesla M2090 (of the Fermi class) at 1.6 GHz with

6 GB of GDDR5 connected via a PCIe 2.0 × 16 slot.



One of the applications that relies on Apply is the

computation of a Coulomb operator. The CPU-GPU imple-

mentation of Apply was compared with a highly-optimized

CPU implementation (in which tensor multiplications were

programmed in assembly language to achieve good cache

behavior). The Coulomb application has among the inputs

the dimension of the input tensors (d), the size of the tensor
per dimension (k) and the desired precision of the result.

Tables I and II present a comparison between the running

times of a CPU computation, a GPU computation, and a

hybrid CPU-GPU computation of the Coulomb operator.

The GPU and hybrid CPU-GPU versions both used our

MADNESS Library extensions that automatically schedule

tasks on the GPU and CPU. These results are observed for

a computation batch of 60 independent tasks. Also note that

our approach of dedicating two or three SMs on the GPU

to one lengthy, compute-intensive task that multiplies many

small tensors, is more effective than using cuBLAS (see

Tables III and IV) for 3-dimensional problems. cuBLAS

distributes a tensor product across all 16 SMs of the GPU,

which is efficient for operators on larger tensor sizes, such

as the 4-dimensional TDSE operator presented in Table VI.

Application Coulomb with input parameters d = 3, k = 10 and precision 10
−8

(no rank reduction)

CPU-only compute GPU-only compute CPU and GPU compute

CPU threads CPU time GPU streams GPU time CPU + GPU time (sec)

(sec) (sec) using 10 CPU threads &

1 132.5 1 71.3 5 CUDA streams

2 66.5 2 41.5 Optimal

4 45.7 3 31.5 CPU-GPU

6 35.6 4 26.4 Actual Overlap

8 28.5 5 24.3 14.4 12.1

10 24.3 6 24.7

12 22.8

14 18.5

16 19.9

Table I: CPU scale-up vs. GPU scale-up for Coulomb with input
parameters d = 3, k = 10 and precision 10−8. The GPU and hybrid CPU-
GPU versions used our MADNESS Library extensions for work scheduling.
For the GPU version 12 CPU threads for data access were used.

Table II shows experimental results for running Coulomb

with d = 3, k = 20 and precision=10−10. Note that,

compared to the k = 10 case, here the GPU performs even

better compared to the CPU. The larger the tensor size, the

better the GPU fares compared to the CPU. The main reason

is that the CPU incurs more cache misses for larger tensor

sizes. Also, in this case cuBLAS routines were used — with

tensors 8 times larger than for k = 10, we enter the regime

in which cuBLAS performs well.

Tables III and IV compare the performance of a version of

the 3-dimensional Coulomb application that uses our custom

CUDA kernels with a version that uses cuBLAS 4.1. In both

versions the computationally intensive part is processed only

by the GPU. For this test only we use a MADNESS process

map that distributes work evenly among all compute nodes.

Table V presents the running times of a slightly larger

Coulomb application. In this case 3-D tensors with k = 30

Application Coulomb (no rank reduction)

with d = 3, k = 20 and precision 10−10

CPU 16 threads time 173.3 sec
GPU time 136.6 sec
CPU + GPU time (actual) 99.0 sec
CPU + GPU time (optimal CPU-GPU overlap) 76.2 sec

Table II: CPU 16 threads vs. GPU for Coulomb with input parameters
d = 3, k = 20 and precision 10−10. The GPU-version used 15 CPU
threads for data access. The hybrid version used 15 CPU threads.

Application Coulomb (no rank reduction)

with d = 3, k = 10 and precision 10−10

Compute Time (seconds) Speedup ratio
nodes Custom kernel cuBLAS version 4.1

2 88 247 2.80
4 56 126 2.25
8 31 71 2.29
16 19 42 2.21

Table III: Timings for 3-dimensional Coulomb using our custom CUDA
kernels and using cuBLAS 4.1. Work was distributed evenly to all compute
nodes. Below 2 nodes the data per node is too large for the GPU RAM.
Above 16 nodes the amount of work in a batch of tasks is insufficient for
good parallelism.

were used and the desired result precision was set to

10−12. This application stops scaling above six compute

nodes, because there is not enough work. Also, in this

case MADNESS does not distribute work evenly between

compute nodes, but rather attempts to achieve work locality

on compute nodes depending on the shape of the highly

unbalanced tree. The work distribution in MADNESS is

done according to a process map specification.

Experimental results for a much larger application (a

4-dimensional Time-Dependent Schrodinger Equation —

TDSE) are presented in Table VI.

Next we compare our custom CUDA matrix multiplication

with the cuBLAS 4.1 matrix multiplication routine. This

comparison only was performed on a 16-core Intel Xeon

X5570 with a locally attached NVIDIA GeForce GTX

480. Figure 5 compares the custom kernel with cuBLAS

for a batch of matrix multiplications corresponding to 3-

dimensional tensor products. The k in the figure is the size

of the tensor in one dimension. All multiplications for 3

dimensions are of a (k2, k) matrix × a (k, k) matrix. Fig-

Application Coulomb (no rank reduction)

with d = 3, k = 10 and precision 10−11

Compute Time (seconds) Speedup ratio
nodes Custom kernel cuBLAS version 4.1

16 27.6 43.2 1.56
32 15 24.2 1.61
64 10.2 15.6 1.52
100 7.6 11 1.44

Table IV: Timings for 3-dimensional Coulomb using our custom CUDA
kernels and using cuBLAS 4.1. Work was distributed evenly to all compute
nodes. Below 16 nodes the data per node is too large for the GPU RAM.
Above 100 nodes the amount of work in a batch of tasks is insufficient for
good parallelism.



Application Coulomb

with input parameters d = 3, k = 30 and precision 10−12

Time (seconds)

Compute CPU-only GPU-only CPU-GPU compute
nodes compute compute no rank red.

Actual Optimal
rank red. no rank red. CPU-GPU

Overlap

1 147 447 212 172 144
2 115 299 90 60 69
4 114 234 55 39 45
6 96 201 35 25 30
8 102 205 37 25 31

Table V: CPU-only, GPU-only and hybrid computation scale-up with
the increase in number of compute nodes. 3-D tensors with k = 30 are
used. The desired precision is set to 10−12. In the presented results, the
CPU-only compute version uses 16 threads, while the GPU-only compute
and hybrid versions use 6 CUDA streams and 15 CPU threads. The CPU-
GPU dispatcher thread is also active. For the hybrid CPU-GPU case, the
CPU-only compute and GPU-only compute times were taken into account
in order to divide work optimally between the CPU and the GPU.

4-D Time-Dependent Schrodinger Equation

k = 14, precision 10
−14 (with rank reduction)

Time (seconds)

Compute CPU-only GPU-only CPU-GPU compute Speedup

nodes compute compute of CPU-GPU

(using cuBLAS) Optimal version

CPU-GPU over CPU-only

Actual Overlap version

100 985 873 664 463 1.4

200 759 580 524 329 1.4

300 739 533 308 310 2.3

400 718 448 299 276 2.4

500 648 339 277 223 2.3

Table VI: Timings for the Apply part of the MADNESS 4-dimensional
Time Dependent Schrodinger Equation (TDSE) for k = 14 and threshold
10−14 on Titan. Various runs used between 9 and 14 CPU threads.
Observations showed no significant scale-up when using more than 9
threads, so the variable number of CPU threads used does not impact
reported results.

ure 6 compares the custom kernel with cuBLAS for a batch

of matrix multiplications corresponding to 4-dimensional

tensor products. In this second case the multiplications are

of a (k3, k) matrix with a (k, k) matrix.
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Figure 5: Matrix multiplications corresponding to 3-dimensional tensor
products. Measured performance (in GFLOPS) is for batches of 60 multi-
plications. Higher is better. Each matrix multiplication is (k2, k)× (k, k).
Our custom kernel is denoted by cu mtxm kernel.
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Figure 6: Matrix multiplications corresponding to 4-dimensional tensor
products. Measured performance (in GFLOPS) is for batches of 20 multi-
plications. Higher is better. Each matrix multiplication is (k3, k)× (k, k).
Our custom kernel is denoted by cu mtxm kernel.

A. Analysis of Results

Table III presents results for running a Coulomb applica-

tion with precision 10−10. This application scales well up to

16 nodes. Above this threshold there are too few tasks for

good load balancing. MADNESS uses static load balancing.

To scale above 16 nodes, a larger Coulomb application

(with precision 10−11) was needed (see Table IV). This

second application consists of 154,468 tasks, and it scales

up to 100 nodes. Larger applications would scale beyond

100 nodes. The 4-dimensional TDSE application (see Ta-

ble VI) scales up to 500 nodes. It consists of 542,113 tasks,

but these tasks have more computation than the tasks for the

3-dimensional Coulomb application, since the matrices are

2-dimensional projections of 4-dimensional tensors.

Note that the speedup of the computation with respect

to the number of compute nodes in Table V is not linear

since work is not distributed evenly to all compute nodes.

MADNESS uses the concept of a process map to specify the

distribution of tasks to nodes. In these tests (except Table III

and Table IV), the process map assigns more work to some

of the nodes. Note that there is no speedup from 6 to 8

compute nodes. Under the current process map there is not

enough work to distribute to 8 compute nodes in this test.

Also, for both 6 and 8 compute nodes, the theoretical

optimal CPU-GPU computation overlap, calculated taking

into account the time for CPU-only compute and GPU-

only compute, is higher than the actual time obtained. This

can happen because the formula for calculating the optimal

CPU-GPU overlap considers the applications to be 100%

compute-intensive. However, this is not the case in practice:

the tested applications also have data-intensive parts that

account for a non-dominating, but still significant fraction

of the running time.

An issue for the CPU-only version for larger tensors (as

in the case of Table V) is that the computation is saturated

by 10 threads, because the working set size is much larger

than 16 MB, which is the aggregate size of the L2 cache on

the compute nodes of Titan.

The same statement is true for the CPU-only version of an

even larger computation, the 4-dimensional Time Dependent



Schrodinger Equation (TDSE).

A 4-dimensional TDSE computation (see Table VI) re-

quires hundreds of compute nodes. For the operations with

larger tensors employed in this application we used cuBLAS,

since this is the regime in which cuBLAS performs well

(large matrix multiplications). Aside from custom CUDA

kernels, all other MADNESS extensions were used for these

tests. As discussed before, the scale-up is not linear, because

of the way MADNESS distributes work using process maps.

Table VI shows that the GPU version scales better than

the CPU version. The reason is that some compute nodes

are assigned too few tasks at one time to constantly keep

all the CPU cores busy. Currently there is no MADNESS

CPU implementation of multiple threads working on the

same multiplication, whereas for the GPU there is (by using

cuBLAS). Therefore, by using the GPU we can efficiently

perform large multiplications that are slow on the CPU. The

overlapping of the CPU and GPU computation yields good

results for 4-dimensional TDSE, as presented in Table VI.

Once again we notice the “super-optimal” overlap of CPU

and GPU computation in Table VI, for the case of 300 nodes.

As explained before, the reason is the contribution of the

data-intensive part of the computation, which is not taken

into account when the work division between the CPU and

the GPU is performed.

The CPU, besides computation, also has to run all prepro-

cess and postprocess tasks, which are heavily data-intensive,

thus incurring a penalty besides computation. In addition, the

dispatcher CPU thread has to rearrange and batch data for

the GPU, which also incurs an extra overhead.

IV. RELATED WORK

There has been significant related work that addresses

both aspects (code reorganization and GPU execution) of

migrating an existing HPC scientific framework to hybrid

CPU-GPU computing.

As the two migration aspects are orthogonal, we present

related work relevant to each of the aspects.

A. Code Reorganization for Hybrid CPU-GPU Architec-

tures

MapReduce-like Programming Models for Hybrid

CPU-GPU: A number of MapReduce frameworks have

been proposed for GPU programming in recent years: for

NVIDA GPUs He et al. proposed Mars [12] and Catan-

zaro et al. proposed [13], while for AMD GPUs Elteir et al.

proposed [14]. These frameworks only address designing

the GPU computation phase as a MapReduce operation, and

do not provide solutions for hybrid CPU-GPU computing,

such as reorganizing the computation so that it leverages

both the CPU and GPU and so that it fits with an existing

programming environment.

There are, however, MapReduce-like frameworks for hy-

brid CPU-GPU computations, such as MapCG [15] or

GPMR [16]. Users can write a MapCG or GPMR program

and the framework will translate it into either a many-core

CPU implementation, a GPU implementation, or a hybrid

CPU-GPU implementation. Both MapCG and GPMR have

mostly been employed for applications that heavily favor

either the CPU or the GPU. In our case, we are looking at

applications that do not heavily favor either the host CPU

or the device GPU.

Dataflow Graphs for Hybrid CPU-GPU: An interesting

approach to providing a high-level programming model for

hybrid CPU-GPU systems is CnC-CUDA [17], a declarative

deterministic coordination language that is an extension of

Intel’s Concurrent Collections (CnC) [18]. Programming in

CnC-CUDA involves expressing the computation as a static

graph in which the nodes can be dynamic computation items,

data items and control items. While this approach may be

efficient for some algorithms, it is too limiting for complex

computations. The structure of such computations cannot

easily be described in a static graph.

Closely related to our work is the SkePU [19] skeleton-

based framework for hybrid CPU-GPU computing. SkePU

provides a set of complex programming skeletons, that

are well-suited for GPU constructs such as Map, Reduce,

MapReduce, MapOverlap, MapArray, Scan (for data par-

allelism), and Farm (for task parallelism) SkePU can be

used in conjunction with StarPU [20] (a runtime system for

heterogeneous multicore platforms). However, there is no

built-in support for aggregating tasks of the “same kind”,

which is an important feature for both task scheduling and

delayed data access, as needed in this work.

General heterogeneous computing frameworks, such as

Harmony [21] or StarPU [20], have a scheduler at their

core. The scheduler can use framework-provided schedul-

ing policies, or users can implement their own scheduling

policies. These frameworks can be used together with the

work presented here.

B. High-level Solutions for obtaining Efficient GPU code

Writing efficient GPU code is a cumbersome task. For lin-

ear algebra, libraries such as cuBLAS have been developed.

We have found that cuBLAS is efficient for some irregular

kernels, as long as the computation to data access ratio is

not very small. When that ratio is very small (< 30) custom
kernels seem to be the only solution that results in acceptable

performance.

Recent hybrid computing solutions such as the CAPS

Hybrid Multi-core Parallel Programming (HMPP) [22], Ope-

nACC [23] or the OpenMP extensions of [24] rely on the

developer inserting compiler directives in the code for GPU

processing. Both HMPP and OpenACC have been inspired

by OpenMP [25], a compiler directive approach to multi-

threaded CPU computing. As of now, they cannot compete

with custom approaches for irregular kernels.
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VI. CONCLUSION AND FUTURE WORK

Scalability of an irregular computation was demonstrated

through the level of 500 hybrid CPU-GPU nodes. The key

was separation of the work into data-intensive routines on

the CPU and compute-intensive tasks on the GPU. The data

was aggregated for efficient transfer between CPU and GPU.

Multiple kernels were streamed to the GPU, with the GPU

executing 5 streams at once. Simultaneously, each of the

16 CPU cores was also executing either the dispatcher or

another kernel. An overall speedup of 2.3 was achieved over

a CPU-only implementation.

The CPU already employs rank reduction. Implementing

it on the GPU, could further speed up the GPU computation.
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