
Checkpointing the Un-checkpointable:
the Split-Process Approach for MPI and Formal

Verification

Gene Cooperman∗

gene@ccs.neu.edu

Khoury College of Computer Sciences
Northeastern University, Boston, USA

November 15, 2019

∗
Partially supported by NSF Grants ACI-1440788 and OAC-1740218, and by grants from Intel Corporation, Raytheon, and Mentor Graphics (a
division of Siemens).

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 1 / 64

Table of Contents

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 2 / 64

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 3 / 64

DMTCP History

The DMTCP project and antecedents began almost 15 years ago, and is
widely used today:
http://dmtcp.sourceforge.net/publications.html

Typical use case for HPC: 12-hour batch time slot, an application is
expected to finish in 18 hours.
(NOTE: A resource manager such as SLURM can send a signal one hour
before the end of the time slot, giving the application time to checkpoint;
DMTCP can then transparently checkpoint the state.)

Ease of use (unprivileged and transparent):
dmtcp launch a.out arg1 arg2 ...

dmtcp command --checkpoint # from other terminal or window

dmtcp restart ckpt a.out *.dmtcp

(DMTCP also works for programs that are multi-threaded, distributed,
MPI-based,)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 4 / 64

http://dmtcp.sourceforge.net/publications.html

DMTCP Architecture: Coordinated Checkpointing

DMTCP

COORDINATOR

CKPT MSG

CKPT THREAD

USER PROCESS 1

S
IG

U
S

R
2

S
IG

U
S

R
2

USER THREAD B

USER THREAD A

CKPT MSG

S
IG

U
S

R
2

connection
socket

USER THREAD C

CKPT THREAD

USER PROCESS 2

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 5 / 64

Fundamental Research Question for the DMTCP Team

“What are the limits of checkpointing applications
in the real-world?”

PROBLEM: An application may store a session id, tty, network peer
address, TMPDIR for temporary files, process id, thread id, etc.
On restart, some or all of these are likely to change.

SOLUTION: Process virtualization: interpose on all calls to such ids; replace
actual id by DMTCP-defined virtual id.
PRINCIPLE: “Never let the application see a real id!”

Scalability:
Checkpointing HPCG: 32,752 CPU cores), and (NAMD: 16,368 CPU cores)
for checkpointing MPI applications natively over InfiniBand at TACC:
“System-level Scalable Checkpoint-Restart for Petascale Computing”,
Jiajun Cao et al., Int. Conf. on Parallel and Dist. Sys. (ICPADS’16), 2016
(To the best of our knowledge, this is 100 times larger than the previously
largest transparent checkpointing study in the literature.)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 6 / 64

Reinvent HPC (Pthread or MPI):
Ckpt + Split Processes + SimGrid

Goal: Efficient, flexible MPI programming (and Pthread and CUDA and . . .)

Ckpt + Split Processes + SimGrid = A NEW WORLD

Advantages: Software migration, cross-cluster migration, fault tolerance,
model checking with no intermediate model, bug diagnosis even after a long
computation, . . .

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 7 / 64

MPI Application

MPI Library

MPI Proxy Library
MPI Library

Terminology

Isolation - The “Split-Process” Approach

Upper-Half program Checkpoint and Restore

Lower-Half program Discard and Re-initialize

Single Memory Space

Standard C Calling Conventions
No RPC involved

LIBC

Network Libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 8 / 64

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 9 / 64

DMTCP Plugins

WHY PLUGINS?
Processes must talk with the rest of the world!

Process virtualization: virtualize the connections to the rest of the world

In short, a plugin is responsible for modeling an external subsystem, and
then creating a semantically equivalent construct at the time of restart.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 10 / 64

A Simple DMTCP Plugin: Virtualizing the Process Id

PRINCIPLE:
The user sees only virtual pids; The kernel sees only real pids

User Process
PID: 4000

User Process
PID: 4001

Virt. PID Real PID

4000 2652
4001 3120

Translation Table

getpid()
26524000

kill(4001, 9) KERNEL

4001
Sending signal 9
to pid 31203120

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 11 / 64

Plugins for EDA: A Real-world Example

EDA is “Electronic Design Automation” (circuit design for chips).
Part of a four-year collaboration between DMTCP team and Intel:

“Be Kind, Rewind — Checkpoint & Restore Capability for Improving
Reliability of Large-scale Semiconductor Design”, I. Ljubuncic, R. Giri,
A. Rozenfeld, and A. Goldis, IEEE HPEC-14, Sept., 2014.
(published solely by Intel co-authors)

Fictional scenario with ball-park numbers (no particular vendor):
Software circuit simulation: about 1 million times slowdown
Hardware emulation at back-end: about 1 thousand times slowdown
Cost of back-end hardware emulator: about $800,000
Use case A (for a new CPU design): Boot Microsoft Windows overnight
with emulator, and then test Microsoft Office.
Use case B: Boot Microsoft Windows overnight with emulator, and
checkpoint. In later iterations, restart, and then test Microsoft Office.

The above fictional scenario requires a DMTCP plugin to model the back-end
emulator. See publications with emulator vendors for details.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 12 / 64

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 13 / 64

MANA for MPI: MPI-Agnostic Network-Agnostic
Transparent Checkpointing

Full paper with details at:
“MANA for MPI: MPI-Agnostic Network-Agnostic Transparent
Checkpointing”, by R. Garg, G. Price, and G. Cooperman,
High Performance Distributed Computing (HPDC’19)

Not just an implementation, but a flexible principle with many applications:
IDEA: Load two independent programs into a single process, sharing a
single address space. (For a different approach, see “Process-in-process”,
HPDC’18 from RIKEN et al., employing multiple link maps/dlmopen.)
LOW OVERHEAD! This completely eliminates the overhead of the
proxy approach. (No need for shared memory, cross-memory-attach
(cma), XPMEM. One program can directly pass an internal pointer to the
other program.)
Isolate the MPI/network libraries into their own program;
completely separate from the program running the MPI application.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 14 / 64

MANA for MPI: MPI-Agnostic Network-Agnostic
Transparent Checkpointing (cont.)

FEATURES OF THE SPLIT-PROCESS APPROACH:
Can dynamically change configuration of underlying MPI at runtime.
(Why not? The MPI libraries run in a separate program, unrelated to the
MPI application program.)

Can even change the choice of the underlying MPI and network
(e.g., InfiniBand vs. Cray GNI) at runtime!
(Why not? The MPI and network libraries run in a separate program,
unrelated to the MPI application program.)

Can even migrate to a new cluster at runtime, in which the number of
CPU cores per nodes is different!
(Why not? The binding of the MPI libraries to the CPU cores is part of a
separate program, unrelated to the MPI application program.)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 15 / 64

Puzzle
Can you solve checkpointing on...

 Cray MPI over Infiniband

And restart on…

 MPICH over TCP/IP

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

8

5

10

6

12

7

14

1

3

2

9

11

13

15

16

4 Nodes, 4 Cores/Ranks per Node 8 Nodes, 2 Cores/Ranks per Node

Shared
Memory

Shared
Memory

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 16 / 64

Cross-Cluster Migration
It is now possible to checkpoint on

 Cray MPI over Infiniband

And restart on…

 MPICH over TCP/IP

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

8

5

10

6

12

7

14

1

3

2

9

11

13

15

16

4 Nodes, 4 Cores/Ranks per Node 8 Nodes, 2 Cores/Ranks per Node

Shared
Memory

Shared
Memory

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 17 / 64

Transparency and Agnosticism

Transparency

1. No re-compilation and no re-linking of application
2. No re-compilation of MPI
3. No special transport stack or drivers

Agnosticism

1. Works with any libc or Linux kernel
2. Works with any MPI implementation (MPICH, CRAY MPI, etc)
3. Works with any network stack (Ethernet, Infiniband, Omni-Path, etc).

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 18 / 64

Alas, poor transparency, I knew him Horatio...

Transparent checkpointing could die a slow, painful death.

1. Open MPI Checkpoint-Restart service (Network Agnostic; cf. Hursey et al.)
○ MPI implementation provides checkpoint service to the application.

2. BLCR
○ Utilizes kernel module to checkpoint local MPI ranks

3. DMTCP (MPI Agnostic)
○ External program that wraps MPI for checkpointing.

These, and others, have run up against a wall:

MAINTENANCE

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 19 / 64

The M x N maintenance penalty

MPI:

● MPICH
● OPEN MPI
● LAM-MPI
● CRAY MPI
● HP MPI
● IBM MPI
● SGI MPI
● MPI-BIP
● POWER-MPI
● ….

Interconnect:

● Ethernet
● InfiniBand
● InfiniBand + Mellanox
● Cray GNI
● Intel Omni-path
● libfabric
● System V Shared Memory
● 115200 baud serial
● Carrier Pigeon
● ….

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 20 / 64

The M x N maintenance penalty

MPI:

● MPICH
● OPEN-MPI
● LAM-MPI
● CRAY MPI
● HP MPI
● IBM MPI
● SGI MPI
● MPI-BIP
● POWER-MPI
● ….

Interconnect:

● Ethernet
● InfiniBand
● InfiniBand + Mellanox
● Cray GNI
● Intel Omni-path
● libfabric
● System V Shared Memory
● 115200 baud serial
● Carrier Pigeon
● ….

Network Agnostic

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 21 / 64

The M x N maintenance penalty

MPI:

● MPICH
● OPEN-MPI
● LAM-MPI
● CRAY MPI
● HP MPI
● IBM MPI
● SGI MPI
● MPI-BIP
● POWER-MPI
● ….

Interconnect:

● Ethernet
● InfiniBand
● InfiniBand + Mellanox
● Cray GNI
● Intel Omni-path
● libfabric
● System V Shared Memory
● 115200 baud serial
● Carrier Pigeon
● ….

MPI and Network Agnostic

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 22 / 64

The problem stems from checkpointing both the MPI coordinator and the MPI lib.

MANA: MPI-Agnostic, Network-Agnostic

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 1 Node 2

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 23 / 64

The problem stems from checkpointing MPI - both the coordinator and the library.

Connections

Groups

Communicators

Link State

MANA: MPI-Agnostic, Network-Agnostic

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 1 Node 2

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 24 / 64

Step 1: Drain the Network

Achieving Agnosticism

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 2Node 1

Chandy-Lamport
Algorithm

As demonstrated by Hursey et al., abstracting by “MPI Messages” allows for Network Agnosticism.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 25 / 64

Checkpointing Collective Operations

Solution: Two-phase collectives

1. Preface all collectives with a trivial barrier
2. When the trivial barrier is completed, call the original collective

Rank 1

Rank 2

Rank 3

Inside Barrier

Inside Barrier

Straggler

Trivial Barrier Collective

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 26 / 64

Checkpointing Collective Operations

Solution: Two-phase collectives

1. Preface all collectives with a trivial barrier
2. When the trivial barrier is completed, call the original collective

Rank 1

Rank 2

Rank 3

Trivial Barrier Collective
Collective
Complete

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 27 / 64

Step 2: Discard the network

Achieving Agnosticism

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 2Node 1

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 28 / 64

Problems:

● MPI Implementation Specific
● Contains MPI network state

Solution: IsolationCheckpointing the rank is simpler… right?

Checkpointing A Rank

MPI Rank

MPI Application

MPI Library

● Required by MPI and Application
● Platform dependant

● Grouping information
● Opaque MPI Objects

● Heap Allocations
LIBC

Network Libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 29 / 64

MPI Application

MPI Library

MPI Proxy Library
MPI Library

Terminology

Isolation - The “Split-Process” Approach

Upper-Half program Checkpoint and Restore

Lower-Half program Discard and Re-initialize

Single Memory Space

Standard C Calling Conventions
No RPC involved

LIBC

Network Libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 30 / 64

Upper Half:
Persistent Data

Lower Half
Ephemeral Data

MPI Agnosticism Achieved

MPI Application

Config and Drain Info

LIBC

Lower half data can be replaced by
new and different implementations
of MPI and related libraries.

*Special care must be taken when
replacing upper half libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 31 / 64

Step 1: Drain the Network

Checkpoint Process

MPI Coordinator

MPI Rank

MPI Rank

MPI Rank

MPI Rank

Node 2Node 1

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 32 / 64

Step 1: Drain the Network
Step 2: Checkpoint Upper-Half

Checkpoint Process

MPI Application

Config and Drain Info

LIBC

MPI Rank

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 33 / 64

Step 1: Restore Lower-Half

MPI Library

MPI Proxy Library

Restart Process

Lower-half components may be replacedLIBC

Network Libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 34 / 64

Step 1: Restore Lower-Half
Step 2: Re-initialize MPI

Restart Process

● MPI_INIT
● Replay Configuration

Naturally Optimized

MPI Library

MPI Proxy Library

Lower-half components may be replacedLIBC

Network Libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 35 / 64

Step 1: Restore Lower-Half
Step 2: Re-initialize MPI
Step 3: Restore Upper-Half

MPI Library

MPI Proxy Library

LIBC

Restart Process

MPI Application

Config and Drain Info

LIBC

MPI Rank

● MPI_INIT
● Replay Configuration

Naturally Optimized

MPI Rank # assigned by MPI_Init
used to select checkpoint file for
restoring the upper half.

This avoids the need to virtualize
MPI Rank numbers. Lower-half components may be replaced

Network Libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 36 / 64

Puzzle
Can you solve checkpointing on...

 Cray MPI over Infiniband

And restart on…

 MPICH over TCP/IP

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

8

5

10

6

12

7

14

1

3

2

9

11

13

15

16

4 Nodes, 4 Cores/Ranks per Node 8 Nodes, 2 Cores/Ranks per Node

YES
Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 37 / 64

Checkpoint-Restart Overhead

Checkpoint Data Size

● GROMACS - 64 Ranks over 2 Nodes: 5.9GB (and 0.6% runtime overhead)
● HPCG - 2048 ranks over 64 nodes: 4TB (and nearly 0% runtime overhead)
● Largely dominated by memory used by benchmark program.

Checkpoint Time

● Largely dominated by disk-write time
● “Stragglers” - a single rank takes much longer to checkpoint than others.

Restart Time

● MPI state reconstruction represented < 10% of total restart time.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 38 / 64

NEW: Cross-Cluster MPI Application Migration

Traditionally, migration across disparate clusters was not feasible.

● Different MPI packages across clusters
● Highly optimized configurations tied to local cluster (Caches, Cores/Node)
● Overhead of checkpointing entire MPI state is prohibitive

Overhead of migrating under MANA:

● 1.6% runtime overhead after migration.*

* Linux kernel’s upcoming patch https://lwn.net/Articles/769355/ reduces overhead to 0.6%

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 39 / 64

Collective Communication: Can it really work?

1 If we haven’t truly begun . . .
Maybe some processes have not completed their current computation
task. Maybe we’ll wait a long time before they reach the collective
communication. Maybe we should abort the collective communication,
and checkpoint immediately.
(Aborting the collective communication should be safe. We hope that the
lower-half MPI didn’t start writing yet into the upper user buffers that
were passed as arguments.)

2 But maybe we have begun and we’re in the middle of it . . .
Maybe all processes have already reached the collective communication,
and some of them have begun write persistent changes into the upper
half user buffers that were passed in. It’s dangerous to abort if we’ve
written to the user’s buffer. So, maybe we should finish the collective
communication if we’ve truly begun it. We can checkpoint after that.

What to do??? (I’m so confused.)
Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 40 / 64

Checkpointing Collective Operations

Solution: Two-phase collectives

1. Preface all collectives with a trivial barrier
2. When the trivial barrier is completed, call the original collective

Rank 1

Rank 2

Rank 3

Trivial Barrier Collective
Collective
Complete

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 41 / 64

Collective Communication: How can it work?

1 Maybe some processes are still in the trivial barrier. But then no
processes are in the actual barrier invoked by the application.

Solution: At restart time, discard any operations in the trivial barrrier
from the lower half, and restart the trivial barrier in the new (restarted)
lower half MPI library.

2 Maybe some processes are still in the actual barrier invoked by the
application. But then no processes are in the trivial barrier.

Solution: We know that all processes must have reached the collective
communication, since they have passed through the trivial barrier. So, just
wait until they finish the actual collective communication invoked by the
application.
There will be no delay. All processes have entered the collective
communication!

(But see the paper for the formal details:)
“MANA for MPI: MPI-Agnostic Network-Agnostic Transparent
Checkpointing”, by R. Garg, G. Price, and G. Cooperman,
High Performance Distributed Computing (HPDC’19)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 42 / 64

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 43 / 64

Why is Transparent Checkpoint Difficult in Windows?

“To the best of our knowledge, there is still no package for
transparent checkpointing in Windows. WHY?

1 There is a long history of transparent checkpointing in Linux:
DMTCP, CRIU, BLCR, and many others in history.

2 The core algorithm is:
Checkpoint: (a) Record information about current kernel (e.g., open

files and file offsets);
(b) Save all of user-accessible memory to a ckpt file.

Restart: (a) Start a new process (usually in a new kernel);
(b) overwrite the user-space memory by the original
memory in the ckpt file;
(c) use system calls to restore information about current
kernel (e.g, re-open files, seek to previous file offset).

PROBLEM: Some of Windows kernel state is in the user’s process memory,
in a hidden format. Restoring it into a new Windows kernel doesn’t work.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 44 / 64

So, What’s Different in Windows?

The Windows Process Control Block PCB) includes a Process Environment
Block (PEB), and even Thread Environment Blocks (TEBs),
in user space, but in an internal, undocumented format.

From Wikipedia:
https://en.wikipedia.org/wiki/Process_Environment_Block

“The PEB is closely associated with the kernel mode EPROCESS
data structure, as well as with per-process data structures managed
within the address space of the Client-Server Runtime Sub-System
process. However, . . . the PEB is not a kernel mode data structure
itself. It resides in the application mode address space of the process
that it relates to. This is because it is designed to be used by . . . the
operating system libraries . . . that execute outside of kernel mode,”

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 45 / 64

https://en.wikipedia.org/wiki/Process_Environment_Block

Do Split Processes Help? (HINT: “Yes”)

RECALL: The essence of split processes is to:

(a) Combine two programs into a single address space.

(b) Tag each memory block as either upper half or lower half memory.

(c) On checkpoint, save upper-half memory; a new lower-half process can
later restore this upper-half memory from a checkpoint file.

SOLUTION for Windows (work in progress):: In part (b) above, tag the
user application memory as upper-half, but allow the Process Environment
Block (PEB) to be implicitly tagged a lower-half.

The essence is to isolate the application code from the systems libraries. This
should seem familiar. Recall the history with: Drawbridge (and Windows
Subsystem for Linux (WSL); Library operating systems, Proxy processes
(extensively used in many domains; WINE, Unikernels, etc.

The difficult part is a clean isolation paradigm. The goal of our project is
transparent, user-space isolation.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 46 / 64

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 47 / 64

Sthread, using SimGrid

1 # i n c l u d e <s t h r e a d . h>
2 boo l v a l 1 = f a l s e ;
3 boo l v a l 2 = f a l s e ;
4 s t a t i c vo id∗ t h r e a d 2 s t a r t () {
5 / / y i e l d b e f o r e s h a r e d ’ v a l 1 ’
6 s c h e d y i e l d () ;
7 i f (n o t v a l 1) {
8 / / Y i e l d b e f o r e s h a r e d ’ v a l 2 ’
9 s c h e d y i e l d () ;

10 v a l 2 = t r u e ;
11 }
12 a s s e r t (n o t (v a l 1 and v a l 2)) ;
13 RETURN NULL; }
14

15 i n t main (i n t a rgc , c h a r ∗ a rgv [])
16 {
17 p t h r e a d t t h r e a d 2 ;
18 p t h r e a d c r e a t e (& t h r e a d 2 , NULL,
19 t h r e a d 2 s t a r t , NULL) ;
20 / / y i e l d b e f o r e s h a r e d ’ v a l 2 ’
21 s c h e d y i e l d () ;
22 i f (n o t v a l 2) {
23 / / y i e l d b e f o r e s h a r e d ’ v a l 1 ’
24 s c h e d y i e l d () ;
25 v a l 1 = t r u e ;
26 }
27 a s s e r t (n o t (v a l 1 and v a l 2)) ;
28 RETURN 0 ; }

Running this code under Sthread immediately yields:

[0.000000] (0:maestro@) **************************

[0.000000] (0:maestro@) *** PROPERTY NOT VALID ***

[0.000000] (0:maestro@) **************************

[0.000000] (0:maestro@) Counter-example execution trace:

[0.000000] (0:maestro@) Path = 1;1;2;2;1;1;2;2

[0.000000] (0:maestro@) Expanded states = 10

[0.000000] (0:maestro@) Visited states = 13

[0.000000] (0:maestro@) Executed transitions = 12

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 48 / 64

Sthread for SimGrid (some demos)
Sthread: USAGE
/home/gene/simgrid.git/bin/simgrid-mc ./mc-two-thread-bug

... --cfg=model-check/reduction:none

--cfg=model-check/max-depth:5

reduction:none: no additional safety properties specified
max-depth:5 (default: 5): Show thread schedule only if found for length ≤ 5
Some violations: deadlock, livelock (no progress), assert failure, crash

And now a demo for the following case:
1 Two threads with two shared variables:

** assert failure: “PROPERTY NOT VALID” **
2 Deadlock (deadly embrace), each thread must lock two mutexes:

** “DEADLOCK” **
3 Mars Pathfinder (bug due to priority inversion):

** progress condition fails: “CRASH IN THE PROGRAM” **
4 ABA problem (lock-free algorithm for stack of allocation buffers):

** “CRASH IN THE PROGRAM” **
Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 49 / 64

Smpi: using SimGrid for MPI

Like Sthread for POSIX threads, there is also Smpi for MPI. Both are based
on SimGrid.

For further information, see:

https://simgrid.org/tutorials/simgrid-smpi-101.pdf

(Especially, see pages 5 and 6, out of 22 pages.)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 50 / 64

https://simgrid.org/tutorials/simgrid-smpi-101.pdf

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 51 / 64

JOKE: In high-end HPC, we don’t debug!!!

Why do practitioners repeat this joke?
ANSWER: High-end clusters are expensive, and should be used only for
production — especially for “deep executions”, where bugs might occur only
after hours. So, development and debugging are done on small clusters, where
the bug does not appear.
Why do new bugs appear during deep execution?

Some race conditions are rare. If the bug appears once in a billion times,
we may have to execute a lot to see the bug.
Why is it expensive to debug on a high-end cluster?

a. Race conditions are difficult to debug. If only three nodes out of a
hundred are involved in the bug, how do we trace those three nodes in
isolation? (How do we even know which three nodes to trace?)

b. We could use GDB and breakpoints on a deep execution, but if we’re
using a hundred nodes and we debug for hours, this becomes expensive.

c. We could add extra print and assert statements and then run another
production job. But if we do this five or ten more times in order to
explore a deep execution, this also becomes expensive.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 52 / 64

Deep SimGrid requires Checkpointing (work in progress)

This approach extends both Sthread (POSIX threads) and Smpi (MPI). It does
not discover new bugs. But it can be used to diagnose new bugs.

1 Set DMTCP flags for periodic checkpointing (perhaps, every 5 minutes).

2 Run target (MPI or POSIX threads) application under DMTCP.

3 After program crash or assert failure:
Restart from the last checkpoint, but under SimGrid (Sthread or Smpi).

4 Sthread/Smpi will produce a schedule for threads (Sthread) or MPI ranks
(Smpi). This is the bug diagnosis.

5 Replay from the checkpoint, but in a “replay mode” under SimGrid or
GDB.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 53 / 64

Deep SimGrid requires Split Processes (and Checkpointing)

The Roadmap forward (in pictures):

Target Applic.

Kernel (single process)

Sthread or Smpi:

SimGrid Library

Ckpt File

Pthread or MPI

Library

Network, Kernel, etc.

Target Applic.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 54 / 64

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Split Processes: MANA for MPI

4 But What about Microsoft Windows?

5 POSIX Threads: SimGrid and Formal Verification

6 Putting it all together: SimGrid, Ckpt and Split Processes

7 ONWARD: Split processes for CUDA and Numerical libraries

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 55 / 64

Proxies for CUDA: the old approach

GOAL: To convince you of a general proxy paradigm for handling
the “hard” checkpointing challenges that remain.

We take as testbeds two such “hard” examples:

1 Checkpoint a CUDA application running on a GPU (Problem: how to
save and restore the state of GPU hardware)
(joint with Rohan Garg, Apoorve Mohan, Michael Sullivan)
To appear, IEEE Cluster’18; see, also, technical report:
https://arxiv.org/abs/1808.00117

2 Checkpoint MPI on NERSC/Cori supercomputer (with GNI network; no
checkpoint-restart service to support it)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 56 / 64

https://arxiv.org/abs/1808.00117

Proxies: basic idea

GPU LIBRARY

CUDA
APPLIC.

CUDA

LIB

CUDA

LIBRARY

APPLIC.

INTERPOSE

GPU

BEFORE: AFTER:

Application Proxy

Process

Application

Process

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 57 / 64

Basic Idea of a Proxy for System Services

PROBLEM: Often, system services are provided with the help of an
auxiliary system that cannot be checkpointed.

EXAMPLES: GPU device hardware; MPI auxiliary process or MPI
coordinator; sshd (ssh daemon); VNC server; etc.

SOLUTION:
A. Split user process into two: an application process with all of the application state; and a

proxy process communicating with hardware or software for system services.
B. System service requests are passed from application process to proxy process through

inter-process communication, and pass result back.
C. At checkpoint time, the proxy process is temporarily disconnected, and the application

process is checkpointed as an isolated “vanilla” Linux process. (Note: the proxy process
must be in a quiescent state (no unfinished system service tasks) at checkpoint time.)

D. At restart time, a new proxy process re-connects with the system service and with the
restarted application. The application process then replays some old system service
requests, restoring system to a state that equivalent to pre-checkpoint time.

For more on this, see the thesis of Rohan Garg
(NOTE: Proxies have been used before. For example, this is the basis of an old trick for checkpointing

VNC sessions. We propose it here as a general paradigm for checkpoint-restart.)
Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 58 / 64

CRUM: “Checkpoint-Restart for Unified Memory” for
CUDA

Proxy-based shadow paging for CUDA UVM (Unified Virtual Memory)
Shadow UVM page synchronization: Catches memory transfers between
proxy and application through memory permissions and segfault
detection. The difficulty for transparent checkpointing with
CUDA-managed memory: How to make this efficient?
See the CRUM paper (Algorithm 1, shadow-page synchronization) for
details.

Enables fast forked checkpointing model for UVM memory that overlaps
writing a checkpoint image to stable storage, while the application
continues. Almost free benefit of our approach! (This was difficult in the
past due to the need to share memory among the GPU device, and the
UVM-based host that was split among parent and forked child
processes.)

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 59 / 64

CRUM (Checkpoint-Restart for CUDA Unified Memory):
Runtime

LUD Hotspot3D Gaussian LavaMD
0

20

40

60

80

R
u
n
ti

m
e
 (

s)

Native With CRUM

a Rodinia
Benchmark.

1x8 2x8 4x8
Num. of MPI ranks

2

4

6

8

10

12

14

D
O
F
/s

 O
v
e
rh

e
a
d
 (
%

)

Level-1 Level-2 Level-3

b HPGMG-FV
Benchmark.

1x8 2x8 4x8
Num. of MPI ranks

400

500

600

700

800

900

R
u
n
ti
m

e
 (
s)

Native With CRUM

c HYPRE
Benchmark.

Figure: Runtime overheads for different benchmarks under CRUM.

Operating environment: Four NVIDIA Tesla P100’s per node; CUDA 8
(max config: four nodes with 4 GPUs per node and 8 MPI ranks per node)
PROBLEM: 6% overhead often observed

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 60 / 64

CUDA and Numerical Libraries: Same as MPI

“FOLLOW SAME PATTERN AS MPI

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 61 / 64

A Question on Split Processes from a Previous Audience

This all seems pretty obvious, to have two programs in
the same address space in memory. Why hasn’t
somebody done this before?

ANSWER: Well, we think it’s new. Besides, we still haven’t heard of
somebody else who has a kernel loader.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 62 / 64

A Better Answer to the Previous Question

1 There are experts on the Linux kernel, and they know everything about
launching a classic process (text/data/stack).

2 There are experts on the user-space side of operating systems: the linker,
the loader, the compiler, the fork/exec process model.

(And there’s even a cool result using shared memory and dlmopen (see
’man dlmopen’) to force the linker to load two independent programs: see
“Process-in-Process”, Hori et al., HPDC’18)
But that method uses multiple threads, and the cost of context-switching
can be expensive: recall the problem with the ’fs’ register

3 But there aren’t enough experts on the interface between the two. By
working on transparent checkpointing, we get to know the interface
deeply: link maps, fs register, thread-local storage, thread-control block,
auxv (auxiliary vector), /proc/*/maps, memory guard pages, user-space
page fault handling, vdso, vvar, etc.

4 CONCLUSION: Come work with us on other cool things. We’re
always looking for collaborators on our open-source software, on
research, and of course for potential new Ph.D. students.

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 63 / 64

Questions?

THANKS TO THE MANY STUDENTS AND OTHERS
WHO HAVE CONTRIBUTED TO DMTCP OVER THE
YEARS:
Jason Ansel, Kapil Arya, Alex Brick, Jiajun Cao, Tyler Denniston, Xin Dong,
William Enright, Rohan Garg, Paul Grosu, Twinkle Jain, Samaneh Kazemi,
Jay Kim, Gregory Kerr, Apoorve Mohan, Mark Mossberg, Gregory Price,
Manuel Rodrı́guez Pascual, Artem Y. Polyakov, Michael Rieker,
Praveen S. Solanki, Ana-Maria Visan

OTHER QUESTIONS?

Gene Cooperman Checkpointing: A Tour of the Split-Process Approach November 15, 2019 64 / 64

	DMTCP — A review
	DMTCP Plugins — A review
	Split Processes: MANA for MPI
	But What about Microsoft Windows?
	POSIX Threads: SimGrid and Formal Verification
	Putting it all together: SimGrid, Ckpt and Split Processes
	ONWARD: Split processes for CUDA and Numerical libraries

