
A Brief History of Checkpointing and Its Applications

Gene Cooperman

gene@ccs.neu.edu

College of Computer and Information Science

Northeastern University, Boston, USA

and Université Fédérale Toulouse Midi-Pyrénées

July 7, 2016

∗
Partially supported by NSF Grant ACI-1440788, by a grant from Intel Corporation, and by an IDEX Chaire d’Attractivité (Université Fédérale

Toulouse Midi-Pyrénées).

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 1 / 27

Table of Contents

1 DMTCP: Distributed MultiThreaded CheckPointing

2 Problem: You Can’t Checkpoint the World!

3 DMTCP Plugins: Interfacing with the External World

4 History and Applications

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 2 / 27

Outline

1 DMTCP: Distributed MultiThreaded CheckPointing

2 Problem: You Can’t Checkpoint the World!

3 DMTCP Plugins: Interfacing with the External World

4 History and Applications

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 3 / 27

DMTCP: A Demo

DMTCP% vi test/dmtcp1.c

> int main(int argc, char* argv[])

> { int count = 1;

> while (1)

> { printf(" %2d ",count++);

> fflush(stdout);

> sleep(2); }

> return 0; }

DMTCP% test/dmtcp1

1 2 3 ^C

DMTCP% bin/dmtcp_launch --interval 5 test/dmtcp1

1 2 3 4 5 6 7 ^C

DMTCP% ls ckpt_dmtcp1*

ckpt_dmtcp1_66e1c8437adb789-40000-5745d372.dmtcp

DMTCP% bin/dmtcp_restart ckpt_dmtcp1*

7 8 9 10 ^C

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 4 / 27

DMTCP: A First Look

DMTCP: Distributed MultiThreaded CheckPointing

As easy to use as:

dmtcp_launch ./a.out

dmtcp_command --checkpoint

dmtcp_restart ckpt_myapp_*.dmtcp

and DMTCP is contagious: It follows fork(), ssh, etc.

Free and Open Source: http://dmtcp.sourceforge.net

The DMTCP project is now in its second decade.

Published literature: more than 50 other groups (not us).

http://dmtcp.sourceforge.net/publications.html

Downloads:

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 5 / 27

http://dmtcp.sourceforge.net
http://dmtcp.sourceforge.net/publications.html

What is Checkpointing?

Checkpointing is the action of saving the state of a running process to a

checkpoint image file.

Checkpointing supports several other features for free!

1 Process migration is the action of migrating a running process from one

computer to a different computer.

Process migration is easy: just copy the checkpoint image file to a new

computer, and restart there.

2 Process replication is the action of creating a copy of a running process.

Process replication is easy: just copy the checkpoint image file to a new

computer or directory, and restart both the original and the copy of the

checkpoint image file.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 6 / 27

Uses for Checkpointing

1 Fault tolerance (if the process crashes, then roll back to a previous

checkpoint)

2 Extended sessions (if it’s time to go home to dinner, then checkpoint and

restart the next day)

3 Debugging (checkpoint every 30 seconds; if the process crashes, restart

from the last checkpoint under a debugger, and analyze)

4 Reproducible Bug Reports (checkpoint every 30 seconds; if the process

crashes, submit the last checkpoint image to the program developer)

5 Fast startup of a process (checkpoint after the process starts, and then

restart from the ckpt image file in the future)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 7 / 27

DMTCP Architecture: Coordinated Checkpointing

DMTCP

COORDINATOR

CKPT MSG

CKPT THREAD

USER PROCESS 1

S
IG

U
S

R
2

S
IG

U
S

R
2

USER THREAD B

USER THREAD A

CKPT MSG

S
IG

U
S

R
2

connection
socket

USER THREAD C

CKPT THREAD

USER PROCESS 2

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 8 / 27

Principles

One DMTCP coordinator = one (checkpointable) DMTCP comput.;

Can have multiple coordinators/computations separately checkpointable

Either the DMTCP checkpoint thread is active or the user thread, but not

both at the same time.

No single point of failure, providing that checkpoint image files are

backed up: Even if the coordinator dies, just restart from last checkpoint.

The runtime libraries are saved as part of the memory image. So, the

application continues to use the same library API.

The Linux environment variables are part of the memory image. (A

special DMTCP plugin must be invoked to change any environment

variables that were saved at the time of checkpoint.)

Everything is in user-space; no admin privileges needed.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 9 / 27

But How Does It Work?

Version 1: 1 Copy all of the process’s virtual memory to a file.

(It’s easy under Linux:

“cat /proc/self/maps” lists your memory regions.)

Version 2: 1 Make system calls to first discover the system state.

“ls /proc/self/fd” to discover open files of the

process.

How much of file have we read?

current offset = lseek(my file descriptor, 0,

SEEK CUR)

And so on for other system state . . .

2 Copy all of the process’s virtual memory to a file.

Version 3: 1 For distributed processes, drain “in-flight” network data

into the memory of the process.

2 Make system calls to first discover the system state.

3 Copy all of the process’s virtual memory to a file.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 10 / 27

But How Does It Work? (details from operating systems)

dmtcp launch ./a.out arg1 ...

ց

LD PRELOAD=libdmtcp.so ./a.out arg1 ...

libdmtcp.so runs even before the user’s main routine.

libdmtcp.so:

libdmtcp.so defines a signal handler (for SIGUSR2, by default)

(more about the signal handler later)

libdmtcp.so creates an extra thread: the checkpoint thread

The checkpoint thread connects to a DMTCP coordinator (or creates one

if one does not exist yet).

The checkpoint thread then blocks, waiting for the DMTCP coordinator.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 11 / 27

What Happens during Checkpoint? (details from operating

systems)

1 The user (or program) tells the coordinator to execute a checkpoint.

2 The coordinator sends a ckpt message to the checkpoint thread.

3 The checkpoint thread sends a signal (SIGUSR2) to each user thread.

4 The user thread enters the signal handler defined by libdmtcp.so, and

then it blocks there.

(Remember the SIGUSR2 handler we spoke about earlier?)

5 Now the checkpoint thread can copy all of user memory to a checkpoint

image file, while the user threads are blocked.

Scalability was recently demonstrated by checkpointing 24,000 processes

(HPCG/MPI computation on Stampede/TACC supercomputer)!

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 12 / 27

Outline

1 DMTCP: Distributed MultiThreaded CheckPointing

2 Problem: You Can’t Checkpoint the World!

3 DMTCP Plugins: Interfacing with the External World

4 History and Applications

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 13 / 27

Problem: You Can’t Checkpoint the World!

Problems often encountered:

NSCD daemon, license server, etc.: caching remote information, remote

permissions

External server on Internet

3D graphics state built on top of hardware state in the GPU

Network data in flight (residing in network switch)

Large database (too large to checkpoint)

Migrating to new hosts (new network addresses, new pathnames)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 14 / 27

Solution 1: Some Applications Fix Themselves

TCP is supposed to provide reliable, connection-oriented

communication.

But in the real world, connections “break”, and robust applications must

know how to re-establish a connection with an external server.

On restart after checkpoint, DMTCP simulates a broken connection to

the external server.

The robust application perceives this as a broken connection, and it

re-establishes the server connection after restart.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 15 / 27

Solution 2: Application-specific Solutions

A widely used example of an application-specific solution is the usage of a

checkpoint-restart service within an MPI library. (MPI is the most widely used

standard for message-passing, for communication in parallel applications

over distributed nodes.)

Just prior to checkpoint, the checkpoint-restart service tears down the

network.

The job of checkpointing each single process is then delegated to a

single-process checkpoint package (typically, BLCR).

The network is then re-initialized after checkpoint.

Hence, upon restart after failure, the individual processes are restarted first,

without any network connection, and then the MPI checkpoint-restart service

re-initializes the original network with the original topology.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 16 / 27

Solution 2: Problem with Application-specific

Checkpointing

One developer is in charge of a subsystem with state that needs to be

checkpointed.

A second developer is in charge of the application-specific checkpointing

routine to save the state of all subsystems.

The first developer then updates the subsystem state in a manner that is not

well-understood by the second developer.

Anecdotally, this software engineering issue is often the root

cause, when an application-specific routine “used to work”, and

then it stops working.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 17 / 27

Outline

1 DMTCP: Distributed MultiThreaded CheckPointing

2 Problem: You Can’t Checkpoint the World!

3 DMTCP Plugins: Interfacing with the External World

4 History and Applications

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 18 / 27

Solution 3: DMTCP Plugins

WHY PLUGINS?

Processes must talk with the rest of the world!

Process virtualization: virtualize the connections to the rest of the world

In short, a plugin is responsible for modelling an external subsystem, and

then creating a semantically equivalent construct at the time of restart.

SLIDES-BASED DEMO LATER IN TALK (time permitting)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 19 / 27

A Simple DMTCP Plugin: Virtualizing the Process Id

PRINCIPLE:

The user sees only virtual pids; The kernel sees only real pids

User Process
PID: 4000

User Process
PID: 4001

Virt. PID Real PID

4000 2652
4001 3120

Translation Table

getpid()26524000

kill(4001, 9) KERNEL

4001
Sending signal 9
to pid 31203120

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 20 / 27

DMTCP Plugins (Demo: part 1)

> SLEEP1% ls

> Makefile README sleep1.c

> SLEEP1% vi sleep1.c

> SLEEP1% make -n

> gcc -fPIC -I../../../include -c -o sleep1.o sleep1.c

> gcc -shared -fPIC -o libdmtcp_sleep1.so sleep1.o

> SLEEP1% make && ls

> libdmtcp_sleep1.so Makefile README sleep1.o sleep1.c

> SLEEP1% make -n check

> ../../../bin/dmtcp_launch --interval 5 \

> --with-plugin $PWD/libdmtcp_sleep1.so ../../../test/dmtcp1

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 21 / 27

DMTCP Plugins (Demo: part 2)

> SLEEP1% ../../../test/dmtcp1

> 1 2 3 4 ^C

> SLEEP1% ../../../bin/dmtcp_launch --interval 5 \

> --with-plugin $PWD/libdmtcp_sleep1.so ../../../test/dmtcp1

> 1 sleep1: 1464197122 987160 ... 1464197124 987252

> 2 sleep1: 1464197124 987270 ... 1464197126 987355

> 3 sleep1: 1464197126 987370 ...

> *** The plugin sleep1.c is being called before checkpointing.

> *** The plugin sleep1.c has now been checkpointed. ***

> 1464197128 400509

> 4 sleep1: 1464197128 400522 ... 1464197130 400614

> 5 ^C

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 22 / 27

DMTCP Plugins (Demo: part 3)

vi sleep1.c

> void print_time() {

> struct timeval val;

> gettimeofday(&val, NULL);

> printf("%ld %ld", (long)val.tv_sec, (long)val.tv_usec); }

>

> unsigned int sleep(unsigned int seconds) {

> printf("sleep1: "); print_time(); printf(" ... ");

> unsigned int result = NEXT_FNC(sleep)(seconds);

> print_time(); printf("\n");

> return result; }

>

> static void checkpoint() {

> printf("\n*** The plugin %s is being called before checkpointing.

> __FILE__);

> }

>
Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 23 / 27

Outline

1 DMTCP: Distributed MultiThreaded CheckPointing

2 Problem: You Can’t Checkpoint the World!

3 DMTCP Plugins: Interfacing with the External World

4 History and Applications

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 24 / 27

Other Applications Of DMTCP

Early origins of checkpointing in Condor and MOSIX. EXAMPLE:

1 Condor starts a job on an unused computer

(e.g., on a student lab computer, when unoccupied)

2 A student sits down and uses that lab computer.

3 Condor migrates job to a new computer, and runs a small “stub” program

to retain access to any temporary files used on secretary’s computer.

Many early checkpointing systems used to be at checkpointing.org:

http://web.archive.org/web/20140517053408/http://checkpointing.org/

Some checkpointing packages that received wider usage:

1 BLCR (Berkeley Laboratory Checkpoint-Restart): single-host

checkpointing implemented via a kernel module: foundation for many

checkpoint-restart services for MPI for parallel computing.

2 Cryopid-2: Uses ptrace syscall. Modest, but easy-to-use for simple apps.

3 CRIU (Checkpoint-Restart In User-space): Uses extended proc filesystem

to expose kernel internals; Operates in user space, but may require admin

privilege to access full proc filesystem interface (e.g., security concerns).

4 DMTCP: Handles distributed processes entirely in user-space; no kernel

modifications; no need for admin privileges

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 25 / 27

http://web.archive.org/web/20140517053408/http://checkpointing.org/

Other Applications Of DMTCP

FROM: http://dmtcp.sourceforge.net/publications.html

Debugging a simulated CPU model at Intel Corporation:

“Be Kind, Rewind — Checkpoint & Restore Capability for Improving

Reliability of Large-scale Semiconductor Design”, Ljubuncic et al.,

HPEC-2014

“Direct Inference of Protein—DNA Interactions using Compressed

Sensing Methods”, AlQuraishi et al.,

Proc. of National Academy of Sciences (PNAS), 2011

An online site for interactive theorem proving

Live migration in support of a green, energy saving cloud

Software model checking

Energy efficient processing of big data

. . . (50 refereed papers by others in the published literature)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 26 / 27

http://dmtcp.sourceforge.net/publications.html

Questions?

THANKS TO THE MANY STUDENTS WHO HAVE
CONTRIBUTED TO DMTCP OVER THE YEARS:
Jason Ansel, Kapil Arya, Alex Brick, Jiajun Cao, Tyler Denniston, Xin Dong,

William Enright, Rohan Garg, Samaneh Kazemi, Gregory Kerr,

Apoorve Mohan, Mark Mossberg, Artem Y. Polyakov, Michael Rieker,

Praveen S. Solanki, Ana-Maria Visan

QUESTIONS?

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 27 / 27

Supplementary Slides

SUPPLEMENTARY SLIDES

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 28 / 27

Principles (cont.)

Entirely based on user-space: If one checkpoints on an older O/S kernel,

one can restart on a newer O/S kernel. (But if one checkpoints on a newer

kernel, the library may use a newer kernel system call that doesn’t exist

in the older kernel.)

Debugging with GDB on restart is possible. (See DMTCP FAQ.)

Currently supports Intel and ARM. (Currently, 138 lines of assembly.)

Checkpoints can be invoked: periodically; under program control; or

under external control.

What is the time to checkpoint? (It’s mostly due to the time to write to

stable storage (e.g., disk).)

It is possible to omit saving some process memory (“cutouts”).

What is the run-time overhead of DMTCP? (It’s too small to measure on

real-world programs. The DMTCP overhead is entirely due to “thin

wrappers” around certain system calls.)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 29 / 27

Anatomy of a Plugin

Plugins support three essential properties:

Wrapper functions: Change the behavior of a system call or call to a library

function (X11, OpenGL, MPI, . . .), by placing a wrapper

function around it.

Event hooks: When it’s time for checkpoint, resume, restart, or another

special event, call a “hook function” within the plugin code.

Publish/subscribe through the central DMTCP coordinator: Since DMTCP

can checkpoint multiple processes (even across many hosts), let

the plugins within each process share information at the time of

restart: publish/subscribe database with key-value pairs.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 30 / 27

InfiniBand Plugin

Checkpoint while the network is running! (Older implementations

tore down the network, checkpointed, and then re-built the network.)

Design the plugin once for the API, not once for each vendor/driver!

socket plugin: ipc/socket; InfiniBand plugin: infiniband

InfiniBand uses RDMA (Remote Direct Memory Access).

InfiniBand plugin is a model for newer, future RDMA-type APIs.

Virtualize the send queue, receive queue, and completion queue.

CPU RAM
HCA

pinned
RAM

CPURAM
HCA

pinned
RAM

Send Queue

Recv Queue

Completion
Queue

Send Queue

Recv Queue

Completion
Queue

InfiniBand

InfiniBand

HCA HARDWARE:

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 31 / 27

DMTCP and InfiniBand

ISSUES: At restart time, totally different ids and queue pair ids.

Solution: Drain the completion queue and save in memory.
On restart, virtualize the completion queue:

Virtualized queue returns drained completions before returning

completions from the hardware.

Plugin Internal Resources

Virtual queue pair

(ptr to real queue pair)

Shadow queue pair of plugin

Post Send Log

Post Recv Log

Modify Queue Pair Log

DMTCP libraryInfiniBand ibverbs library

DMTCP InfiniBand Plugin

Kernel driver

HCA Adapter (hardware)

Device−dependent driver in user space

Queue pair created by kernel

Fnc call to library:

Target App (user code)

See: Transparent Checkpoint-Restart over InfiniBand, HPDC-14, Cao, Kerr, Arya, Cooperman

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 32 / 27

EXAMPLE: Plugin Event

void dmtcp_event_hook(DmtcpEvent_t event,

DmtcpEventData_t *data)

{

switch (event) {

case DMTCP_EVENT_WRITE_CKPT:

printf("\n*** Checkpointing. ***\n"); break;

case DMTCP_EVENT_RESUME:

printf("*** Resume: has checkpointed. ***\n"); break;

case DMTCP_EVENT_RESTART:

printf("*** Restarted. ***\n"); break;

...

default: break;

}

DMTCP_NEXT_EVENT_HOOK(event, data);

}

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 33 / 27

EXAMPLE: Plugin Wrapper Function

unsigned int sleep(unsigned int seconds)

{ /* Same type signature as sleep */

static unsigned int (*next_fnc)() = NULL;

struct timeval oldtv, tv;

gettimeofday(&oldtv, NULL);

time_t secs = val.tv_sec;

printf("sleep1: "); print_time(); printf(" ... ");

unsigned int result = NEXT_FNC(sleep)(seconds);

gettimeofday(&tv, NULL);

printf("Time elapsed: %f\n",

(1e6*(val.tv_sec-oldval.tv_sec)

+ 1.0*(val.tv_usec-oldval.tv_usec)) / 1e6);

print_time(); printf("\n");

return result;

}

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 34 / 27

Some Example Strategies for Writing Plugins

Virtualization of ids: see pid virtualization — ≈ 50 lines of code

Virtualization of protocols (example 1): virtualization of ssh daemon

(sshd) — ≈ 1000 lines of code

Virtualization of protocols (example 2): virtualization of network of

virtual machines — ≈ 750 lines of code (KVM/QEMU) and ≈ 350 lines

of code (Tun/Tap network)

Shadow device driver: transparent checkpointing over InfiniBand —

≈ 3,600 lines of code

Record-Replay with pruning: transparent checkpointing of 3-D graphics

in OpenGL for programmable GPUs — ≈ 4,500 lines of code

Record state of O/S subsystem and CPU: checkpointing of ptrace system

call for GDB, etc. — ≈ 1,000 lines of code (includes checkpointing x86

eflags register, trap flag: CPU single-stepping)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 35 / 27

Speculation on Potential DMTCP Extensions

CAVEAT! None of this has been implemented.

Based on a knowledge of the internals of DMTCP, we believe that

each of these extensions to DMTCP are possible. But only an

example implementation can verify this.

Live Migration: Classical algorithm; works best when most of memory only

changes slowly.

Partial Restart: Restart only some of the processes, and re-connect them to

existing processes.

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 36 / 27

Speculation on Potential DMTCP Extensions (cont.)

Merging DMTCP Computations: One DMTCP coordinator takes

responsibility on restart for two separate DMTCP computations

(or similarly, split two DMTCP computations).

Graphics “Desktop”: DMTCP has been used with VNC to checkpoint a

graphics desktop. (Useful for graphics instrumentation panel?)

Migration across CPUs: Supported by QEMU; DMTCP can checkpoint

KVM/QEMU virt. machine (Caveat: dynamically interpreting

between CPU architectures is 1,000 times slower.)

Gene Cooperman Design & Brief History of Checkpointing July 7, 2016 37 / 27

	DMTCP: Distributed MultiThreaded CheckPointing
	Problem: You Can't Checkpoint the World!
	DMTCP Plugins: Interfacing with the External World
	History and Applications

