
McMini and DeepDebug: Efficient Deterministic Replay of
Multithreaded Bugs

Gene Cooperman
gene@ccs.neu.edu

Khoury College of Computer Sciences, Northeastern University, Boston, MA

Sept. 18, 2025

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 1 / 22

Outline of Talk

1 Part 1: Teaching Students Not To Be Afraid of Multithreaded Programs

2 Part 2: DeepDebug: In-Situ Model Checking with Long-Running
Programs

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 2 / 22

Motivation for McMini: Teaching Students

We give freshman good tools for sequential programming: unit tests,
input-output tests, functional tests, regression tests, debuggers.
But for multithreaded programming (the first experience of students with
parallel programming), we often limit it to:

There are mutexes, semaphores and condition variables. Mu-
texes are for mutual exclusion (e.g., shared bank account: de-
posit/withdraw). Semaphores are for producer-consumer; Condi-
tion variables are for reader-writer programs.

Don’t depart from these three example programs or else
you might have a multithreaded bug (deadlock, livelock,
data race, segfault, other crashes).

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 3 / 22

McMini: Better Tools for Better Teaching

McMini (Mini-Model-Chcker):
Free and Open Source: https://github.com/mcminickpt/mcmini
Detailed Documentation: https://mcmini-doc.readthedocs.io/
Catches deadlock, segfault; and now livelock and data races
Easy-to-use: mcmini ./my-multithreaded-program

Support for GDB debugger to replay “buggy” thread schedule

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 4 / 22

https://github.com/mcminickpt/mcmini
https://mcmini-doc.readthedocs.io/

Why Teach Multithreading?

A We live in a multicore world!
B Multithreaded and parallel bugs are everywhere: “My Smart TV app is

freezing!” – “No problem. Just turn it off and turn it on again.”
C Developers use many-core computers to develop efficiently, and they

are then surprised when users on two-core computers report bugs.

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 5 / 22

McMini example

void * thread_worker1(void *forks_arg) {

for (int i = 0; i < 100; i++) {

pthread_mutex_lock(&mutex2);

pthread_mutex_lock(&mutex1);

pthread_mutex_unlock(&mutex1);

pthread_mutex_unlock(&mutex2); } }

void * thread_worker2(void *forks_arg) {

for (int i = 0; i < 100; i++) {

pthread_mutex_lock(&mutex1);

pthread_mutex_lock(&mutex2);

pthread_mutex_unlock(&mutex2);

pthread_mutex_unlock(&mutex1);

}

return NULL;

}

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 6 / 22

McMini example: output

mcmini.git/mcmini --quiet -m10 ./a.out

15. thread 1: pthread_mutex_lock(mut:2)

16. thread 2: pthread_mutex_unlock(mut:1)

17. thread 2: pthread_mutex_lock(mut:1)

THREAD PENDING OPERATIONS

thread 0: pthread_join(thr:1, _) [Blocked]

thread 1: pthread_mutex_lock(mut:1) [Blocked]

thread 2: pthread_mutex_lock(mut:2) [Blocked]

0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2,

***** Model checking completed! *****

*** DEADLOCK DETECTED ***

Number of traces: 39
Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 7 / 22

McMini Replay in Debugger

mcmini-gdb -m15 -t’0, 0, 0, 1, 1, ’ ./a.out

List of EXTENDED GDB commands:

mcmini -- mcmini <TAB> : show all mcmini commands

mcmini back -- Go back <count> transitions, by re-executing; default count=1

mcmini forward -- Execute until next transition; Accepts optional arg: <count>; or: end

mcmini help -- Prints help for getting started in McMini

mcmini printPendingTransitions -- Prints the next (pending) transition for each thread

mcmini printTransitions -- Prints the transitions currently on the stack

mcmini where -- Execute where, while hiding McMini internal call frames

(gdb)

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 8 / 22

Good Models for Teaching Multithreaded Programming

Resource model:
1 A mutex protects one resource: shared variable or other
2 A semaphore protects identical resources: producer slots, consumer

slots, thread in a thread pool, etc.
3 A condition variable protects resources with constraint policies: no two

writers at a time; priorities: writer-preferred, controller-preferred, etc.
Example programs:

SPLASH-2 and PARSEC benchmarks
The Little Book of Semaphores by Allen Downey:
https://greenteapress.com/wp/semaphores/

We need more examples both of correct and buggy programs!
Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 9 / 22

https://greenteapress.com/wp/semaphores/

McMini capabilities

SEE: https://mcmini-doc.readthedocs.io/
deadlock; assertion violation; segfault;
NEW: livelock; data races
Data races:

1 Compile target multithreaded program with LLVM.
2 Create an LLVM compiler plugin to interpose on access to global

variables (READ/WRITE).
3 LLVM interposition calls to McMini during READ/WRITE operations
4 McMini model checker defines appropriate rules for READ/WRITE;

Detects data races

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 10 / 22

https://mcmini-doc.readthedocs.io/

Outline of Talk

1 Part 1: Teaching Students Not To Be Afraid of Multithreaded Programs

2 Part 2: DeepDebug: In-Situ Model Checking with Long-Running
Programs

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 11 / 22

Combinatorial Explosion: The Achilles Heel of Model Checking

A model checkers test every thread schedule (up to isomorphism).
Algorithms like DPOR (Dynamic Partial Order Reduction) prune many
branches that are provably isomorphic to other branches that were tested.
However, model checkers continue to suffer from combinatorial explosion.
They may model a program for the first few seconds or maybe minutes, but
what then?
DeepDebug is a way to get around this problem.

DeepDebug complements the developer’s existing testing strategy.
DeepDebug does still relies on developer stress testing to find bugs.
But DeepDebug will produce an execution trace showing how the bug
occurred! (Recall the McMini execution traces.)

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 12 / 22

SOLUTION: Use Transparent Checkpointing!

The speaker has for 20 years, led a team in Transparent Checkpointing

“If you have a hammer,
then everything looks
like a nail.”

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 13 / 22

Strategy of DeepDebug: Phase I

Phase I:
1 Run the multithreaded program under DMTCP (package for

transparent checkpoint).
2 Checkpoint periodically: perhaps every 20 seconds
3 Upon crash, deadlock, assertion violation, or whatever, stop and begin

Phase II.

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 14 / 22

Strategy of DeepDebug: Phases II and II

Phase II:
1 Restart from the most recent checkpoint (or the one before that, if we

want more context).
2 Run under a modified McMini (the model checker).
3 Find an execution trace that ends in crash, deadlock, assertion

violation, or whatever.
4 Save the checkpoint file and execution trace (thread schedule) for

replay debugging
Phase III: The developer traces the thread schedule with debugger.

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 15 / 22

Strategy of DeepDebug: Overview

NOTE: We don’t promise to show you the path to the original bug. It might
be a path to a different bug. But who cares?

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 16 / 22

Strategy of DeepDebug: Moral

There was literature from around 2005–2015 investigating
deterministic replay

of bugs in long-running programs using logging, skeletons of the
execution, etc. They tried to be faithful to the original execution of the
program.

NOTE: We discard the requirement of faithful replay. But we do provide
deterministic replay for some bug.
Fix that bug, and then come back to us if you still have another one! :-)

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 17 / 22

Internals: Overview

Deep Debugging: Phase II
(Model Checking)

Deep Debugging: Phase I
(Production/Record State)

Target Process
(w/ libmcmini.so in
record mode)

ckpt 1 ckpt 2 ckpt 3

Model Checker (McMini)

Template
Process

TIME

TIME

CRASH!

Restart w/ model checker

multithreaded fork:

new branch new branch new branch

send state
of all threads

Seq:1,2,3,4
Seq:1,2,4,3

Seq:1,3,2,4

(Note the “multithreaded fork” for performance”.)
Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 18 / 22

DeepDebug: Performance

Benchmark
Native

Time (s)
Phase I with
Bookkeeping

Phase I with
Bookkeeping

+ckpt
Overhead (%)

(Phase I)
ABA 76.6 77.3 77.5 1.8
Dining Philosopher 77.2 78.3 79.4 2.0
Reader-Writer 74.9 75.6 76.0 1.5

ABA problem (data race: see later slide)
Dining Philosopher (mutex + deadlock)
Reader-Writer (condition variable with assertion failure due to bug)

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 19 / 22

DeepDebug: Performance

Benchmark

Total #
of branches
in Phase II

Total #
of buggy
branches

branches
before buggy
branch

branches
explored by
McMini

Dining Philosopher 352 283 34 612,000
ABA Problem 289 204 21 189,776
Reader-Writer 258 207 15 204,000

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 20 / 22

ABA Problem

"X"

NULL

"Z"

"Y"

TOP OF STACK

Thread A

"X"

NULL

"Z"

TOP OF STACK

Thread BThread A

NULL

"Z"

TOP OF STACK

Thread BThread A

(TOP OF STACK
 will point to "Y")

(TOP OF STACK
 now points to "Y")

THREAD A: THREAD B:
 x = pop();
 y = pop();
 push(x);

 Set up for: x = pop();
THREAD A:
 Execute: x = pop();

"Y" "Y"

"X"

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 21 / 22

Questions?

QUESTIONS?

Cooperman (Norhteastern U.) McMini and DeepDebug: Efficient Deterministic Replay of Multithreaded Bugs Sept. 18, 2025 22 / 22

	Part 1: Teaching Students Not To Be Afraid of Multithreaded Programs
	Part 2: DeepDebug: In-Situ Model Checking with Long-Running Programs

