
Transparent Adaptive Library-Based Checkpointing for Master-Worker Style
Parallelism

Gene Cooperman∗ Jason Ansel
College of Computer and Information Science

Northeastern University
Boston, MA 02115

{gene,jansel,xqma}@ccs.neu.edu

Xiaoqin Ma

Abstract

We present a transparent, system-level checkpointing
solution for master-worker parallelism that automatically
adapts, upon restart, to the number of processor nodes
available. This is important, since nodes in a cluster fail.
It also allows one to adapt to using multiple cluster parti-
tions and multiple resources from the Computational Grid,
as they become available. Checkpointing a master-worker
computation has the additional advantage of needing to
checkpoint only the master process. This is both fast and
more economical of disk space. This has been demonstrated
by checkpointing Geant4, a million line C++ program. Our
solution has been implemented in the context of TOP-C
(Task Oriented Parallel C/C++), a free, open-source par-
allel package, although it can easily be ported to additional
master-worker packages.

1 Introduction

There is now a rich literature on checkpointing tech-
niques for parallel computation on a cluster [1, 7, 25, 26,
28, 34, 35]. Nevertheless, a thorny issue remains. How does
one checkpoint and restart a parallel computation, if the
number of processor nodes currently available is different
from the original number of nodes? This issue may occur,
for example, if half of a cluster (perhaps the network hub for
a rack) fails. It may happen if a shared cluster facility be-
comes more heavily used, and so fewer idle nodes are avail-
able. In Grid computations, this situation occurs as resource
availability changes during the weekend or overnight. Con-
versely, if even more nodes become available (perhaps on
the Grid or on a cluster), one wishes to checkpoint a com-

∗This work was partially supported by the National Science Foundation
under Grants CCR-0204113 and ACIR-0342555, and by the Institute for
Complex Scientific Software (ICSS, http://www.icss.neu.edu/).

putation and then restart it to employ the additional nodes.
We define adaptive checkpointing as the ability to check-

point a parallel computation on some number of nodes, and
then efficiently restart the computation on a different num-
ber of nodes. Our solution is a system-level one. The appli-
cation writer does not declare what data structures to check-
point. Furthermore, the solution is transparent. The appli-
cation writer need not add code to request a checkpoint at
appropriate locations. The system-level strategy avoids the
labor-intensive and error-prone work of explicitly check-
pointing the many data structures of a large program.

The master-worker style of parallelism is especially ap-
propriate for adapting a computation to the number of nodes
available. This has been the basis of most meta-computing
packages [6, 19, 31, 32], which allow a master or control-
ling process to dynamically spawn additional processes on
newly available worker nodes. Meta-computing also is tol-
erant of worker process failures.

Although meta-computing solutions would be attractive
for adaptive checkpointing, it has one fatal flaw. It is not
tolerant of failure by the master process.

Hence, the challenge of adaptive checkpointing
for master-worker parallelism is to checkpoint the
state of the master, along with sufficient addi-
tional state information, so as to either restart the
worker processes or spawn new ones, while not
losing any ongoing computational tasks on the
worker processes.

Adaptive checkpointing has the important advantage of
needing to checkpoint only one process: the master pro-
cess. This makes checkpointing fast and economical of disk
space. In experiments, we checkpoint and restart the master
process in seconds. (For an image up to 200 MB, we check-
point in less than 1 second.) Upon restart, any interrupted
worker tasks will be restarted from the beginning.

While there is a common perception that master-worker
style parallelism is limited to “embarrassingly trivial” paral-



lel programs, this is not the case. TOP-C has been designed
as a master-worker paradigm able to handle very general
models of parallelism. It allows TOP-C application writers
to easily code parallel strategies based, for example, on op-
timistic concurrency, dataflow diagrams, and other parallel
models. The same principles apply to master-worker par-
allelism in any architecture (for example, MPI), with some
additional coding efforts.

Our implementation on top of TOP-C need only check-
point the master process and not the worker processes. This
is because TOP-C ensures that although the master may, for
example, modify global variables, worker processes will
mirror such changes. So, upon restarting from a check-
point, new worker processes can be created based on the
same checkpoint file as was used for the master process.

Implementation. Our solution is library-based. It does not
require any new kernel module or kernel modification. We
write wrappers around those system functions for which we
wish to detect information sent to and returned from the ker-
nel. The wrappers preserve the original behavior through
dlopen/dlsym in the case of system library calls, and
through syscall in the case of system calls to the ker-
nel. The use of syscall was pioneered by Condor [30].
See Section 4.4 for further discussion.

Section 2 provides a brief summary of the TOP-C par-
allel model, and now non-trivial parallelism is introduced
into a master-worker parallel style. Section 3 describes the
Geant4 application. Section 4 describes the higher level is-
sues of bringing the TOP-C master process into a consistent
state for checkpointing. Section 5 describes how fault tol-
erance is implemented for the case when worker processes
that fail. Section 6 presents experiments showing that the
master process can be checkpointed and restarted in less
than a second. Finally, Section 7 presents related work on
checkpointing.

2 Brief Overview of TOP-C: Non-Trivial
Master-Worker Parallelism

Task Oriented Parallel C/C++ (TOP-C) is a paralleliza-
tion library developed over a decade [8, 10, 11, 13, 14]. It
is designed to make it easy to convert a sequential program
to a parallel one. It is latency-tolerant, allowing it to easily
take advantage of multiple clusters, such as on a Grid [17].
One applies minimal modifications to a sequential program
in order to the invoke the API for the TOP-C parallel library.

TOP-C has been used for many parallelizations on a
wide variety of computations, several of them being the
largest computations of their kind at the time. Some of
its applications include linear algebra [12],construction of
large permutation representations from matrix representa-
tions [18, 23, 33], coset enumeration [21, 20], and con-
densation of matrix representations [24, 22]. The TOP-

Task

Shared Data

Data
Output

Data
Input

Figure 1. TOP-C Concept: The Task

C architecture has also been implemented in GNU Com-
mon LISP [8]and GAP (Group, Algorithms and Program-
ming) [14]. Especially notable is the parallelization of
Geant4 (see 3).

2.1 TOP-C and the Task

TOP-C is built around the concept of a task. A sequential
program usually has a small number of functions and inner
loops where most of the time is spent. For simplicity, we as-
sume only one such function. We identify the body of this
function with the task. The arguments to the function are
then identified with the task input. The return value is iden-
tified with the task output. Any global variables or other
data outside the local scope are identified as shared data. A
TOP-C application should not modify the shared data ex-
cept through a TOP-C UPDATE action (see Section 2.2).

The callback functions can best be understood by con-
sidering three TOP-C concepts:

1. The Task (executed on a worker, see Figure 1)

2. The Action (directing the parallel strategy for TOP-C)

3. The Shared Data (common global data across all pro-
cesses

An application writer writes a TOP-C application by
defining the four TOP-C callback functions denoted in Fig-
ure 2. The four callbacks are registered with the TOP-C
library through a library function TOPC_master_slave.

1. Master: GenerateTaskInput() ⇒

task_input

2. Worker: DoTask(task_input) ⇒

task_output

3. Master: CheckTaskResult(task_input,
task_output) ⇒ TOPC_action

4. Everywhere: UpdateSharedData(task_input,
task_output)

Figure 2. User-Defined Callback Functions



2.2 The TOP-C Actions and Shared Data

TOP-C achieves its non-trivial parallelism through the
concept of shared data. Shared data is replicated on all pro-
cesses. Before describing how non-trivial parallelism is im-
plemented using a master-worker style, we must first review
the relation of TOP-C actions and shared data.

When a TOP-C application executes, the same binary
executes on the master and on all worker processes, as in
SPMD (single program, multiple data) style. As an idle
worker process becomes available, the master sends out a
task input (the result of GenerateTaskInput()), and
receives back from that worker a task output (the result
of DoTask(taskInput)). When a task completes, the
master process chooses one of the three primary actions,
NO_ACTION, UPDATE and REDO.

Upon NO_ACTION, nothing further is done. Upon
UPDATE, the shared data is modified uniformly
across the master and all workers. (Recall that the
shared data is any persistent data, such as global
variables.) This uniformity is enforced by executing
UpdateSharedData(taskInput, taskOutput)
on each process.

TOP-C requires that the shared data be modified only
through this UPDATE action, in order to maintain its unifor-
mity. Hence, the TOP-C contract states that an application
writer may directly access the shared data, but he or she may
not modify the shared data, except through an UPDATE ac-
tion. This contract ensures that if the shared data is initially
uniform across all processes, it will remain so.

Finally, upon REDO, the same task is repeated on the
original worker process. Note that the REDO action is use-
ful only if TOP-C has previously modified the shared data
due to an UPDATE action. In this case, the original task will
be recomputed, but using the latest value of the shared data.
This will produce a different task output.

2.3 Implementing Parallel Strategies in
TOP-C

Given a working sequential application, and a paral-
lel strategy, a working TOP-C application can usually be
quickly implemented. We demonstrate this by considering
three scenarios for parallelization:

1. trivial parallelism

2. optimistic concurrency

3. data flow

2.3.1 Implementation of Trivial Parallelism

For trivial parallelism, we identify the task with the function
to be executed on each worker process. Upon completion of
each task, the master process chooses NO_ACTION.

2.3.2 Implementation of Optimistic Concurrency for
Parallelism

A second strategy easily implemented in TOP-C is one of
optimistic concurrency. In databases, a policy of optimistic
concurrency means that a node executes a transaction with-
out committing the result. A check is then made whether
the two concurrent transactions were legitimately executed
in parallel. If the two transactions could not be legitimately
executed in parallel, then the first transaction is commit-
ted, while the second transaction is rolled back, and then re-
done. The TOP-C master process rolls back and re-executes
the second transaction by choosing a REDO action.

2.3.3 Implementation of Dataflow Strategy

The diagram in Figure 3 visually depicts this strategy. Imag-
ine the computation of DoTask() as a data dependency
computation. The top row represents the initial data and the
interior nodes represent values of temporary variables prior
to the final task output. The data at each node is computed
from previous nodes. After an UPDATE, some of the shared
data is modified (indicated by double circles in the top row).
This dependency on modified data propagates to intermedi-
ate and final data (indicated by the double circles below the
top row).

Suppose a worker process then receives a REDO request
after the UPDATE described above. Then DoTask() need
only compute the data nodes indicated by the double circles
below the top row of Figure 3.

Hence, in this paradigm, upon an initial DoTask(), the
application writer should save in a private global variable
all data nodes corresponding to its computation. (This pri-
vate global variable is considered to be outside the TOP-C
shared data.) Upon receiving an UPDATE request, the val-
ues of all modified nodes in the shared data (the double cir-
cles of the first row) are also noted in the private global vari-
able. Finally, upon a REDO request, only the computations
of the modified intermediate and final nodes (the double cir-
cles below the first row) must be recomputed.

Further Parallel Strategies For another strategy, appro-
priate for data parallel computation, see the application of
TOP-C to Gaussian elimination [12]. For a fuller descrip-
tion of the power and generality of TOP-C, see [9].

3 Geant4

Geant4 [2, 3, 15, 27], is a million line C++ program
to simulate particle-matter interaction. Among other uses,
it is being employed for the design of experiments at
CERN, where the largest collider in the world is being built.
Geant4, itself, is being developed with collaboration from



Task Input Shared Data

Task Output

Figure 3. DoTask() as a Data Dependency
computation (double circles = modified data)

ten national high energy physics laboratories around the
world.

The TOP-C parallelization of Geant4 [3, 4, 16, 17] is
distributed with Geant4. In particular, one version of that
parallelization is Grid-aware [16, 17].

4 Checkpointing and Restarting in Master-
Worker Parallelism

Because TOP-C uses a master-worker style of paral-
lelism and the master process already contains a copy of
the TOP-C shared data, the task of checkpointing can be
reduced to simply taking a snapshot of the master pro-
cess. This is based on the fact that in our system the same
state and shared data are uniformly maintained and updated
across all processes. Upon restart, this one snapshot serves
as a template to restore both master and workers’ states. We
create the snapshot by inducing a core dump in a forked
copy of the process.

Checkpointing takes place without waiting for workers
to complete the current outstanding tasks. The inputs for
the outstanding tasks are saved as part of the checkpoint file
and will be sent to workers again after restarting.

4.1 Checkpointing the Program State

Once the checkpoint routine is triggered, either by a
timer or by an explicit request from the application, we flush
write streams to disk. This “synchronizes” the stream with
the underlying file descriptor. The current file offsets for
each open file descriptor are next recorded in the file infor-
mation table. We then call setjmp to save stack context
information.

main()

a()

b()

c()

restoreCkpt()

lo
ng

jm
p

restored
memory
from
checkpoint

unchanged
memory

garbage

Figure 6. Transitioning into stack of check-
pointed program

Next, we trigger a core dump by forking a child pro-
cess, and calling abort in the child process. This is
efficient, because the implementation of fork employs
a copy-on-write policy. (Before calling abort, we call
setrlimit to temporarily allow a sufficient coredump
size.) The parent process then waits until the child process
has exited. The parent process renames the core file to
checkpoint_topc.PID.

A standard operating system optimization allows the
core dump to complete asynchronously. The pages of the
child process may still be in a kernel buffer when the child
process exits. This interacts well with the previous invoca-
tion of copy-on-write for the fork.

The file checkpoint_topc.PID now contains our
file information table, and a newly created call frame con-
text suitable for later use by longjmp. (See item (1) of
Figure 4.)

4.2 Restarting after a Checkpoint

To restart a saved checkpoint, the original user pro-
gram is run in the presence of an environment variable
TOPC_RESTART, whose value is the path of the check-
point file. The user program loads the checkpointed file
(core dump) in four steps: 1) grow the new program stack
past the old program stack; 2) load all segments of the core
dump with the writable flag into memory, overwriting our
current program; 3a) longjmp into the original stack and
re-initialize TOP-C; and 3b) restore the kernel file descrip-
tor state from the file information table by opening the listed
file descriptors and seeking to their listed file offsets. (See
Figure 5.)

One of the challenges is how to overwrite all of the cur-
rent process’s data and stack memory with that of the check-
pointed data at the same time that the current process is exe-



before checkpoint

information collected right

(1) Extra stack/file descriptor

HeapData StackCheckpoint

(coredump)

Contents

Library
Data

ELF

Headers

(2) Standard system coredump triggered to write a snapshot of memory to file.

Checkpointed

Program

Memory

Text Data Heap StackLibrary
Text

Library
Data

(1)
(2) (2)(2) (2)

Figure 4. Saving program state to core

HeapDataText

Data Heap

Library
Text

Library
Data

Library
Data

Stack

Stack

(1)

(3) Restore file descriptors/streams and longjmp() into checkpointed stack
(2) Load data (incl. stack) from checkpoint file to location it was in in old process (overwriting existing memory)
(1) Grow stack past the old stack, so top will be safe to use without destroying data

Headers
ELF Data Heap Library

Data
StackCheckpoint

(coredump)
Contents

(2) (2) (2) (2)

New
Program
Instance

Memory

At Startup:

Overwriting

Checkpoint 

Data:

(3)

Figure 5. Restoring core to a running process

cuting. We overcome the problem by first growing the orig-
inal stack until it is larger than the stack of the checkpointed
program. The old stack is copied to the bottom of the cur-
rent program’s stack.

Now, the stack is a hybrid of the current and old stacks.
Too many returns would be unsafe, as we would hit the
boundary between the two stacks. We escape from this
dilemma by calling longjmp. This brings us back into
the old stack, while also shrinking the stack to the size of
the old program. (See Figure 6.)

The process is now effectively a duplicate of the orig-
inal, as it had existed before we checkpointed. Next, we
restore file descriptors from the file information table, and
call freopen on open streams. We then restart the worker
processes. If the user defined an optional restore function,
we call it. We then continue where the checkpoint left off.

Two other issues must also be addressed by the restart
routine. First, upon restart, the loader may not have mapped

all memory regions from our checkpointed process. For ex-
ample, in GNU libc malloc calls above a threshold will
in turn call mmap. We need to call mmap to create missing
memory segments at their original address, prior to copying
from the checkpointed file.

We do this by calling mmap with the suggested address.
If the suggested address is not used by mmap, then we
assume that the segment was previously allocated by the
loader, and we unmap our copy of that segment. We do not
use the mmap parameter MAP_FIXED, since its behavior
upon collision with an existing segment is not standardized.
For example, the GNU version unmaps the pre-existing seg-
ment.

The second issue for restart is that certain library func-
tions such as gethostbyname fail after restart. This
is because such functions communicate with a separate
nameserver process. We suspect that our original pro-
cess has cached the original socket address of the name-



server in the data segment of a system library. Our solu-
tion is to write a wrapper for gethostbyname that cre-
ates a new child process. The child process freshly invokes
gethostbyname, and returns the desired information to
the parent process.

4.3 Maintaining State of Open Files

To give the illusion that the status of open files has not
changed across a checkpoint, we maintain a file informa-
tion table to record the open file descriptors, which would
otherwise be known only to the kernel. To populate this ta-
ble, we intercept the following library calls: open, fopen,
fdopen, freopen, creat, close, fclose, dup and
dup2. We define our own wrapper functions of the same
name. After intercepting a call by the application, the wrap-
per uses dlopen and dlsym (or in the case of kernel sys-
tem calls such as open, it uses syscall) to call the original
libc implementations. This allows us to transparently know
what files are currently opened by the application. The list
of open file descriptors and open streams is then recorded
in the file information table. At restart time we will then
recreate the file descriptor and stream states as described in
the file information table.

Streams represent a special case. The file descriptor is
maintained in kernel space, while the stream is maintained
in user space. Hence, after the underlying file descriptor
is reopened with the previous file offset, we use freopen
to reassociate the existing stream with the required file de-
scriptor.

4.4 Assumptions and Limitations

The package has been targeted toward UNIX and the
ELF binary format. The current implementation runs in
Linux. It could be ported to UNIXes using loader formats
other than ELF. One key requirement to port to another op-
erating system is the ability to copy data sections from a
core file to their original location in memory. Addition-
ally, it is assumed that if we run a program twice, its mem-
ory will be laid out at the same absolute addresses in vir-
tual memory each time. This is important since user code
will have pointers to global addresses in data. Relocating
the data will invalidate those global addresses. We also
use dlsym/dlopen and syscall to implement wrap-
pers around system library calls and system calls.

Following are some important requirements to success-
fully restart the program:

• The dynamic libraries used by the application must not
change between checkpoint and restart.

• Certain environment variables, LD PRELOAD,
LD LIBRARY PATH , and LD BIND NOW ,
must not change between checkpoint and restart.

• The location of memory segments must not change be-
tween checkpoint and restart. (Also, see the following
paragraph.)

As of Linux kernel 2.6.12, address randomization
was implemented for security purposes. Hence, upon
restart, a variable may have a different address than
originally. Currently, we turn this off via echo 0 >
/proc/sys/kernel/randomize_va_space. The
Linux implementers also plan a per process mechanism,
PF_RANDOMIZE, to turn off address randomization.

There is also a potential limitation to using wrappers
around calls to system libraries. This strategy assumes
that we can define our own function, e.g. open, that will
shadow all calls to the standard system routine, open. The
strategy fails under the following circumstances.

• A shared library may contain its own statically linked
version of open, internal to that system library. In
such cases, internal calls from the system library may
not be bound to our own wrapper function, open.

• A library may call a versioned symbol, such as
open@@GLIBC_2.1. For example, the GNU C++
standard library uses this trick to guarantee a fixed,
stable implementation when it calls symbols from
@libc.so@. This requires our checkpointing library to
track versioned symbols and intercept them, although
version numbers may change in future versions of the
C++ standard library.

While we can currently work around the above issues,
we are investigating the use of the proc kernel interface
instead of wrappers where such issues may arise. For exam-
ple, our calls to open and friends are used to detect open
file descriptors, while the kernel directly exports that infor-
mation through /proc/PID/fd/.

Currently, we do not support heterogeneous comput-
ing in our implementation, since that would require us to
checkpoint an example worker process for each architecture
present (aside from the architecture of the master).

5 Fault Tolerance as Worker Processes Fail

TOP-C tries to detect two failure modes: slow worker
nodes and dead worker nodes. A worker node is considered
dead when the socket to that node is no longer alive. This
occurs and is detected when the worker process has died
(POSIX ECONNRESET), or when the network socket con-
nection has died (POSIX EPIPE). A worker node is consid-
ered slow if the corresponding processor is heavily loaded,
lacks sufficient resources, or when a network connection is
experiencing intermittent network failures. A slow node is
detected if a worker fails to return from a task in a timely
manner, and if a replicate of the task then finishes earlier.



6 Performance

6.1 Checkpoint Timing

We achieve fast checkpointing by pushing as much work
as possible to be performed on restart. The logic is that the
checkpointing will occur more often than restart.

Figure 7. Time to checkpoint, excluding asyn-
chronous flush of the checkpoint file to disk.
(The master process is delayed by the time
shown.) Spikes (e.g. at 80 MB) are artifacts
that vary between runs.

As seen in Figure 7, the checkpoint timing scales lin-
early with respect to memory usage. This is dominated by
the time to fork and wait on the child process while it calls
abort() to trigger a core dump. The fact that the times to
checkpoint are faster than disk bandwidth demonstrate that
the operating system is writing the core dump to disk asyn-
chronously. After the process resumes computation, there
is still a delay before the full core dump is flushed to disk.

In a second experiment, we measure that delay. We insert
a call to sync immediately after invoking the checkpoint.
The time for sync to execute represents the additional de-
lay and is shown in Figure 8,

Our checkpointing solution only involves the master
node. This means that none of the worker nodes are inter-
rupted during a checkpoint. Timings should theoretically be
completely independent of the number of nodes used. We
confirm this with the test described in Figure 9.

Tests were run on a Mobile Athlon64 3000+ processor
with 512 KB cache and 1 GB of RAM. The operating sys-

Figure 8. Time for sync to complete when
called immediately after a checkpoint. This
time is normally concurrent with the ongoing
computation.

tem was Debian Linux (“Sid”) with kernel 2.6.14. The C
library used was glibc 2.3.5.

6.2 Restart Timing

The cost of restarting a checkpoint can be broken into
three parts:

1. The cost to restore memory from checkpoint. This is
similar to the time to read the entire checkpoint file
from disk. It grows as RAM usage on the master
grows. In our informal experiments, this time was al-
ways bounded above by the times of Figure 8.

2. The cost to reinitialize the cluster. This grows as the
number of nodes in new cluster grows. This is approx-
imately the same as the time to execute MPI_Init,
and is usually very reasonable.

3. The cost to redo lost progress. Since we only check-
point on master, all progress on outstanding tasks is
lost. This work must be redone before we have reached
the point at which the checkpoint was taken. The
time to reach pre-checkpoint progress could be ap-
proximated by (AVG-TASK-LENGTH / 2) * (NUM-
SLAVES-BEFORE-CKPT / NUM-SLAVES-AFTER-
CKPT). The latter of the two terms represents the pos-
sibility of using fewer or more processors upon restart.



Figure 9. Checkpoint timings for
Geant4 (parallel application from
geant4/example/extended/parallel/
ParN02).

Most TOP-C applications will have short task times. If
an application were to have very long tasks, this would be
an indication that we are in a scenario equivalent to running
multiple long-running independent applications.

Experimental results for restarts are omitted because
restarts happen rarely and the timings for Part 3 vary greatly
among different user applications.

7 Related Work

Checkpointing packages are sometimes classified
as system-level (system checkpoints all data) versus
application-level (application directs which data to check-
point). Additionally, a system-level package is transparent
if the application writer need not specify where a check-
point is allowed. Additionally, a checkpointing package
may or may not require kernel modifications. Check-
pointing packages for parallel computation may also be
classified as blocking (requiring all processes to stop at a
barrier) or non-blocking.

One of the first checkpointing packages was Con-
dor [30], which provided system-level checkpointing with-
out modifications to the kernel. Konuru et al. [28] pro-
vide an early example of application-level checkpointing
— specifically for PVM. These implementations were in-
tended primarily to support process migration for single
processes.

Since then, system-level checkpointing of the multi-
ple processes of a parallel computation has become avail-

able [26, 34, 29]. Some more recent checkpointing inno-
vations are in-memory checkpointing [35] and incremen-
tal checkpointing of modified data only [1]. Each of the
above system-level packages must checkpoint all participat-
ing processes in a parallel computation.

The work of this paper falls into the category of trans-
parent, system-level checkpointing that does not modify the
kernel. By restricting to master-worker parallelism, it gains
efficiency by checkpointing only the master process. For a
comparison of general checkpointing techniques for paral-
lel computation that do not require a barrier, see the work
of Bouteiller et al. [5].

8 Acknowledgements

We gratefully acknowledge discussions with Mike
Rieker about implementation techniques.

References

[1] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adap-
tive incremental checkpointing for massively parallel sys-
tems. In ICS ’04: Proceedings of the 18th annual interna-
tional conference on Supercomputing, pages 277–286, New
York, NY, USA, 2004. ACM Press.

[2] S. Agostinelli et al. Geant4: a simulation toolkit. Nuclear
Instruments and Methods in Physics Research Section A,
506(3):250–303, July 2003. (over 100 authors, including
G. Cooperman).

[3] J. Allison et al. Geant4 developments and applications.
IEEE Transactions on Nuclear Science. to appear (73 au-
thors, incl. G. Cooperman).

[4] G. Alverson, L. Anchordoqui, G. Cooperman, V. Grinberg,
T. McCauley, S. Reucroft, and J. Swain. Using TOP-C for
commodity parallel computing in cosmic ray physics sim-
ulations. Nuclear Physics B (Proc. Suppl.), 97:193–195,
2001.

[5] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello.
Coordinated checkpoint versus message log for fault tolerant
MPI. In 2003 IEEE International Conference on Cluster
Computing (Novel Computing Session), 2004.

[6] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb:
Towards world-wide supercomputing. In Proceedings of the
Seventh ACM SIGOPS European Workshop on System Sup-
port for Worldwide Applications, 1996.

[7] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Automated application-level checkpointing of MPI pro-
grams. In PPoPP ’03: Proceedings of the ninth ACM SIG-
PLAN symposium on Principles and practice of parallel pro-
gramming, pages 84–94, New York, NY, USA, 2003. ACM
Press.

[8] G. Cooperman. STAR/MPI: Binding a parallel library to
interactive symbolic algebra systems. In Proc. of Interna-
tional Symposium on Symbolic and Algebraic Computation
(ISSAC ’95), volume 249 of Lecture Notes in Control and
Information Sciences, pages 126–132. ACM Press, 1995.



software at URL: http://www.ccs.neu.edu/home/
gene/software.html\#starmpi.

[9] G. Cooperman. TOP-C: Task Oriented Parallel C/C++.
1996–. http://www.ccs.neu.edu/home/gene/
topc.html, includes 40-page manual.

[10] G. Cooperman. TOP-C: A Task-Oriented Parallel C in-

terface. In 5
th International Symposium on High Perfor-

mance Distributed Computing (HPDC-5), pages 141–150.
IEEE Press, 1996. software at http://www.ccs.neu.
edu/home/gene/topc.html.

[11] G. Cooperman. GAP/MPI: Facilitating parallelism. In Proc.
of DIMACS Workshop on Groups and Computation II, vol-
ume 28 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 69–84. AMS, 1997.

[12] G. Cooperman. Practical task-oriented parallelism for Gaus-
sian elimination in distributed memory. Linear Algebra and
its Applications, 275–276:107–120, 1998.

[13] G. Cooperman. TOP-C: Task-Oriented Parallel C for dis-
tributed and shared memory. In Workshop on Wide Area
Networks and High Performance Computing, volume 249 of
Lecture Notes in Control and Information Sciences, pages
109–118. Springer Verlag, 1999. http://www.ccs.
neu.edu/home/gene/topc.html.

[14] G. Cooperman. Parallel GAP: Mature interactive paral-
lel computing. In Groups and Computation III, pages
123–138. DeGruyter Publishers, 2001. software at URL:
http://www.ccs.neu.edu/home/gene/pargap.html.

[15] G. Cooperman. Parallelism in Geant4. In Geant4
2003 Workshop, TRIUMF, Vancouver, 2003.
http://www.triumf.ca/geant4-03/talks/
05-Friday-PM-1/05-G.Cooperman/.

[16] G. Cooperman, H. Casanova, J. Hayes, and T. Witzel. Us-
ing TOP-C and AMPIC to port large parallel applications
to the computational grid. In Proc. of 2nd IEEC/ACM In-
terantional Symposium on Cluster Computing and the Grid
(CCGrid), pages 120–127. IEEE Press, 2002.

[17] G. Cooperman, H. Casanova, J. Hayes, and T. Witzel. Using
TOP-C and AMPIC to port large parallel applications to the
computational grid. Future Generation Computer Systems
(FGCS), 19:587–596, 2003.

[18] G. Cooperman, L. Finkelstein, M. Tselman, and B. York.
Constructing permutation representations for matrix groups.
J. of Symbolic Computation, 24:471–488, 1997.

[19] G. Cooperman and V. Grinberg. TOP-WEB: Task-oriented
metacomputing on the web. International Journal of Paral-
lel and Distributed Systems and Networks, 1:184–192, 1998.

[20] G. Cooperman and V. Grinberg. Scalable parallel coset enu-
meration: Bulk definition and the memory wall. J. Symbolic
Computation, 33:563–585, 2002.

[21] G. Cooperman and G. Havas. Practical parallel coset enu-
meration. In Proc. of Workshop on High Performance Com-
putation and Gigabit Local Area Networks, volume 226 of
Lecture notes in control and information sciences, pages 15–
27. Springer Verlag, 1997.

[22] G. Cooperman, G. Hiss, K. Lux, and J. Müller. The Brauer
tree of the principal 19-block of the sporadic simple Thomp-
son group. J. of Experimental Mathematics, 6(4):293–300,
1997.

[23] G. Cooperman, W. Lempken, G. Michler, and M. Weller. A
new existence proof of Janko’s simple group j4. In Progress
In Mathematics, volume 173, pages 161–175. Birkhauser,
1999.

[24] G. Cooperman and M. Tselman. New sequential and paral-
lel algorithms for generating high dimension Hecke algebras
using the condensation technique. In Proc. of International
Symposium on Symbolic and Algebraic Computation (ISSAC
’96), pages 155–160. ACM Press, 1996.

[25] R. de Camargo, A. Goldchleger, F. Kon, and A. Goldman.
Checkpointing-based rollback recovery for parallel applica-
tions on the InteGrade Grid middleware. In Proc. of 2nd
Workshop on Middleware for Grid Computing, pages 35–
40. ACM Press, 2004.

[26] M. D. Dikaiakos, editor. Grid Computing, Second European
Across Grids Conference, AxGrids 2004, Nicosia, Cyprus,
January 28-30, 2004, Revised Papers, volume 3165 of Lec-
ture Notes in Computer Science. Springer, 2004.

[27] Geant4 webpage. Geant4, 1999–. http://wwwinfo.
cern.ch/asd/geant4/geant4.html.

[28] R. B. Konuru, S. W. Otto, and J. Walpole. A migratable user-
level process package for pvm. J. Parallel Distrib. Comput.,
40(1):81–102, 1997.

[29] O. Laadan, D. Phung, and J. Nieh. Transparent networked
checkpoint-restart for commodity clusters. In 2005 IEEE In-
ternational Conference on Cluster Computing. IEEE Press,
2005.

[30] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of UNIX processes in the Con-
dor distributed processing system. Technical report 1346,
University of Wisconsin, Madison, Wisconsin, April 1997.

[31] C. Pinchak, P. Lu, and M. Goldenberg. Practical het-
erogeneous placeholder scheduling in overlay metacomput-
ers: Early experiences. In 8th International Workshop on
Job Scheduling Strategies for Parallel Processing, volume
2537 of Lecture Notes in Computer Science, pages 205–228.
Springer, 2002.

[32] SETI@home. http://setiweb.ssl.berkeley.
edu, 1996–.

[33] M. Weller. Construction of large permutation representa-
tions for matrix groups II. Applicable Algebra in Engineer-
ing, Communication and Computing, 11:463–488, 2001.

[34] N. Woo, S. Choi, hyungsoo Jung, J. Moon, H. Y. Yeom,
T. Park, and H. Park. MPICH-GF: Providing fault toler-
ance on grid environments. The 3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CC-
Grid2003), the poster and research demo session May, 2003,
Tokyo, Japan.

[35] G. Zheng, L. Shi, and L. Kale. FTC-Charm++: An
in-memory checkpoint-based fault tolerant runtime for
Charm++ and MPI. In 2004 IEEE International Conference
on Cluster Computing (Fault-Tolerant Session), pages 93–
103, 2004.


