Extracting Usability Information from User Interface Events

DAVID M. HILBERT AND DAVID F. REDMILES

University of California at Irvine

Modern window-based user interface systems generate user interface events as natural
products of their normal operation. Because such events can be automatically captured
and because they indicate user behavior with respect to an application’s user interface,
they have long been regarded as a potentially fruitful source of information regarding
application usage and usability. However, because user interface events are typically
voluminos and rich in detail, automated support is generally required to extract
information at a level of abstraction that is useful to investigators interested in
analyzing application usage or evaluating usability.

This survey examines computer-aided techniques used by HCI practitioners and
researchers to extract usability-related information from user interface events. A
framework is presented to help HCI practitioners and researchers categorize and
compare the approaches that have been, or might fruitfully be, applied to this problem.
Because many of the techniques in the research literature have not been evaluated in
practice, this survey provides a conceptual evaluation to help identify some of the
relative merits and drawbacks of the various classes of approaches. Ideas for future
research in this area are also presented.

This survey addresses the following questions: How might user interface events be
used in evaluating usability? How are user interface events related to other forms of
usability data? What are the key challenges faced by investigators wishing to exploit
this data? What approaches have been brought to bear on this problem and how do they
compare to one another? What are some of the important open research questions in
this area?

Categories and Subject Descriptors: H.5.2 [Information Interfaces and
Presentation]: User Interfaces—FEvaluation/methodology
General Terms: Human factors, Measurement, Experimentation

Additional Key Words and Phrases: usability testing, user interface event monitoring,
sequential data analysis, human-computer interaction

1. INTRODUCTION Macintosh Operating System [Lewis

and Stone 1999], Microsoft Windows

User interface events (Ul events) are gen-
erated as natural products of the normal
operation of window-based user interface
systems such as those provided by the

[Petzold 1998], the X Window System
[Nye and OReilly 1992], and the Java
Abstract Window Toolkit [Zukowski and
Loukides 1997]. Such events indicate user

Authors’ address: Department of Information and Computer Science, University of California, Irvine, CA
e-mail: {dhilbert,redmiles}@ics.uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works, requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept., ACM Inc., 1515 Broadway, New York, NY 10036, USA, fax +1 (212)
869-0481, or permissions@acm.org

©2001 ACM 0360-0300/01/1200- 0384 $5.00

ACM Computing Surveys, Vol. 32, No. 4, December 2000, pp. 384-421.

Extracting Usability Information

behavior with respect to the components
that make up an application’s user inter-
face (e.g., mouse movements with respect
to application windows, keyboard presses
with respect to application input fields,
mouse clicks with respect to application
buttons, menus, and lists). Because such
events can be automatically captured and
because they indicate user behavior with
respect to an application’s user interface,
they have long been regarded as a po-
tentially fruitful source of information
regarding application usage and usability.
However, because user interface events
are typically extremely voluminous and
rich in detail, automated support is
generally required to extract information
at a level of abstraction that is useful
to investigators interested in analyzing
application usage or evaluating usability.

While a number of potentially related
techniques have been applied to the prob-
lem of analyzing sequential data in other
domains, this paper primarily focuses on
techniques that have been applied within
the domain of HCI. Providing an in-depth
treatment of all potentially related tech-
niques would necessarily limit the amount
of attention paid to characterizing the
approaches that have in fact been brought
to bear on the specific problems associ-
ated with analyzing HCI events. However,
this survey attempts to characterize Ul
events and analysis techniques in such a
way as to make comparison between tech-
niques used in HCI and those used in other
domains straightforward.

1.1 Goals and Method

The fundamental goal of this survey is to
construct a framework to help HCI prac-
titioners and researchers categorize, com-
pare, and evaluate the relative strengths
and limitations of approaches that have
been, or might fruitfully be, applied to this
problem. Because exhaustive coverage of
all existing and potential approaches is
impossible, we attempt to identify key
characteristics of existing approaches that
divide them into more or less natural cate-
gories. This allows classes of systems, not
just instances, to be compared. The hope

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

385

is that an illuminating comparison can be
conducted at the class level and that clas-
sification of new instances into existing
classes will prove to be unproblematic.

In preparing this survey, we searched
the literature in both academic and
professional computing forums for papers
describing computer-aided techniques for
extracting usability-related information
from user interface events. We selected
and analyzed an initial set of papers to
identify key characteristics that distin-
guish the approaches applied by various
investigators.

We then constructed a two-dimensional
matrix with instances of existing ap-
proaches listed along one axis and char-
acteristics listed along the other. This led
to an initial classification of approaches
based on clusters of related attributes.
We then iteratively refined the compar-
ison attributes and classification scheme
based on further exploration of the litera-
ture. The resulting matrix indicates areas
in which further research is needed and
suggests synergistic combinations of cur-
rently isolated capabilities.

Ideally, an empirical evaluation of these
approaches in practice would help eluci-
date more precisely the specific types of us-
ability questions for which each approach
is best suited. However, because many of
the approaches have never been realized
beyond the research prototype stage, lit-
tle empirical work has been performed to
evaluate their relative strengths and lim-
itations. This survey attempts to provide
a conceptual evaluation by distinguish-
ing classes of approaches and illuminat-
ing their underlying nature. As a result,
this survey should be regarded as a guide
to understanding the research literature
and not as a guide to selecting an already
implemented approach for use in practice.

1.2 Comparison Framework

This subsection introduces the high level
categories that have emerged as a result
of the survey. We present the framework
in more detail in Section 4.

» Techniques for synchronization and
searching. These techniques allow user

386

interface events to be synchronized and
cross-indexed with other sources of data
such as video recordings and coded ob-
servation logs. This allows searches in
one medium to locate supplementary
information in others. In some ways, this
is the simplest (i.e., most mechanical)
technique for exploiting user interface
events in usability evaluation. However,
it is quite powerful.

Techniques for transforming event
streams. Transformation involves se-
lecting, abstracting, and recoding event
streams to facilitate human and au-
tomated analysis (including counts,
summary statistics, pattern detection,
comparison, and characterization). Se-
lection involves separating events and
sequences of interest from the “noise.”
Abstraction involves relating events to
higher-level concepts of interest in anal-
ysis. Recoding involves generating new
event streams based on the results of se-
lection and abstraction so that selected
and abstracted events can be subjected
to the same types of manual and au-
tomated analysis techniques normally
performed on raw event streams.

Techniques for performing counts and
summary statistics. Once user interface
events have been captured, there are a
number of counts and summary statis-
tics that might be computed to summa-
rize user behavior, for example, feature
use counts, error frequencies, use of the
help system, and so forth. Although most
investigators rely on general-purpose
spreadsheets and statistical packages to
provide such functionality, some investi-
gators have proposed specific “built-in”
functions for calculating and reporting
this sort of summary information.

Techniques for detecting sequences.
These techniques allow investigators
to identify occurrences of concrete or
abstractly defined target sequences
within source sequences of events that
may indicate potential usability issues.
In some cases, target sequences are
abstractly defined and are supplied by
the developers of the technique. In other
cases, target sequences are more spe-

D. M. Hilbert and D. F. Redmiles

cific to particular applications and are
supplied by the users of the technique.
Sometimes the purpose is to generate
a list of matched source subsequences
for further perusal by the investigator.
Other times the purpose is to automat-
ically recognize particular sequences
that violate expectations about proper
user interface usage. Finally, in some
cases, the purpose is to perform trans-
formation of the source sequence by ab-
stracting and recoding instances of the
target sequence into “abstract” events.

Techniques for comparing sequences.
These techniques help investigators
compare source sequences against
concrete or abstractly defined target
sequences indicating the extent to
which the sequences match one another.
Some techniques attempt to detect
divergence between an abstract model
representing the target sequence and
a source sequence. Others attempt to
detect divergence between a concrete
target sequence produced, for exam-
ple, by an expert user, and a source
sequence produced by some other user.
Some produce diagnostic measures
of distance to characterize the corre-
spondence between target and source
sequences. Others attempt to perform
the best possible alignment of events
in the target and source sequences and
present the results to investigators in
visual form. Still others use points of
deviation between the target and input
sequences to automatically indicate po-
tential usability issues. In all cases, the
purpose is to compare actual sequences
of events against some model or trace of
“ideal” or expected sequences to identify
potential usability issues.

Techniques for characterizing sequences.
These techniques take source sequences
as input and attempt to construct
an abstract model to summarize, or
characterize, interesting sequential
features of those sequences. Some tech-
niques compute probability matrices in
order to produce process models with
probabilities associated with transi-
tions. Others construct grammatical

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

Synchronization and searching
Transformation
Selection
Abstraction
Recoding
Analysis
Counts and summary statistics
Sequence detection
Sequence comparison
Sequence characterization
Visualization

Integrated support

Fig. 1. Comparison framework.

models or finite state machines to
characterize the grammatical structure
of events in the source sequences.

Visualization techniques. These techni-
ques present the results of transforma-
tions and analyses in forms allowing
humans to exploit their innate visual
analysis capabilities to interpret results.
These techniques can be particularly
useful in linking results of analysis back
to features of the interface.

* Integrated evaluation support. Eval-
uation environments that facilitate
flexible composition of various trans-
formation, analysis, and visualization
capabilities provide integrated support.
Some environments also provide built-
in support for managing domain-specific
artifacts such as evaluations, subjects,
tasks, data, and results of analysis.

Figure 1 illustrates how the frame-
work might be arranged as a hierarchy.
At the highest level, the surveyed tech-
niques are concerned with: synchroniza-
tion and searching, transformation, anal-
ysis, visualization, or integrated support.
Transformation can be achieved through
selection, abstraction, and recoding. Anal-
ysis can be performed using counts and
summary statistics, sequence detection,
sequence comparison, and sequence char-
acterization.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

387

1.3 Organization of the Survey

Section 2 establishes background and
presents definitions of important terms.
Section 3 discusses the nature and char-
acteristics of Ul events and provides ex-
amples to illustrate some of the difficulties
involved in extracting usability-related in-
formation from such events. Section 4
presents a comparison of the approaches
based on the framework outlined above.
For each class of techniques, the follow-
ing is provided: a brief description, ex-
amples, related work where appropriate,
and strengths and limitations. Section 5
summarizes the most important points of
the survey and outlines some directions
for future research. Section 6 presents
conclusions.

Many of the authors are not explicit
regarding the event representations as-
sumed by their approaches. We assume
that Ul events are data structures that in-
clude attributes indicating an event type
(e.g., MOUSE_PRESSED or KEY_PRESSED), an
event target (e.g., an ID indicating a par-
ticular button or text field in the user in-
terface), a timestamp, and other attributes
including various aspects of the state of
input devices when the event was gener-
ated. However, to raise the level of ab-
straction in our discussion, we typically
represent event streams as sequences of
letters where each letter corresponds to a
more detailed event structure as described
above. When beneficial, and possible,
we provide examples using this notation
to illustrate how particular approaches
operate.

2. BACKGROUND

This section serves three purposes. First,
it establishes working definitions of key
terms such as “usability,” “usability evalu-
ation,” and “usability data.” Second, it sit-
uates observational usability evaluation
within the broader context of HCI evalu-
ation approaches, indicating some of the
relative strengths and limitations of each.
Finally, it isolates user interface events as
one of the many types of data commonly
collected in observational usability evalu-
ation, indicating some of its strengths and

388

limitations relative to other types. The def-
initions and frameworks presented here
are not new and can be found in stan-
dard HCI texts [Preece et al. 1994; Nielsen
1993]. Those well acquainted with usabil-
ity, usability evaluation, and user inter-
face event data, may wish to skip directly
to Section 3 where the specific nature of
user interface events and the reasons why
analysis is complicated are presented.

2.1 Definitions

“Usability” is often thought of as referring
to a single attribute of a system or device.
However, it is more accurately character-
ized as referring to a large number of re-
lated attributes. Nielsen provides the fol-
lowing definition [Nielsen 1993]:

Usability has multiple components and
is traditionally associated with these five
usability attributes:

Learnability: The system should be easy to
learn so that the user can rapidly start
getting some work done with the sys-
tem.

Efficiency: The system should be efficient
to use, so that once the user has learned
the system, a high level of productivity
is possible.

Memorability: The system should be easy
to remember, so that the casual user
is able to return to the system after
some period of not having used it, with-
out having to learn everything all over
again.

Errors: The system should have a low er-
ror rate, so that users make few errors
during the use of the system, and so that
if they do make errors they can easily re-
cover from them. Further, catastrophic
errors must not occur.

Satisfaction: The system should be pleas-
ant to use, so that users are subjectively
satisfied when using it; they like it.

“Usability evaluation” can be defined
as the act of measuring (or identifying
potential issues affecting) usability at-
tributes of a system or device with re-
spect to particular users, performing par-
ticular tasks, in particular contexts. The

D. M. Hilbert and D. F. Redmiles

reason that users, tasks, and contexts are
part of the definition is that the values
of usability attributes can vary depending
on the background knowledge and experi-
ence of users, the tasks for which the sys-
tem is used, and the context in which it is
used.

“Usability data” is any information that
is useful in measuring (or identifying po-
tential issues affecting) the usability at-
tributes of a system under evaluation.

Usability and utility are regarded as
subcategories of the more general term
“usefulness” [Grudin 1992]. Utility is the
question of whether the functionality of
a system can, in principle, support the
needs of users, while usability is the ques-
tion of how satisfactorily users can make
use of that functionality. Thus, system
usefulness depends on both usability and
utility.

While this distinction is theoretically
clear, usability evaluations often iden-
tify both wusability and utility issues,
thus more properly addressing usefulness.
However, to avoid introducing new termi-
nology, this survey simply assumes that
usability evaluations and usability data
can address questions of utility as well as
questions of usability.

2.2 Types of Usability Evaluation

This section contrasts the different types
of approaches that have been brought to
bear in evaluating usability in HCI.

First, a distinction is commonly drawn
between formative and summative eval-
uation. Formative evaluation primarily
seeks to provide feedback to designers
to inform and evaluate design decisions.
Summative evaluation primarily involves
making judgements about “completed”
products, to measure improvement over
previous releases or to compare competing
products. The techniques discussed in
this survey can be applied in both sorts of
cases.

Another important issue is the more
specific motivation for evaluating. There
are a number of practical motivations for
evaluating. For instance, one may wish to
gain insight into the behavior of a system

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

389

Table I. Types of Evaluation and Reasons for Evaluating
Reasons for Predictive Observational Participative
Evaluating Evaluation Evaluation Evaluation
Understanding user behavior & performance X X
Understanding user thoughts & experience b4 X
Comparing design alternatives X X X
Computing usability metrics X X X
Certifying conformance w/standards X

and its users in actual usage situations
in order to improve usability (formative)
and to validate that usability has been im-
proved (summative). One may also wish to
gain further insight into users’ needs, de-
sires, thought processes, and experiences
(also formative and summative). One may
wish to compare design alternatives, for
example, to determine the most efficient
interface layout or the best design rep-
resentation for some set of domain con-
cepts (formative). One may wish to com-
pute usability metrics so that usability
goals can be specified quantitatively and
progress measured, or so that competing
products can be compared (summative).
Finally, one may wish to check for confor-
mance to interface style guidelines and/or
standards (summative). There are also
academic motivations, such as the desire
to discover features of human cognition
that affect user performance and compre-
hension with regard to human-computer
interfaces (potentially resulting in forma-
tive implications).

There are a number of HCI evaluation
approaches for achieving these goals that
fall into three basic categories: predictive,
observational, and participative.

Predictive evaluation usually involves
making predictions about usability at-
tributes based on psychological modeling
techniques (e.g., the GOMS model [John
and Kieras 1996a; 1996b] or the Cognitive
Walkthrough [Lewis et al. 1992]), or based
on design reviews performed by experts
equipped with a knowledge of HCI prin-
ciples and guidelines and past experience
in design and evaluation (e.g., Heuris-
tic Evaluation [Nielsen and Mack 1994]).
A key strength of predictive approaches
is their ability to produce results based
on nonfunctioning design artifacts with-

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

out requiring the involvement of actual
users.

Observational evaluation involves mea-
suring usability attributes based on obser-
vations of users actually interacting with
prototypes or fully functioning systems.
Observational approaches can range from
formal laboratory experiments to less for-
mal field studies. A key strength of ob-
servational techniques is that they tend
to uncover aspects of actual user behavior
and performance that are difficult to cap-
ture using other techniques.

Finally, participative evaluation in-
volves collecting information regarding
usability attributes directly from users
based on their subjective reports. Methods
for collecting such data range from ques-
tionnaires and interviews to more ethno-
graphically inspired approaches involving
joint observer/participant interpretation
of behavior in context. A key benefit of
participative techniques is their ability to
capture aspects of users’ needs, desires,
thought processes, and experiences that
are difficult to obtain otherwise.

In practice, actual evaluations often
combine techniques from multiple ap-
proaches. However, the methods for pos-
ing questions and for collecting, analyzing,
and interpreting data vary from one cat-
egory to the next. Table I provides a high
level summary of the relationship between
types of evaluation and typical reasons for
evaluating. An upper-case X’ indicates a
strong relationship. A lower-case X’ indi-
cates a weaker relationship. An empty cell
indicates little or no relationship.

The approaches surveyed here are pri-
marily geared toward supporting observa-
tional evaluation, although some provide
limited support for capturing participative
data as well.

390 D. M. Hilbert and D. F. Redmiles
Table Il. Data Collection Techniques and Usability Indicators
Survey/

Usability Ul Event Audio/Video Post-hoc User Questionnaire/ Psychophysical
Indicators Recording Recording Comments Interview Test scores Recording
On-line behavior/ X X

performance
Off-line behavior X

(nonverbal)
Cognition/ X X

understanding
Attitude/opinion
Stress/anxiety X

2.3 Types of Usability Data

Having situated observational usability
evaluation within the broader context of
predictive, observational, and participa-
tive approaches, user interface events can
be isolated as just one of many possible
sources of observational data.

Sweeny and colleagues [Sweeny et al.
1993] identify a number of indicators that
might be used to measure (or indicate
potential issues affecting) usability at-
tributes:

* On-line behavior/performance: e.g., task
times, percentage of tasks completed, er-
ror rates, duration and frequency of on-
line help usage, range of functions used.

* Off-line behavior (nonverbal): e.g., eye
movements, facial gestures, duration
and frequency of off-line documentation
usage, off-line problem solving activity.

» Cognition/understanding: e.g., verbal
protocols, answers to comprehension
questions, sorting task scores.

* Attitude/opinion: e.g., posthoc com-
ments, questionnaire and interview
comments and ratings.

 Stress/anxiety: e.g., galvanic skin re-
sponse (GSR), heart rate (ECG), event-
related brain potentials (ERPs), elec-
troencephalograms (EEG), ratings of
anxiety.

Table II summarizes the relationship
between these indicators and various tech-
niques for collecting observational data.
This table is by no means comprehensive
and is used only to indicate the rather spe-
cialized yet complementary nature of user
interface event data in observational eval-

uation. Ul events provide excellent data
for quantitatively characterizing on-line
behavior, however, the usefulness of Ul
events in providing data regarding the re-
maining indicators has not been demon-
strated. However, some investigators have
used Ul events to infer features of user
knowledge and understanding [Kay and
Thomas 1995; Guzdial et al. 1993].

Many of the surveyed approaches focus
on event data exclusively. However, some
also combine other sources of data includ-
ing video recordings, coded observations,
and subjective user reports.

3. THE NATURE OF UI EVENTS

This section discusses the nature and cha-
racteristics of HCI events in general and
Ul events specifically. We discuss the
grammatical nature of Ul events includ-
ing some implications on analysis. We also
discuss the importance of contextual in-
formation in interpreting the significance
of events. Finally, we present a composi-
tional model of Ul events to illustrate how
these issues manifest themselves in Ul
event analysis. We use this discussion to
ground later discussion and to highlight
some of the strengths and limitations of
the surveyed approaches.

3.1 Spectrum of HCI Events

Before discussing the specific nature of
UI events, this section introduces the
broader spectrum of events of interest
to researchers and practitioners in HCI.
Figure 2, adapted from Sanderson and
Fisher [1994], indicates the durations of
different types of HCI events.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information 391
Ul events
eye movements
gestures, motions
vocalizations
turns
topics
meeting events
operation events
project events Event
| | | | | | | | | | | | duration
[I [| | | & v A I N in seconds
.001 .01 A 1. 10 100 1 . 10K 100K 1M, 10M , 100M
: \ \ ' ' \ (log scale)
1 s:ec 1 min 1 Hour 1 day 1 month 1 y'ear
High Frequency Band Events Low Frequency Band Events
(Mostly synchronous interactions) (Many asynchronous interactions)
Fig. 2. A spectrum of HCI events. Adapted from [Sanderson and Fisher 1994].
The horizontal axisis alog scaleindicat- has tended to focus on mid- to low-

ing event durations in seconds. It ranges
from durations of less than one second to
durations of years. The durations of Ul
events fall in the range of 10 milliseconds
to approximately one second. The range of
possible durations for each “type” of event
is between one and two orders of magni-
tude, and the ranges of different types of
events overlap one another.

If we assume that events occur serially,
then the possible frequencies of events
are constrained by the duration of those
events. So, by analogy with the contin-
uous domain (e.g., analog signals), each
event type will have a characteristic fre-
quency band associated with it [Sanderson
and Fisher 1994]. Event types of shorter
duration, for example, Ul events, can ex-
hibit much higher frequencies when in
sequence, and thus might be referred to
as high-frequency band event types. Like-
wise, event types of longer duration, such
as project events, exhibit much lower fre-
quencies when in sequence and thus might
be referred to as low-frequency band event
types. Evaluations that attempt to ad-
dress the details of interface design have
tended to focus on high-frequency band
event types, whereas research on com-
puter supported cooperative work (CSCW)

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

frequency band event types [Sanderson
and Fisher 1994].

Some important properties of HCI
events that emerge from this characteri-
zation include the following:

1. Synchronous vs. Asynchronous Events:
Sequences composed of high-frequency
event types typically occur syn-
chronously. For example, sequences
of Ul events, gestures, or conversa-
tional turns can usually be captured
synchronously using a single record-
ing. However, sequences composed of
lower frequency event types, such as
meeting or project events, may occur
asynchronously, aided, for example,
by electronic mail, collaborative appli-
cations, memos, and letters. This has
important implications on the methods
used to sample, capture, and analyze
data, particularly at lower frequency
bands [Sanderson and Fisher 1994].

. Composition of Events: Events within
a given frequency band are often com-
posed of events from higher frequency
bands. These same events typically
combine to form events at lower fre-
quency bands. Sanderson and Fisher of-
fer this example: a conversational turn

392

is typically composed of vocalizations,
gestures, and eye movements, and a
sequence of conversational turns may
combine to form a topic under discus-
sion within a meeting [Sanderson and
Fisher 1994]. This compositional struc-
ture is also exhibited within frequency
bands. For instance, user interactions
with software applications occur and
may be analyzed at multiple levels of
abstraction, where events at each level
are composed of events occurring at
lower levels. (See Hilbert et al. [1997]
for an early treatment). This is dis-
cussed further below.

3. Inferences Across Frequency Band
Boundaries: Low frequency band
events do not directly reveal their com-
position from higher frequency events.
As a result, recording only low fre-
quency events will typically result in
information loss. Likewise, high fre-
quency events do not, in themselves,
reveal how they combine to form events
at lower frequency bands. As a result,
either low frequency band events must
be recorded in conjunction with high
frequency band events or there must
be some external model (e.g., a gram-
mar) to describe how high frequency
events combine to form lower frequency
events. This too is discussed further
below.

3.2 Grammatical Issues in Analysis

UI events are often grammatical in struc-
ture. Grammars have been used in numer-
ous disciplines to characterize the struc-
ture of sequential data. The main feature
of grammars that make them useful in
this context is their ability to define equiv-
alence classes of patterns in terms of
rewrite rules. For example, the following
grammar (expressed as a set of rewrite
rules) may be used to capture the ways in
which a user can trigger a print job in a
given application:

PRINT_COMMAND —>
"MOUSE_PRESSED PrintToolbarButton"or
(PRINT DIALOG_ACTIVATED then
"MOUSE_PRESSED OkButton)

D. M. Hilbert and D. F. Redmiles

PRINT_DIALOG_ACTIVATED —>
"MOUSE_PRESSED PrintMenultem" or
"KEY_PRESSED Ctrl — P"

Rule 1 simply states that the user can
trigger a print job by either pressing the
print toolbar button (which triggers the
job immediately) or by activating the print
dialog and then pressing the “OK” button.
Rule 2 specifies that the print dialog may
be activated by either selecting the print
menu item in the “File” menu or by enter-
ing a keyboard accelerator, “Ctrl-P.”

Let us assume that the lexical elements
used to construct sentences in this lan-

guage are:

A: indicating
pressed”

B: indicating “print menu item selected”

C: indicating “print accelerator key en-
tered”

D: indicating “print dialog okayed”

Then the following “sentences” con-
structed from these elements each indi-
cate a series of four consecutive print job
activations:

AAAA
CDAAA
ABDBDA
BDCDACD
CDBDCDBD

All occurrences of ‘A’ indicate an imme-
diate print job activation while all occur-
rences of ‘BD’ or ‘CD’ indicate a print job
activated by using the print dialog and
then selecting “OK.”

Notice that each of these sequences
contains a different number of lexical
elements. Some of them have no lexi-
cal elements in common (e.g., AAAA and
CDBDCDBD). The lexical elements occupying
the first and last positions differ from one
sequence to the next. In short, there are
a number of salient differences between
these sequences at the lexical level. Tech-
niques for automatically detecting, com-
paring, and characterizing sequences are
typically sensitive to such differences. Un-
less the data is transformed based on the

“print toolbar button

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

above grammar, the fact that these se-
quences are semantically equivalent (in
the sense that each indicates a series of
four consecutive print job activations) will
most likely go unrecognized, and even
simple summary statistics such as “# of
print jobs per session” may be difficult to
compute.

Techniques for extracting usability-
related information from Ul events should
take into consideration the grammatical
relationships between lower level events
and higher level events of interest.

3.3 Contextual Issues in Analysis

Another set of problems arises in attempt-
ing to interpret the significance of UI
events based only on the information car-
ried within events themselves. To illus-
trate the problem more generally, consider
the analogous problem of interpreting the
significance of utterances in transcripts of
natural language conversation. Important
contextual cues are often spread across
multiple utterances or may be missing
from the transcript altogether.

Let us assume we have a transcript of
a conversation that took place between in-
dividuals A and B at a museum. The task
is to identify A’s favorite paintings based
on utterances in the transcript.

Example 1: “The Persistence of Memory,
by Dali, is one of my favorites.”

In this case, everything we need to know
in order to determine one of A’s favorite
paintings is contained in a single utter-
ance.

Example 2: “The Persistence of Memory,
by Dali.”

In this case we need access to prior con-
text. ‘A’is most likely responding to a ques-
tion posed by ‘B’. Information carried in
the question is critical in interpreting the
response. For example, the question could
have been: “Which is your least favorite
painting?”

Example 3: “That is one of my favorites.”
In this case, we need the ability to deref-
erence an indexical. The information car-
ried by the indexical “that” may not be
available in any of the utterances in the

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

393

transcript, but was clearly available to the
interlocutors at the time of the utterance.
Such contextual information was “there
for the asking,” so to speak, and could
have been noted had the transcriber been
present and chosen to do so at the time of
the utterance.

Example 4: “That is another one.”

In this case we would need access to
both prior context and the ability to de-
reference an indexical.

The following examples illustrate anal-
ogous situations in the interpretation of
user interface events:

Example 1': “MOUSE_PRESSED PrintTool-
barButton”

This event carries with it enough infor-
mation to indicate the action the user has
performed.

Example 2': “MOUSE_PRESSED OkButton”

This event does not on its own indicate
what action was performed. As in Exam-
ple 2 previously, this event indicates a re-
sponse to some prior event, for example,
a prior “MOUSE_PRESSED PrintMenultem”
event.

Example 3': “WINDOW_OPENED ErrorDia-
log”

The information needed to interpret the
significance of this event may be available
in prior events, but a more direct way to in-
terpret its significance would be to query
the dialog for its error message. This is
similar to dereferencing an indexical, if we
think of the error dialog as figuratively
“pointing at” an error message that does
not actually appear in the event stream.

Example 4': “WINDOW_OPENED ErrorDia-
log”

Assuming the error message is “Invalid
Command,” then the information needed
to interpret the significance of this event
is not only found by dereferencing the in-
dexical (the error message “pointed at”
by the dialog) but must be supplemented
by information available in prior events.
It may also be desirable to query con-
textual information stored in user inter-
face components to determine the combi-
nation of parameters (specified in a dialog,

394

for example) that led to this particular
error.

The basic insight here is that some-
times an utterance — or a Ul event —
does not carry enough information on its
own to allow its significance to be prop-
erly interpreted. Sometimes critical con-
textual information is available elsewhere
in the transcript, and sometimes that in-
formation is not available in the tran-
script, but was available, “for the asking,”
at the time of the utterance, or event,
but not afterwards. Therefore, techniques
for extracting usability-related informa-
tion from Ul events should take into con-
sideration the fact that context may be
spread across multiple events, and that
in some cases, important contextual infor-
mation may need to be explicitly captured
during data collection if meaningful inter-
pretation is to be performed.

3.4 Composition of Events

Finally, user interactions may be analyzed
at multiple levels of abstraction. For in-
stance, one may be interested in analyzing
low-level mouse movement and timing in-
formation, or one may be more interested
in higher-level information regarding the
steps taken by users in completing tasks,
such as placing an order or composing
a business letter. Techniques for extract-
ing usability information from UI events
should be capable of addressing events at
multiple levels of abstraction.

Figure 3 illustrates a multilevel model
of events originally presented in Hilbert
et al. [1997]. At the lowest level are physi-
cal events, for example, fingers depressing
keys or a hand moving a pointing device
such as a mouse. Input device events, such
as key and mouse interrupts, are gener-
ated by hardware in response to physical
events. Ul events associate input device
events with windows and other interface
objects on the screen. Events at this level
include button presses, list and menu se-
lections, focus events in input fields, and
window movements and resizing.

Abstract interaction events are not di-
rectly generated by the user interface
system, but may be computed based on

D. M. Hilbert and D. F. Redmiles

Goal/Problem-Related
(e.g., placing an order)

Domain/Task-Related
(e.g., providing address information)

Abstract Interaction Level
(e.g., providing values in input fields)

Ul Events
(e.g., shifts in input focus, key events)

Input Device Events
(e.g., hardware-generated key or mouse interrupts)

Physical Events
(e.g., fingers pressing keys or hand moving mouse)

Fig. 3. Levels of abstraction in user interactions.

UI events and other contextual infor-
mation such as Ul state. Abstract in-
teraction events are indicated by recur-
ring, idiomatic patterns of Ul events and
indicate higher level concepts such as
shifts in users’ editing attention or the act
of providing values to an application by
manipulating application components.

Consider the example of a user edit-
ing an input field at the top of a form-
based interface, then pressing tab repeat-
edly to edit a field at the bottom of the
form. In terms of Ul events, input focus
shifted several times between the first and
last fields. In terms of abstract interaction
events, the user’s editing attention shifted
directly from the top field to the bot-
tom field. Notice that detecting the occur-
rence of abstract interaction events such
as “GOT_EDIT” and “LOST_EDIT” requires the
ability to keep track of the last edited
component and to notice subsequent edit-
ing events in other components.

Another type of abstract interaction
event might be associated with the act of
providing a new value to an application by
manipulating user interface components.
In the case of a text field, this would mean
that the field had received a number of
key events, was no longer receiving key
events, and now contains a new value. The
patterns of window system events that in-
dicate an abstract interaction event such

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

as “VALUE_PROVIDED” will differ from one
type of interface component to another,
and from one application to another, but
will typically remain fairly stable within
a given application. Notice that detecting
the occurrence of an abstract interaction
event such as “VALUE_PROVIDED” requires
the ability to access user interface state
such as the component value before and
after editing events.

Domain/task-related and Goal/problem-
related events are at the highest levels.
Unlike other levels, these events indicate
progress in the user’s tasks and goals. In-
ferring these events based on lower level
events can be straightforward when the
user interface provides explicit support for
structuring tasks or indicating goals. For
instance, Wizards in Microsoft Word™
[Rubin 1999] lead users through a se-
quence of steps in a predefined task. The
user’s progress can be recognized in terms
of simple Ul events such as button presses
on the “Next” button. In other cases, in-
ferring task and goal related events might
require more complicated composite event
detection. For instance, the goal of placing
an order includes the task of providing ad-
dress information. The task-related event
“ADDRESS_PROVIDED” may be recognized in
terms of “VALUE_PROVIDED” abstract inter-
action events occurring within each of the
required fields in the address section of
the form. Finally, in some cases, it may be
impossible to infer events at these levels
based only on lower level events.

Techniques for extracting usability-
related information from Ul events should
be sensitive to the fact that user interac-
tions can occur and be analyzed at multi-
ple levels of abstraction.

4. COMPARISON OF APPROACHES

This section introduces the approaches
that have been applied to the problem
of extracting usability-related information
from UI events. The following subsections
discuss the features that distinguish each
class of approaches and provide examples
of some of the approaches in each class. We
mention related work where appropriate
and discuss the relative strengths and lim-

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

395

itations of each class. Figures 4 through
11 provide pictorial representations of
the key features underlying each class.
Table III (located at the end of this section)
presents a categorization and summary of
the features belonging to each of the sur-
veyed techniques.

4.1 Synchronization and Searching

4.1.1 Purpose. User interface events pro-
vide detailed information regarding user
behavior that can be captured, searched,
counted, and analyzed using automated
tools. However, it is often difficult to in-
fer higher level events of interest from
user interface events alone, and some-
times critical contextual information is
simply missing from the event stream,
making proper interpretation challenging
at best.

Synch and Search techniques seek to
combine the advantages of Ul event data
with the advantages provided by more se-
mantically rich observational data, such
as video recordings and experimenters’ ob-
servations.

By synchronizing Ul events with other
sources of data such as video or coded ob-
servations, searches in one medium can
be used to locate supplementary informa-
tion in others. Therefore, if an investi-
gator wishes to review all segments of a
video in which a user uses the help sys-
tem or invokes a particular command, it
is not necessary to manually search the
entire recording. The investigator can: (a)
search through the log of UI events for
particular events of interest and use the
timestamps associated with those events
to automatically cue up the video record-
ing, or (b) search through a log of obser-
vations (that were entered by the inves-
tigator either during or after the time of
the recording) and use the timestamps as-
sociated with those observations to cue
up the video. Similarly, segments of inter-
est in the video can be used to locate the
detailed user interface events associated
with those episodes.

4.1.2 Examples. Playback is an early ex-
ample of a system employing synch and

396 D. M. Hilbert and D. F. Redmiles

Description: Ul events are synchronized with video
and coded observations. Searches in one medium
are used to locate supplementary information in
others.

Examples: Playback; Microsoft, Apple, and Sun-
Soft Labs; DRUM; MacSHAPA; I-Observe.

Fig. 4. Synchronization and searching.

Description: Selection is the process of separating Description: Abstraction is the process of generat-
events of interest from the rest of the event stream. ing new events based on existing, or patterns of
Recoding is the process of generating a new event existing, events. Recoding is the process of generat-
stream based on selected events. ing a new event stream based on abstracted events.
Examples: Incident Monitoring; CHIME; Hawk; Examples: CHIME; Hawk; MacSHAPA; User-Identi-
MacSHAPA; User-Identified Cls; EDEM. fied Cls; EDEM.

Fig. 5. Transformation.

Description: Counts and summary statistics are
numeric values calculated based on Ul events to
characterize user behavior.

Examples: MIKE UIMS; KRI/AG; MacSHAPA; Long
Term Monitoring; AUS.

Fig. 6. Counts and summary statistics.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

397

Description: Sequence detection is the process of
identifying occurrences of target sequences—in this
case concretely defined—in source sequences.

Examples: None of the surveyed techniques use
concretely defined target sequences.

Description: Sequence detection is the process of
identifying occurrences of target sequences—in this
case abstractly defined—in source sequences.
Examples: LSA; Fisher’s Cycles; TOP/G; MRP;
MacSHAPA; Automatic Chunk Detection; Expecta-
tion Agents; EDEM.

Fig. 7. Sequence detection.

Description: Sequence comparison is the process
of comparing target sequences—in this case con-
cretely defined—against source sequences and
producing measures of correspondence.

Examples: ADAM; UsAGE; MacSHAPA.

Description: Sequence comparison is the process
of comparing target sequences—in this case
abstractly defined—against source sequences and
producing measures of correspondence.

Examples: EMA.

Fig. 8. Sequence comparison.

Description: Sequence characterization is the pro-
cess of analyzing source sequences and generating
abstract models to characterize the sequential
structure of those sequences.

Examples: Markov-based; Grammar-based.

Fig. 9. Sequence characterization.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

398

D. M. Hilbert and D. F. Redmiles

Description: Visualizations present the results of
transformations and analyses in graphical form.

Examples: MacSHAPA; UsAGE; |-Observe; AUS.

Description: Integrated support includes support for
multiple transformation, analysis, and visualization
capabilities as well as data management.

Examples: Hawk; DRUM; MacSHAPA.

Fig. 10. Visualization.

search capabilities [Neal and Simmons
1983]. Playback captures Ul events au-
tomatically and synchronizes them with
coded observations and comments that are
entered by experimenters either during or
after the evaluation session. Instead of us-
ing video, Playback allows recorded events
to be played back through the application
interface to retrace the user’s actions. The
evaluator can step through the playback
based on events or coded observations as
if using an interactive debugger. There are
a handful of simple built-in analyses to
automatically calculate counts and sum-
mary statistics. This technique captures
less information than video-based tech-
niques since video can also be used to
record off-line behavior such as facial ges-
tures, off-line documentation use, and ver-
balizations. Also, there can be problems
associated with replaying user sessions ac-
curately in applications where behavior
is affected by events outside of user in-
teractions. For instance, the behavior of
some applications can vary depending on
the state of networks and persistent data
stores.

DRUM, the “Diagnostic Recorder for Us-
ability Measurement,” is an integrated
evaluation environment that supports
video-based usability evaluation [Macleod
et al. 1993]. DRUM was developed at the
National Physical Laboratory as part of
the ESPRIT Metrics for Usability Stan-
dards in Computing Project (MUSIC).
DRUM features a module for recording
and synchronizing events, observations,

Fig. 11. Integrated Support.

and video, a module for defining and
managing observation coding schemes, a
module for calculating predefined counts
and summary statistics, and a module for
managing and manipulating evaluation-
related information regarding subjects,
tasks, recording plans, logs, videos, and re-
sults of analysis.

Usability specialists at Microsoft,
Apple, and SunSoft all report the use
of tools that provide synch and search
capabilities [Weiler 1993; Hoiem and
Sullivan 1994]. The tools used at Mi-
crosoft include a tool for logging observa-
tions, a tool for tracking UI events, and
a tool for synchronizing and reviewing
data from the multiple sources. The tools
used at Apple and SunSoft are essentially
similar. All tools support some level of
event selection as part of the capture
process. Apple’s selection appears to
be user-definable while Microsoft and
SunSoft’s selection appear to be pro-
gramed into the capture tools. Scripts and
general-purpose analysis programs, such
as Microsoft Excel™ [Dodge and Stinson
1999], are used to perform counts and
summary statistics after capture. All tools
support video annotations to produce
“highlights” videos. Microsoft’s tools pro-
vide an API to allow applications to report
application-specific events or events not
readily available in the UI event stream.

I-Observe, the “Interface Observation,
Evaluation, Recording, and Visualiza-
tion Environment,” also provides synch
and search capabilities [Badre et al. 1995].

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

[8661 oTemyjog SANI/SHOH 5 o
SMOPUIM SN UMy urjmg (PPOIN [PPOIN urymg Sk Ayiqes() 1ySrosay] wsosay £ 8 &
uMmg UMy [BnUBly 9enuo) ggturimg ur-ymg oseqereq aseqere(q “PIA+S90 [¥661 'Te 30 uosIopuEg] VAVHS*I T B g
S
SO%EIN urymg urgmg PIA+SA0 EUN [£66T 1033uoy % POSPE] wnaa = 2 »
ur-ymeg 1duog 1drog 1dug 1duog (€661 ePznn] SMEH -
7
VN oy [S66T JIoM 3 00D] £1040081(] $59901] e% Zz m
Tenuepy ePOIN [#66T ‘Te 70 uos[Q] paseq-owwer) g m S
[enuey PO [€66T [e1pznp] POSEQ-AONIEIY m g 5
VIN [9POIN [L66T JIoM 3 00D] UONEPI[EA 590010 "
SMOPUIM X urymg [PPOIN PO urg[mg soK. [8661 outayeq % Jo1007] ansn 98 g
1dv PPOIN [sug [966T oqred] VINE .m g g
SININ urme 91210U00) EON (661 JTom % Surn] avsn 52 &
umouur) 91010U00) [066T uosLuel % Aeuig] nvav - © &
[L66T uewol[S B
VIN 1°POIN PO PO ddy UBWES-LMoSUE] WHD
VIN PPOIN PPOIN ddy [g66T sored] vada
[$661 wn[quasoy
V/IN [9POIN [OPOIN % AypmureuysLIy | ISVIX
V/N [PPO [166T '[e 30 Aq[og] snopeury
VIN PPOIN [T66T wn[quasoy] SL @ =]
SMOpUIM X urme PO PO ur-ymeg EON [8661 OUIRYE(7P J01009T] anisn 2 8 &
LMYV eaep PO u-mg JSO+PPON IS FPPON IeSN+IN SOk [L661 SO[TWPaY 3 WOQIIH] naaa § £ £
2/SO ToPOIN 198 Jes) s+ s0x [F66T ‘Te 30 uyosuasiin] sjuady uoryejoadxyy @ W g
ur-jmg [T66T XIH % 1Y2015] JUN m b oa
uorenIg PO ‘g ‘g [886T oddoH] D/doL & s
urymg [166T 20UsL] SOAD 8 19YSLT 2
ur-yimg [8L6T MoxpES] VST g
IS
1dv aseqere(aseqere(nsug [866T 21eM4j0g OAL) 0] SPBQ[R, 2P M o m
dv aseqele(eseqere(ysuy [866T @remyjog jonpenby] odoogddy jonpenby g o
SMopuIm SIN urymg ur-ymg Sk [L66T uolIq B Suey] snv m g
1dv sydern sweasord Tsuy [G66T sewoy], 2 Aey]] SULIOJTUO WIe]-SuoT S m,
SININ u-mg LN [266T Is1abpaoN % uaIMOT] DV @ ch
SININ urqrmng S9K [886T uesIoA[RH 73 USS[Q] HMIN m
SININ ur-ymg uryng SoX [€86T 'Te 70 uoixng] SININ
LMV eaep urmng PPOIN urqrmng DS +EPON LSO +[EPOIN IPS)+IN) SoX [L66T se[rupay % 31oq(IH] pcreccy = W
SMOPUIM X PPOIN PPOIN n EUN [1661 sojueg % aipeq] HINIHD m =3
umouu) J9s8) J9S) J9s) EE)N [966T ‘e 10 uosjre] STD paynuspy Jos) I=d B
SMOPUIM X ur-rmyg n S9K [066T uay)] BuLIojuo Juaprou] w N
SMOPUIM X urymg PPOIN PA Sk (G661 Te 30 a1peq] 9ASqO-T 7
SMopuIp SN ur-ymg PIATSO oK [#661 UBA[[NS 7 WAOH] qeyosonry 2P §
SMOPUIM X urymg PIA+SqQ SO [€66T To110M] qeyosung 5 m s
SO’ ur-ymg PIA+SQO SOK [€66T Tor19M] qeroddy =g
umowyupy urgmg '$90 EUN [€86T suowwig 3 [eaN] peqield B
wojrerd afeuey ozI[ensip JepeIRy) oredwo) 199391 s1818 opoday opooay JX0U0)) eamyde) Yoaeeg ERlIERE) CiY g enbruypa,/[oo],
n eleq eouenbag eouenbeg souanbag 23 SHuno) /RISqY /309198 Joasn JUSAY JUouss

SJUSAT 90BUBIU| JOSN WOJ) uoiew.oju| parejay-Aljiqesn Bunoenx3 Joj sanbiuydsal papiy-1aindwo) jo uonesyisse|d v 1l d|qel

400

I-Observe is a set of loosely integrated
tools for collecting, selecting, analyzing,
and visualizing event data that has
been synchronized with video record-
ings. Investigators can perform searches
by specifying predicates over the at-
tributes contained within a single event
record. Investigators can then locate pat-
terns of events by stringing together mul-
tiple search specifications into regular
expressions. Investigators can then use
intervals matched by such regular expres-
sions (identified by begin and end events)
to select data for visualization or to display
the corresponding segments of the video
recording.

4.1.3 Strengths. The strengths of these
techniques lie in their ability to inte-
grate data sources with complementary
strengths and weaknesses and to allow
searches in one medium to locate re-
lated information in the others. Ul events
provide detailed performance information
that can be searched, counted, and ana-
lyzed using automated techniques. How-
ever, Ul events often leave out higher level
contextual information that can more eas-
ily be captured using video recordings and
coded observations.

4.1.4 Limitations. Techniques relying on
synchronizing Ul events with video and
coded observations typically require the
use of video recording equipment and
the presence of observers. The use of
video equipment and the presence of ob-
servers can make subjects self-conscious
and affect performance and may not be
practical or permitted in certain circum-
stances. Furthermore, video-based evalu-
ations tend to produce massive amounts
of data that can be expensive to analyze.
The ratio of the time spent in analysis
versus the duration of the sessions be-
ing analyzed has been known to reach
10:1 [Sanderson and Fisher 1994; Nielsen
1993; Sweeny et al. 1993]. These matters
are all serious limiting factors on evalua-
tion size, scope, location, and duration.

Some researchers have begun inves-
tigating techniques for performing col-

D. M. Hilbert and D. F. Redmiles

laborative remote usability evaluations
using video-conferencing software and
application sharing technologies. Such
techniques may help lift some of the lim-
itations on evaluation location. However,
more work must be done in the area of
automating data collection and analysis
if current restrictions on evaluation size,
scope, and duration are to be addressed.

4.2 Transformation

4.2.1 Purpose. These techniques com-
bine selection, abstraction, and recoding to
transform event streams for various pur-
poses, such as facilitating human pattern
detection, comparison, and characteriza-
tion, or to prepare data for input into au-
tomatic techniques for performing these
functions.

Selection operates by subtracting in-
formation from event streams, allowing
events and sequences of interest to emerge
from the “noise.” Selection involves speci-
fying constraints on event attributes to in-
dicate events of interest to be separated
from other events or to indicate events
to be separated from events of interest.
For instance, one may elect to disregard
all events associated with mouse move-
ments in order to focus analysis on higher
level actions such as button presses and
menu selections. This can be accomplished
by “positively” selecting button press and
menu selection events or by “negatively”
selecting, or filtering, mouse movement
events.

Abstraction operates by synthesizing
new events based on information in the
event stream, supplemented (in some
cases) by contextual information outside
of the event stream. For instance, a pat-
tern of events indicating that an input
field had been edited, that a new value
had been provided, and that the user’s
editing attention had since shifted to an-
other component might indicate the ab-
stract event “VALUE_PROVIDED,” which is
not signified by any single event in the
event stream. Furthermore, the same ab-
stract event might be indicated by differ-
ent events in different UI components, for
example, mouse events typically indicate

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

editing in nontextual components while
keyboard events typically indicate editing
in textual components. One may also wish
to synthesize events to relate the use of
particular UI components to higher level
concepts such as the use of menus, tool-
bars, or dialogs to which those components
belong.

Recoding involves producing new event
streams based on the results of selec-
tion and abstraction. This allows the same
manual or automated analysis techniques
normally applied to raw event streams
to be applied to selected and abstracted
events, potentially leading to different
results. Consider the example presented
in Section 3. If the sequences represent-
ing four sequential print job activations
were embedded within the context of a
larger sequence, they might not be iden-
tified as being similar subsequences, par-
ticularly by automated techniques such
as those presented below. However, af-
ter performing abstraction based on the
grammar in that example, each of these
sequences could be recoded as “AAAA)
making them much more likely to be iden-
tified as common subsequences by auto-
matic techniques.

4.2.2 Examples. Chen presents an ap-
proach to user interface event monitoring
that selects events based on the notion of
“incidents” [Chen 1990]. Incidents are de-
fined as only those events that actually
trigger some response from the applica-
tion and not just the user interface system.
This technique was demonstrated by mod-
ifying the X Toolkit Intrinsics [Nye and
O’Reilly 1992] to report events that trigger
callback procedures registered by applica-
tions. This allows events not handled by
the application to be selected “out” auto-
matically. Investigators may further con-
strain event reporting by selecting specific
incidents of interest to report. Widgets in
the user interface toolkit were modified to
provide a query procedure to return lim-
ited contextual information when an event
associated with a given widget triggers a
callback.

Hartson and colleagues report an ap-
proach to remote collaborative usability

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

401

evaluation that relies on users to select
events [Hartson et al. 1996]. Users iden-
tify potential usability problems that arise
during the course of interacting with an
application and report information re-
garding these “critical incidents” by press-
ing a “report” button that is supplied in the
interface. The approach uses E-Mail to re-
port digitized video of the events leading
up to and following critical incidents along
with contextual information provided by
users. In this case, selection is achieved
by only reporting the n events leading up
to, and m events following, user-identified
critical incidents (where n and m are
parameters that can be set in advance by
investigators).!

CHIME, the “Computer-Human Inter-
action Monitoring Engine,” is similar, in
some ways, to Chen’s approach [Badre and
Santos 1991a]. CHIME allows investiga-
tors to select ahead of time which events
to report and which events to filter. An im-
portant difference is that CHIME also sup-
ports a limited notion of abstraction that
allows a level of indirection to be built on
top of the window system. The basic idea
is that abstract “interaction units” (IUs)
are defined that translate window system
events into platform independent events
upon which further monitoring infrastruc-
ture is built. The events to be recorded are
then specified in terms of these platform
independent IUs.?

Hawk is an environment for selecting,
abstracting, and recoding events in log
files [Guzdial 1993]. Hawk’s main func-
tionality is provided by a variant of the
AWK programming language [Aho et al.
1988], and an environment for manag-
ing data files is provided by HyperCard™
[Goodman 1998]. Events appear in the

1 This approach actually focuses on capturing video
and not events. However, the ideas embodied by the
approach can equally well be applied to the prob-
lem of selecting events of interest surrounding user-
identified critical incidents.

2 The paper also alludes to the possibility of allow-
ing higher level IUs to be hierarchically defined in
terms of lower level IUs (using a context-free gram-
mar and pre-conditions) to provide a richer notion
of abstraction. However, this appears to never have
been implemented [Badre and Santos 1991a; 1991b].

402

event log one per line, and AWK pattern—
action pairs are used to specify what is
to be matched in each line of input (the
pattern) and what is to be printed as
output (the action). This allows fairly flex-
ible selection, abstraction, and recoding to
be performed.

MacSHAPA, which is discussed fur-
ther later, supports selection and recod-
ing via a database query and manipula-
tion language that allows investigators to
select event records based on attributes
and define new streams based on the re-
sults of queries [Sanderson et al. 1994].
Investigators can also perform abstrac-
tion by manually entering new records
representing abstract events and visu-
ally aligning them with existing events
in a spreadsheet representation (see
Figure 13).

EDEM, an “Expectation-Driven Event
Monitoring” system, captures Ul events
and supports automated selection, ab-
straction, and recoding [Hilbert and
Redmiles 1998a]. Selection is achieved in
two ways: investigators specify ahead of
time which events to report, and users can
also cause events to be selected via a crit-
ical incident reporting mechanism akin
to that reported in Hartson et al. [1996].
However, one important difference is that
EDEM also allows investigators to define
automated agents to help in the detection
of “critical incidents,” thereby lifting some
of the burden from users who often do not
know when their actions are violating ex-
pectations about proper usage [Smilowitz
et al. 1994]. Furthermore, investigators
can use EDEM to define abstract events
in terms of patterns of existing events.
When EDEM detects a pattern of events
corresponding to a predefined abstract
event, it generates an abstract event and
inserts it into the event stream. Investiga-
tors can configure EDEM to perform fur-
ther hierarchical event abstraction by sim-
ply defining higher level abstract events
in terms of lower level abstract events. All
of this is done in context, so that contex-
tual information can be used in selection
and abstraction. EDEM also calculates a
number of simple counts and summary
statistics.

D. M. Hilbert and D. F. Redmiles

4.2.3 Strengths. The main strength of
these approaches lies in their explicit sup-
port for selection, abstraction, and recod-
ing which are essential steps in prepar-
ing UI events for most types of analysis
(as illustrated in Section 3). Chen and
CHIME address issues of selection prior to
reporting. Hartson and colleagues add to
this a technique for accessing contextual
information via the user. EDEM adds to
these automatic detection of critical inci-
dents and abstraction that is performed in
context. All these techniques might poten-
tially be used to collect UI events remotely.

Hawk and MacSHAPA, on the other
hand, do not address event collection but
provide powerful and flexible environ-
ments for transforming and analyzing al-
ready captured Ul events.

4.2.4 Limitations. The techniques that se-
lect, abstract, and recode events while col-
lecting them run the risk of throwing away
data that might have been useful in anal-
ysis. Techniques that rely exclusively on
users to select events are even more likely
to drop useful information. With the ex-
ception of EDEM, the approaches that
support flexible abstraction and recoding
do so only after events have been captured,
meaning contextual information that can
be critical in abstraction is not available.

4.3 Counts and Summary Statistics

4.3.1 Purpose. As noted previously, one
of the key benefits of Ul events is how
readily details regarding on-line behav-
ior can be captured and manipulated
using automated techniques. Most inves-
tigators rely on general-purpose analysis
programs such as spreadsheets and statis-
tical packages to compute counts and sum-
mary statistics based on collected data
(e.g., feature use counts or error frequen-
cies). However, some investigators have
proposed systems with specific built-in
facilities for performing and reporting
such calculations. This section provides
examples of some of the systems boast-
ing specialized facilities for calculating
usability-related metrics.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

4.3.2 Examples. The MIKE user inter-
face management system (UIMS) is an
early example of a system offering built-
in facilities for calculating and reporting
metrics [Olsen and Halversen 1988]. Be-
cause MIKE controls all aspects of input
and output activity, and because it has an
abstract description that links user inter-
face components to the application com-
mands they trigger, MIKE is in a uniquely
good position to monitor UI events and
associate them with responsible interface
components and application commands.
Example metrics include:

* Performance time: How much time is
spent completing tasks such as specify-
ing arguments for commands?

* Mouse travel: Is the sum of the dis-
tances between mouse clicks unneces-
sarily high?

+ Command frequency: Which commands
are used most frequently or not at all?

» Command pair frequency: Which com-
mands are used together frequently?
Can they be combined or placed closer
to one another?

» Cancel and undo: Which dialogs are fre-

quently canceled? Which commands are

frequently undone?

Physical device swapping: Is the user

switching back and forth between key-

board and mouse unnecessarily? Which
features are associated with high physi-
cal swapping counts?

3

MIKE logs all Ul events and associates
them with the interface components trig-
gering them and the application com-
mands triggered by them. Event logs are
written to files that are later read by a
metric collection and report generation
program. This program uses the abstract
description of the interface to interpret the
log and to generate human readable re-
ports summarizing the metrics.

MacSHAPA also includes numerous
built-in features to support computation
and reporting of simple counts and sum-
mary statistics, including, for instance,
the frequencies and durations of any se-
lection of events specified by the user
[Sanderson et al. 1994]. MacSHAPA’s

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

403

other more powerful analysis features are
described in following sections.

Automatic Usability Software (AUS) is
reported to provide a number of auto-
matically computed metrics such as help
system use, use of cancel and undo,
mouse travel, and mouse clicks per win-
dow [Chang and Dillon 1997].

Finally, ErgoLight Operation Record-
ing Suite (EORS) and Usability Validation
Suite (EUVS) [ErgoLight Usability Soft-
ware 1998] provide a number of built-in
counts and summary statistics to charac-
terize user interactions captured by the
tools, either locally in the usability lab, or
remotely over the Internet.

4.3.3 Related. A number of commer-
cial tools such as Aqueduct AppScope™
[Aqueduct Software 1998] and Full Cir-
cle Talkback™ [Full Circle Software 1998]
have recently become available for captur-
ing data about application crashes over
the Internet. These tools capture metrics
about the operating system and applica-
tion at the time crashes occur, and Talk-
back allows users to provide feedback re-
garding the actions leading up to crashes.
These tools also provide APIs that appli-
cation developers can use to report events
of interest, such as application feature us-
age. These tools then send captured data
via E-mail to developers’ computers where
it is stored in a database and plotted using
standard database plotting facilities.

4.3.4 Strengths. With the number of pos-
sible metrics, counts, and summary statis-
tics that might be computed and that
might be useful in usability evaluation, it
is nice that some systems provide built-in
facilities to perform and report such calcu-
lations automatically.

4.3.5 Limitations. With the exception of
MacSHAPA, the systems described above
do not provide facilities to allow evalua-
tors to modify built-in counts, statistics,
and reports, or to add new ones of their
own. Also, the computation of useful met-
rics is greatly simplified when the system
computing the metrics has a model linking
user interface components to application

404

commands, as in the case of MIKE, or
when the application code is manually
instrumented to report the events to be
analyzed, as in the case of AppScope
and Talkback. AUS does not address
application-specific features and thus is
limited in its ability to relate metrics re-
sults to application features.

4.4 Sequence Detection

4.4.1 Purpose. These techniques detect
occurrences of concrete or abstractly
defined target sequences within source
sequences.®? In some cases target se-
quences are abstractly defined and are
supplied by the developers of the tech-
nique (e.g., Fisher’s cycles, lag sequential
analysis, multiple repeating pattern anal-
ysis, and automatic chunk detection). In
other cases, target sequences are more
specific to a particular application and
are supplied by the investigators using
the technique (e.g., TOP/G, Expectation
Agents, and EDEM). Sometimes the pur-
pose is to generate a list of matched source
subsequences for perusal by the investi-
gator (e.g., Fisher’s cycles, maximal re-
peating pattern analysis, and automatic
chunk detection). Other times the pur-
pose is to recognize sequences of Ul events
that violate particular expectations about
proper Ul usage (e.g., TOP/G, Expectation
Agents, and EDEM). Finally, in some cases
the purpose may be to perform abstrac-
tion and recoding of the source sequence
based on matches of the target sequence
(e.g., EDEM).

4.4.2 Examples. TOP/G, the “Task-
Oriented Parser/Generator,” parses se-
quences of commands from a command-
line simulation and attempts to infer
the higher level tasks that are being
performed [Hoppe 1988]. Users of the
technique model expected tasks in a
notation based on Payne and Green’s
task-action grammars [Payne and Green

3 The following sentences include names of ap-
proaches in parentheses to indicate how the exam-
ples explained in the next subsection fall into finer
subcategories of the broader “sequence detection”
category.

D. M. Hilbert and D. F. Redmiles

1986] and store this information as
rewrite or production rules in a Pro-
log database. Investigators can define
composite tasks hierarchically in terms
of elementary tasks, which they must
further decompose into “triggering rules”
that map keystroke level events into
elementary tasks. Investigators may also
define rules to recognize “suboptimal”
user behaviors that might be abbreviated
by simpler compositions of commands. A
later version attempted to use informa-
tion about the side effects of commands
in the environment to recognize when a
longer sequence of commands might be
replaced by a shorter sequence. In both
cases, TOP/G’s generator functionality
could be used to generate the shorter, or
more “optimal,” command sequence.

Researchers involved in exploratory
sequential data analysis (ESDA) have
applied a number of techniques for detect-
ing abstractly defined patterns in sequen-
tial data. For an in-depth treatment see
[Sanderson and Fisher 1994]. These tech-
niques can be subdivided into two basic
categories:

Techniques sensitive to sequentially
separated patterns of events, for example:

« Fisher’s cycles
» Lag sequential analysis (LSA)

Techniques sensitive to strict transi-
tions between events, for example:

* Maximal Repeating Pattern Analysis
(MRP)

* Log linear analysis
» Time-series analysis

Fisher’s cycles allow investigators to
specify beginning and ending events of in-
terest that are then used to automatically
identify all occurrences of subsequences
beginning and ending with those events
(excluding those with further internal oc-
currences of those events) [Fisher 1991].
For example, assume an investigator is
faced with a source sequence of events
encoded using the letters of the alpha-
bet, such as: ABACDACDBADBCACCCD. Sup-
pose further that the investigator wishes
to find out what happened between all

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

occurrences of ‘A’ (as a starting point) and
‘D’ (as an ending point), Fisher’s cycles pro-
duces the following analysis:

Source sequence: ABACDACDBADBCACCCD

Begin event: A

End event: D

Output:

ABACDACDBADBCACCCD
ABACDACDBADBCACCCD
ABACDACDBADBCACCCD
ABACDACDBADBCACCCD

Cycle # Cycle

1 2 ACD
2 1 AD
3 1 ACCCD

Frequency

The investigator could then note that
there were clearly no occurrences of B in
any A->D cycle. Furthermore, the investi-
gator might use a grammatical technique
to recode repetitions of the same event into
a single event, thereby revealing that the
last cycle (ACCCD) is essentially equivalent
to the first two (ACD). This is one way of dis-
covering similar subsequences in “noisy”
data.

Lag sequential analysis (LSA) is an-
other popular technique that identifies the
frequency with which two events occur
at various “removes” from one another
[Sackett 1978; Allison and Liker 1982;
Faraone and Dorfman 1987; Sanderson
and Fisher 1994]. LSA takes one event as
a ‘key’ and another event as a ‘target’ and
reports how often the target event occurs
at various intervals before and after the
key event. If ‘A’ were the key and ‘D’ the
target in the previous example, LSA would
produce the following analysis:

Source sequence: ABACDACDBADBCACCCD
Key event: A

Target event: D

Lag(s): —4 through +4

Output:
Lag -4 -3 -2 -1 1 2 3 4
Occurrences 0 1 1 1 1

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

405

The count of 2 at Lag = +2 corresponds
to the ACD cycles identified by Fischer’s
cycles above. Assuming the same recod-
ing operation performed above to collapse
multiple occurrences of the same event
into a single event, this count would in-
crease to 3. The purpose of LSA is to
identify correlations between events (that
might be causally related to one another)
that might otherwise have been missed
by techniques more sensitive to the strict
transitions between events.

An example of a technique that is more
sensitive to strict transitions is the Max-
imal Repeating Pattern (MRP) analysis
technique [Siochi and Hix 1991]. MRP op-
erates under the assumption that repeti-
tion of user actions can be an important
indicator of potential usability problems.
MRP identifies all patterns occurring
repeatedly in the input sequence and pro-
duces a listing of those patterns sorted by
length first followed by frequency of occur-
rence in the source sequence. MRP applied
to the sequence above would produce the
following analysis:

Source Sequence: ABACDACDBADBCACCCD
Output:

Pattern # Frequency Pattern
1 2 ACD
2 3 AC
3 3 CD
4 2 BA
5 2 DB

MRP is similar in spirit to Fisher’s cy-
cles and LSA, however, the investigator
does not specify particular events of in-
terest. Notice that the ACCCD subsequence
identified in the previous examples is not
identified by MRP since it only occurs once
in the source sequence.

Markov-based techniques can be used to
compute the transition probabilities from
one or more events to the next event. Sta-
tistical tests can be applied to determine
whether the probabilities of these transi-
tions is greater than would be expected
by chance [Sanderson and Fisher 1994].
Other related techniques include log lin-
ear analysis [Gottman and Roy 1990]
and formal time-series analysis [Box and

406

Jenkins 1976]. All of these techniques at-
tempt to find strict sequential patterns in
the data that occur more frequently than
would be expected by chance.

Santos and colleagues have proposed
an algorithm for detecting users’ “mental
chunks” based on pauses and flurries of ac-
tivity in human computer interaction logs
[Santos and Badre 1994]. The algorithm is
based on an extension of Fitts’ law [Fitts
1964] that predicts the expected time be-
tween events generated by a user who is
actively executing plans, as opposed to en-
gaging in problem solving and planning
activity. For each event transition in the
log, if the pause in interaction cannot be
justified by the predictive model, then the
lag is assumed to signify a transition from
“plan execution phase” to “plan acquisi-
tion phase” [Santos et al. 1994]. The ap-
proach uses the results of the algorithm
to segment the source sequence into plan
execution chunks and chunks most prob-
ably associated with problem solving and
planning activity. The assumption is that
expert users tend to have longer, more reg-
ular execution chunks than novice users,
so user expertise might be inferred on
the basis of the results of this chunking
algorithm.

Finally, work done by Redmiles and
colleagues on “Expectation Agents” (EAs)
[Girgensohn et al. 1994] and “Expectation-
Driven Event Monitoring” (EDEM)
[Hilbert and Redmiles 1998b] rely
on sequence detection techniques to
trigger various actions in response to
pre-specified patterns of events. These
approaches employ an event pattern
language to allow investigators to specify
composite events to be detected. When a
pattern of interest is detected, contextual
information may also be queried before
action is taken. Possible actions include
notifying the user and/or investigator
that a particular pattern was detected,
collecting user feedback, and reporting Ul
state and events leading up to detected
patterns. Investigators may also config-
ure EDEM to abstract and recode event
streams to indicate the occurrence of ab-
stract events associated with pre-specified
event patterns.

D. M. Hilbert and D. F. Redmiles

4.4.3 Related. EBBA is a debugging sys-
tem that attempts to match the behavior
of a distributed program against partial
models of expected behavior [Bates 1995].
EBBA is similar to EDEM, particularly in
its ability to abstract and recode the event
stream based on hierarchically defined ab-
stract events.*

Amadeus [Selby et al. 1991] and YEAST
[Krishnamurthy and Rosenblum 1995]
are event-action systems used to detect
and take actions based on patterns of
events in software processes. These sys-
tems are also similar in spirit to Expecta-
tion Agents and EDEM. Techniques that
have been used to specify behavior of con-
current systems, such as the Task Se-
quencing Language (TSL) as described in
[Rosenblum 1991] are also related. The
event specification notations used in these
approaches might be applicable to the
problem of specifying and detecting pat-
terns of Ul events.

4.4.4 Strengths. The strength of these ap-
proaches lies in their ability to help in-
vestigators detect patterns of interest in
events and not just perform analysis on
isolated events. The techniques associated
with ESDA help investigators detect pat-
terns that may not have been anticipated.
Languages for detecting patterns of inter-
estin Ul events based on extended regular
expressions [Sanderson and Fisher 1994]
or on more grammatically inspired tech-
niques [Hilbert and Redmiles 1998b] can
be used to locate patterns of interest and to
transform event streams by recoding pat-
terns of events into abstract events.

4.4.5 Limitations. The ESDA techniques
described above tend to produce large

4 EBBA is sometimes characterized as a sequence
comparison system since the information carried in
a partially matched model can be used to help the
investigator better understand where the program’s
behavior has gone wrong (or where a model is inaccu-
rate). However, EBBA does not directly indicate that
partial matches have occurred or provide any diag-
nostic measures of correspondence. Rather, the user
must notice that a full match has failed, and then
manually inspect the state of the pattern matching
mechanism to see which events were matched and
which were not.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

amounts of output that can be difficult
to interpret and that frequently do not
lead to identification of usability prob-
lems [Cuomo 1994]. The non-ESDA tech-
niques require investigators to know how
to specify the patterns for which they are
searching and to define them (sometimes
painstakingly) before analysis can be
performed.

4.5 Sequence Comparison

4.5.1 Purpose. These techniques com-
pare source sequences against concrete or
abstractly defined target sequences indi-
cating partial matches between the two.?
Some techniques attempt to detect diver-
gence between an abstract model of the
target sequence and the source sequence
(e.g., EMA and USINE). Others attempt
to detect divergence between a concrete
target sequence produced, for example, by
an expert user and a source sequence pro-
duced by some other user (e.g., ADAM and
USAGE). Some produce diagnostic mea-
sures of distance to characterize the cor-
respondence between target and source
sequences (e.g., ADAM). Others attempt
to perform the best possible alignment of
events in target and source sequences and
present the results visually (e.g., UsAGE
and MacSHAPA). Still others use points
of deviation between the target and input
sequences to automatically indicate po-
tential “critical incidents” (e.g., EMA and
USINE). In all cases, the purpose is to
compare actual usage against some model
or trace of “ideal” or expected usage to
identify potential usability problems.®

5 The following sentences include names of ap-
proaches in parentheses to indicate how the exam-
ples explained in the next subsection, fall into finer
subcategories of the broader “sequence comparison”
category.

6 TOP/G, Expectation Agents, and EDEM (discussed
above) are also intended to detect deviations be-
tween actual and expected usage to identify potential
usability problems. However, these approaches are
better characterized as detecting complete matches
between source sequences and (“negatively defined”)
target patterns that indicate unexpected, or sub-
optimal behavior, as opposed to partially match-
ing, or comparing, source sequences against (“posi-
tively defined”) target patterns indicating expected
behavior.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

407

4.5.2 Examples. ADAM, an “Advanced
Distributed Associative Memory,” com-
pares fixed length source sequences
against a set of target sequences that
were used to train the memory [Finlay
and Harrison 1990]. Investigators train
ADAM by helping it associate example
target sequences with “classes” of event
patterns. After training, when a source
sequence is input, the associative mem-
ory identifies the class that most closely
matches the source sequence and outputs
two diagnostic measures: a “confidence”
measure that is 100% only when the
source sequence is identical to one of the
trained target sequences, and a “distance”
measure, indicating how far the source
pattern is from the next “closest” class.
Investigators then use these measures to
determine whether a source sequence is
different enough from the trained se-
quences to be judged as a possible “crit-
ical incident.” Incidentally, ADAM might
also be trained on examples of “expected”
critical incidents so that these might be
detected directly.

MacSHAPA [Sanderson and Fisher
1994] provides techniques for aligning two
sequences of events as optimally as pos-
sible based on maximal common subse-
quences [Hirschberg 1975]. The results
are presented visually as cells in adjacent
spreadsheet columns with aligned events
appearing in the same row and missing
cells indicating events in one sequence
that could not be aligned with events in
the other (see Figure 17).

UsAGE applies a related technique in
which a source sequence of Ul events (re-
lated to performance of a specific task) is
aligned as optimally as possible with a tar-
get sequence produced by an “expert” per-
forming the same task [Ueling and Wolf
1995]. USAGE presents its alignment re-
sults in visual form.

EMA, an “automatic analysis mecha-
nism for the ergonomic evaluation of user
interfaces,” requires investigators to pro-
vide a grammar-based model describing
all the expected paths through a particu-
lar user interface [Balbo 1996]. An evalua-
tion program then compares a log of events
generated by use of the interface against

408

the model, indicating in the log and the
model where the user has taken “illegal”
paths. EMA also detects and reports the
occurrence of other simple patterns, for
example, the use of cancel or repeated
actions. The evaluator can then use this
information to identify problems in the
interface (or problems in the model).

USINE is a similar technique [Lecerof
and Paterno 1998], in which investigators
use a hierarchical task notation to specify
how lower-level actions combine to form
higher-level tasks, and to specify sequenc-
ing constraints on actions and tasks. The
tool then compares logs of user actions
against the task model. All actions not
specified in the task model, or actions and
tasks performed “out of order” according
to the sequencing constraints specified in
the task model, are flagged as potential
errors. The tool then computes a number
of built-in counts and summary statistics
including number of tasks completed, er-
rors, and other basic metrics (e.g., window
resizing and scrollbar usage) and gener-
ates simple graphs.

ErgoLight Usability Validation Suite
(EUVS) also compares user interactions
against hierarchical representations of
user tasks [ErgoLight Usability Soft-
ware 1998]. EUVS is similar in spirit to
EMA and USINE with the added ben-
efit that it provides a number of built-
in counts and summary statistics re-
garding general user interface use in
addition to automatically-detected diver-
gences between user actions and the task
model.

4.5.3 Related. Process validation tech-
niques are related in that they compare
actual traces of events generated by a soft-
ware process against an abstract model
of the intended process [Cook and Wolf
1997]. These techniques compute a diag-
nostic measure of distance to indicate the
correspondence between the trace and the
closest acceptable trace produced by
the model. Techniques for performing er-
ror correcting parsing are also related. See
Cook and Wolf [1997] for further discus-
sion and pointers to relevant literature.

D. M. Hilbert and D. F. Redmiles

4.5.4 Strengths. The strengths of these
approaches lie their ability to compare
actual traces of events against expected
traces, or models of expected traces,
in order to identify potential usability
problems. This is particularly appealing
when expected traces can be specified “by
demonstration” as in the case of ADAM
and UsAGE.

4.5.5 Limitations. Unfortunately, all of
these techniques have significant limita-
tions.

A key limitation of any approach that
compares source sequences against con-
crete target sequences is the underlying
assumption that: (a) source and target se-
quences can be easily segmented for piece-
meal comparison, as in the case of ADAM,
or (b) that whole interaction sequences
produced by different users will actually
exhibit reasonable correspondence, as in
the case of UsAGE.

Furthermore, the output of all these
techniques, (except in the case of per-
fect matches) requires expert human
interpretation to determine whether the
sequences are interestingly similar or dif-
ferent. In contrast to techniques that com-
pletely match patterns that directly indi-
cate violations of expected patterns (e.g.,
as in the case of EDEM), these techniques
produce output to the effect, “the source
sequence is similar to a target sequence
with a correspondence measure of 61%,”
leaving it up to investigators to decide on
a case by case basis what exactly the cor-
respondence measure means.

A key limitation of any technique com-
paring sequences against abstract mod-
els (e.g., EMA, USINE, ErgoLight EUVS,
and the process validation techniques de-
scribed by Cook and Wolf) is that in order
to reliably categorize a source sequence
as being a poor match, the model used
to perform the comparison must be rela-
tively complete in its ability to describe
all possible, or rather, expected paths.
This is all but impossible in most non-
trivial interfaces. Furthermore, the model
must somehow deal with “noise” so that
low-level events, such as mouse move-
ments, won’t mask otherwise significant

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

correspondence between source sequences
and the abstract model. Because these
techniques typically have no built-in fa-
cilities for performing transformations on
input traces, this implies that either the
event stream has already been trans-
formed, perhaps by manually instrument-
ing the application (as with EMA), or com-
plexity must be introduced into the model
to avoid sensitivity to “noise.” In contrast,
techniques such as EDEM and EBBA use
selection and abstraction to pick out pat-
terns of interest from the noise. The mod-
els need not be complete in any sense
and may ignore events that are not of
interest.

4.6 Sequence Characterization

4.6.1 Purpose. These techniques take
source sequences as input and attempt to
construct an abstract model to summarize,
or characterize, interesting sequential fea-
tures of those sequences. Some techniques
produce a process model with probabil-
ities associated with transitions [Guz-
dial 1993]. Others construct models that
characterize the grammatical structure
of events in the input sequences [Olson
et al. 1994].

4.6.2 Examples. Guzdial describes a
technique, based on Markov Chain anal-
ysis, that produces process models with
probabilities assigned to transitions to
characterize user behavior with interac-
tive applications [Guzdial 1993]. First,
the investigator identifies abstract stages,
or states, of application use. In Guzdial’s
example, a simple design environment
was the object of study. The design envi-
ronment provided functions supporting
the following stages in a simple design
process: “initial review,” “decomposition,”
“composition,” “debugging,” and “final
review.” The investigator then creates a
mapping between each of the operations
in the interface and one of the abstract
stages. For instance, Guzdial mapped
all debugging related commands (which
incidentally all appeared in a single “de-
bugging” menu) to the “debugging” stage.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

409

The investigator then uses the Hawk tool
to abstract and record the event stream to
replace low level events with the abstract
stages associated with them (presumably
dropping events not associated with
stages). The investigator then uses Hawk
to compute the observed probability of
entering any stage from the stage im-
mediately before it to yield a transition
matrix. The investigator can then use the
matrix to create a process diagram with
probabilities associated with transitions.
In Guzdial’s example, one subject was
observed to have transitioned from “de-
bugging” to “composition” more often (52%
of all transitions out of “debugging”) than
to “decomposition” (10%) (see Figure 18).
Guzdial then computed a steady state
vector to reflect the probability of any
event chosen at random belonging to each
particular stage. He could then compare
this to an expected probability vector
(computed by simply -calculating the
percentage of commands associated with
each stage) to indicate user “preference”
for classes of commands.

Olson and colleagues describe an ap-
proach, based on statistical and grammat-
ical techniques, for characterizing the se-
quential structure of verbal interactions
between participants in design meetings
[Olson et al. 1994]. They begin by mapping
meeting verbalizations into event cate-
gories that are then used to manually en-
code the transcript into an event sequence
representation. The investigator then ap-
plies statistical techniques, including log
linear modeling and lag sequential analy-
sis, to identify potential dependencies be-
tween events in the sequence. The in-
vestigator then uses the results of these
pattern detection techniques to suggest
rules that might be included in a definite
clause grammar to summarize, or charac-
terize, some of the sequential structure of
the meeting interactions. The investigator
then uses the resulting grammar rules to
rewrite some of the patterns embedded in
the sequence (i.e., abstraction and recod-
ing), and the new sequence is subjected to
the same statistical techniques leading to
further iterative refinement of the gram-
mar. The result is a set of grammar rules

410

that provide insight into the sequential
structure of the meeting interactions.

4.6.3 Related. Process discovery tech-
niques are related in that they attempt
to automatically generate a process model,
in the form of a finite state machine, that
accounts for a trace of events produced
by a particular software process [Cook
and Wolf 1995]. It is not clear how well
these techniques would perform with data
as noisy as Ul events. A more promis-
ing approach might be to perform se-
lection, abstraction, and recoding of the
event stream prior to submitting it for
analysis.

4.6.4 Strengths. The strength of these
techniques lies in their ability to help in-
vestigators discover sequential structure
within event sequences and to character-
ize that structure abstractly.

4.6.5 Limitations. The technique de-
scribed by Olson and colleagues requires
extensive human involvement and can
be very time-consuming [Olson et al.
1994]. On the other hand, the automated
techniques suggested by Cook and Wolf
appear to be sensitive to noise and are
less likely to produce models that make
sense to investigators [Olson et al. 1994].

In our opinion, Markov-based models,
while relying on overly simplifying as-
sumptions, are more likely than grammar-
based techniques to tell investigators
something about user interactions that
they don’t already know. Investigators
often have an idea of the grammatical
structure of interactions that may arise
from the use of (at least portions of) a par-
ticular interface. Grammars are thus use-
ful in transforming low level Ul events
into higher level events of interest, or to
detect when actual usage patterns violate
expected patterns. However, the value of
generating a grammatical or FSM-based
model to summarize use is more limited.
More often than not, a grammar- or FSM-
based model generated on the basis of mul-
tiple traces will be vacuous in that it will
describe all observed patterns of usage of

D. M. Hilbert and D. F. Redmiles

Timeline: WordProcessor.dh

DD:II)I:DD 00?200 OD:ID3:00 DU:P4:DD DDIDSQD
B cotvensve (- TH I
[rortmensuse —HH—H

Fig. 12. Use of “Edit” menu operations is indicated
in black. Use of “Font” menu operations is indicated
in grey. Used to display results of transformations or
sequence detection.

an interface without indicating which are
most common. While this may be useful in
defining paths for Ul regression testing,
investigators interested in locating usabil-
ity problems will more likely be interested
in identifying and determining the fre-
quency of specific observed patterns than
in seeing a grammar to summarize them
all.

4.7 Visualization

4.7.1 Purpose. These techniques present
the results of transformation and analysis
in forms allowing humans to exploit their
innate visual analysis capabilities to inter-
pret results. Some of these techniques are
helpful in linking results of analysis back
to features of the interface.

4.7.2 Examples. Investigators have pro-
posed a number of techniques to visualize
data based on UI events. For a survey of
such techniques see [Guzdial et al. 1994].
Below are few examples of techniques that
have been used in support of the analysis
approaches described above.

Transformation: The results of perform-
ing selection or abstraction on an event
stream can sometimes be visualized using
a timeline in which bands of colors indi-
cate different selections of events in the
event stream. For example, one might use
red to highlight the use of “Edit” menu op-
erations and blue to highlight the use of
“Font” menu operations in the evaluation
of a word processor (Figure 12).

MacSHAPA [Sanderson and Fisher
1994] visualizes events as occupying cells
in a spreadsheet. Event streams are
listed vertically (in adjacent columns) and

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

[OrderForm.db
Ul Events Abs. Interaction Events

TaskRelated. Events

Key(Name, 'D)
Key(Name,'a")
Key(Name, 'v*)
Key(Name,'i)
Key(Name, 'd")
LostFoous(Name)
GotFocus(Street)

Key(Street, ' 1)

Key(Street, %)

.
L
Name Provided ("Davi d7)
S
. .

GotFocus(Quantity)

Key(Quartity, 1')

AddressSedtion Completed()

Fig. 13. Correspondence between events at dif-
ferent levels of abstraction is indicated by hor-
izontal alignment. Single “Key” events in large
cells correspond to “LostEdit,” “GotEdit,” and
“ValueProvided” abstract interaction events in
smaller, horizontally aligned cells.

correspondence of events in one stream
with events in adjacent streams is in-
dicated by horizontal alignment (across
rows). A large cell in one column may cor-
respond to a number of smaller cells in an-
other column to indicate abstraction rela-
tionships (Figure 13).

Counts and summary statistics: There
are a number of visualizations that can
be used to represent the results of counts
and summary statistics, including static
2D and 3D graphs, static 2D effects super-
imposed on a coordinate space represent-
ing the interface, and static and dynamic
2D and 3D effects superimposed on top
of an actual visual representation of the
interface.

The following are examples of static 2D
and 3D graphs:

* Graph of keystrokes per window [Chang
and Dillon 1997].

* Graph of mouse clicks per window
[Chang and Dillon 1997].

* Graph of relative command frequencies
[Kay and Thomas 1995] (Figure 14).

* Graph of relative command frequencies
as they vary over time [Kay and Thomas
1995] (Figure 15).

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

411
I
10 R
g
8 4 i
8
3
g 4 1
g
('S
gm 4
&
001 cHe
& 1
10 20 50
popular Command Rank not popu/ar

Fig. 14. Relative command frequencies ordered by
“rank”.

The following are examples of static 2D
effects superimposed on an abstract coor-
dinate space representing the interface:

 Location of mouse clicks [Guzdial et al.
1994; Chang and Dillon 1997].

* Mouse travel patterns between clicks
[Buxton et al. 1983; Chang and Dillon
19971.

The following are examples of static and
dynamic 2D and 3D effects superimposed
on top of a graphical representation of the
interface:

 Static highlighting to indicate location
and density of mouse clicks [Guzdial
et al. 1994].

* Dynamic highlighting of mouse click ac-
tivity as it varies over time [Guzdial
et al. 1994].

* 3D representation of mouse click loca-
tion and density [Guzdial et al. 1994]
(Figure 16).

Sequence detection: The same technique
illustrated in Figure 12 can be used to
visualize the results of selecting subse-
quences of Ul events based on sequence
detection techniques.

EDEM provides a dynamic visualization
of the occurrence of UI events by highlight-
ing nodes in a hierarchical representa-
tion of the user interface being monitored.
A similar visualization is provided to in-
dicate the occurrence of abstract events,
defined in terms of abstract patterns of

412

Frequency (percent)

o «

70
"t Doy,

Fig.15. Relative command frequencies over time.

events, by highlighting entries in a list
of agents responsible for detecting those
patterns. These visualizations help inves-
tigators inspect the dynamic behavior of
events, thereby supporting the process of
event pattern specification [Hilbert and
Redmiles 1998al].

Sequence comparison: As described
above, MacSHAPA provides facilities for
aligning two sequences of events as opti-
mally as possible and presenting the re-
sults visually as cells in adjacent spread-
sheet columns [Sanderson and Fisher
1994]. Aligned events appear in the same
row and missing cells indicate events in
one sequence that could not be aligned
with events in the other (Figure 17).

UsAGE provides a similar visualization
for comparing sequences based on draw-
ing a connected graph of nodes [Ueling and
Wolf 1995]. The “expert” series of actions is
displayed linearly as a sequence of nodes
across the top of the graph. The “novice”
series of actions are indicated by draw-
ing directed arcs connecting the nodes to
represent the order in which the novice
performed the actions. Out of sequence
actions are indicated by arcs that skip ex-
pert nodes in the forward direction or that
point backwards in the graph. Unmatched
actions taken by the novice appear as
nodes (with a different color) placed below
the last matched expert node.

Sequence characterization: Guzdial uses
a connected graph visualization to illus-
trate the results of his Markov-based
analysis [Guzdial 1993]. The result is a
process model with nodes representing
process steps and arcs indicating the

D. M. Hilbert and D. F. Redmiles

Fig. 16. A 3D representation of mouse click
density superimposed over a graphical repre-
sentation of the interface.

observed probabilities of transitions be-
tween process steps (Figure 18).

4.7.3 Strengths. The strengths of these
techniques lie in their ability to present
the results of analysis in forms al-
lowing humans to exploit their innate
visual analysis capabilities to inter-
pret results. Particularly useful are the
techniques that link results of analy-
sis back to features of the interface,
such as the techniques superimposing
graphical representations of behavior over
actual representations of the interface.

4.7.4 Limitations. With the exception of
simple graphs (which can typically be
generated using standard graphing capa-
bilities provided by spreadsheets and sta-
tistical analysis packages), most of the vi-
sualizations above must be produced by
hand. Techniques for accurately superim-
posing graphical effects over visual repre-
sentations of the interface can be particu-
larly problematic.

4.8 Integrated Support

4.8.1 Purpose. Environments that fa-
cilitate flexible composition of various

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

Meeting.db
MeetingB
Amplify
Resolve Issue
Identify Problem
Digress
Amplify
Recapitulate
lolacdifial
Alignment: Meeting. db
MeetingA MeetingB
Amplify Amplity
Resolve Issue Resolve Issue
|dentify Problem Identify Problem
Amplify
Digress

MeetingA
Amplify
Resolve Issue
Identify Problem
Amplify
Digress
Recapitulate
Identify
Amplify
Resolv
Identify
Amplify
Digress
Amplify
Resolve
Identify

Digress
Amplity
Recapitulate
Identify |ssue
Digress

Recapitulste
Identify Issue

Resolv

Resolve Issue
Identify Issue

Identify |ssue
Resolve Issue

Digress

Identify |ssue

Fig. 17. Results of an automatic alignment of
two separate event streams. Horizontal align-
ment indicates correspondence. Black spaces in-
dicate where alignment was not possible.

transformation, analysis, and visualiza-
tion capabilities provide integrated sup-
port. Some environments also provide
built-in support for managing domain-
specific artifacts such as evaluations,
subjects, tasks, data and results of
analysis.

4.8.2 Examples. MacSHAPA is perhaps
the most comprehensive environment de-
signed to support all manner of ex-
ploratory sequential data analysis (ESDA)
[Sanderson et al. 1994]. Features include:
data import and export; video and coded
observation synch and search capabilities;
facilities for performing selection, abstrac-
tion, and recoding; a number of built-in
counts and summary statistics; features
supporting sequence detection, compar-
ison, and characterization; a general-
purpose database query and manipulation
language; and a number of built-in visual-
izations and reports.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

413

0.63

Decomposmon

0.25

Inmal Review

Composition

Flnal Revie w Debugglng

0.89

Fig. 18. A process model characterizing user behav-
ior with nodes representing process steps and arcs
indicating observed probabilities of transitions be-
tween process steps.

DRUM provides integrated features
for synchronizing events, observations,
and video; for defining and managing
observation coding schemes; for calcu-
lating pre-defined counts and summary
statistics; and for managing and manipu-
lating evaluation-related artifacts regard-
ing subjects, tasks, recording plans, logs,
videos, and results of analysis [Macleod
et al. 1993].

Hawk provides flexible support for cre-
ating, debugging, and executing scripts
to automatically select, abstract, and
recode event logs [Guzdial 1993]. Man-
agement facilities are also provided to or-
ganize and store event logs and analysis
scripts.

Finally, ErgoLight Operation Record-
ing Suite (EORS) and Usability Valida-
tion Suite (EUVS) [ErgoLight Usability
Software 1998] offer a number of facili-
ties for managing usability evaluations,
both local and remote, as well as fa-
cilities for merging data from multiple
users.

4.8.3 Strengths. The task of extracting
usability-related information from UI
events typically requires the management
of numerous files and media types as well
as the creation and composition of various
analysis techniques. Environments sup-
porting the integration of such activities

414

D. M. Hilbert and D. F. Redmiles

Column Label Key to Column Values

Event Capture (Yes) = events captured automatically; (Instr) = application must be hand-instrumented; (Sim) = events captured by|
command line simulation.

Synch/Search (Obs) = events synchronized with coded observations; (Vid) = events synchronized with video.

Use of Context

(UI) = the UI can be queried for contextual information; (App) = the application can be queried. (User) = the user
provides contextual info.

Select/Recode through
Sequence Detect

(Built-in) = built-in selection/abstraction/counts & stats/detection; (User) = user selects/abstracts events; (Model) =
abstract model used to select/abstract/detect; (Script) = scripts used; (Program) = programs used; (Database) = data:
base query & manipulation language used.

Sequence Compare

(Concrete) = source sequence compared against concrete target sequence; (Model) = source sequence compared
against abstract model.

Sequence Character

(Manual) = abstract model constructed manually using statistical/grammatical techniques; (Auto) = abstract model

generated automatically.

Visualize (Built-in) = built-in visualizations; (Graphs) = use of standard graphing facilities; (Database) = use of database
graphing facilities.
Data Manage (Built-in) = built-in management of domain-specific artifacts.

Fig. 19. A key to interpreting the values listed in columns of Table III.

can significantly reduce the burden of data
management and integration.

4.8.4 Limitations. Most of the environ-
mentsabovepossessimportantlimitations.

While MacSHAPA is perhaps the most
comprehensive integrated environment
for analyzing sequential data, it is not
specifically designed for analysis of Ul
events. As a result, it lacks support
for event capture and focuses primar-
ily on analysis techniques that, when
applied to Ul events, require extensive
human involvement and interpretation.
MacSHAPA provides many of the basic
building blocks required for an “ideal”
environment for capturing and analyz-
ing Ul events, however, selection, ab-
straction, and recoding cannot be eas-
ily automated. Furthermore, because the
powerful features of MacSHAPA cannot
be used during event collection, con-
textual information that might be use-
ful in selection and abstraction is not
available.

While providing features for managing
and analyzing Ul events, coded observa-
tions, video data, and evaluation artifacts,
DRUM does not provide features for se-
lecting, abstracting, and recoding data.

Finally, while Hawk addresses the prob-
lem of providing automated support for
selection, abstraction, and recoding, like
MacSHAPA, it does not address Ul event
capture, and as a result, contextual infor-

mation cannot be used in selection and ab-
straction.

5. DISCUSSION
5.1 Summary of the State of the Art

Synch and search techniques are among
the most mature technologies for exploit-
ing Ul event data in usability evaluations.
Tools supporting these techniques are be-
coming increasingly common in usabil-
ity labs. However, these techniques can
be costly in terms of equipment, human
observers, and data storage and analy-
sis requirements. Furthermore, synch and
search techniques generally exploit UI
events as no more than convenient in-
dices into video recordings. In some cases,
events may be used as the basis for com-
puting simple counts and summary statis-
tics using spreadsheets or statistical pack-
ages. However, such analyses typically
require investigators to perform selection
and abstraction by hand.

The other, arguably more sophisticated,
analysis techniques such as sequence de-
tection, comparison, and characterization
continue to remain denizens of the re-
search lab for the most part. Those that
are most compelling tend to require the
most human intervention, interpretation,
and effort (e.g., exploratory sequential
data analysis techniques and the Markov-
and Grammar-based sequence character-
ization techniques). Those that are most

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

automated tend to be least compelling
and most unrealistic in their assump-
tions (e.g., ADAM, UsAGE, and EMA).
One of the main problems limiting the
success of automated approaches may be
their lack of focus on transformation,
which appears to be a necessary prerequi-
site for meaningful analysis (for reasons
articulated in Section 3 and discussed fur-
ther below).

Nevertheless, few investigators have at-
tempted to address the problem of trans-
formation realistically. Of the twenty-
five plus approaches surveyed here, only
a handful provide mechanisms that al-
low investigators to perform transforma-
tions at all (Microsoft, SunSoft, Apple,
Chen, CHIME, EDEM, Hawk, and Mac-
SHAPA). Of those, fewer still allow mod-
els to be constructed and reused in an
automated fashion (CHIME, EDEM, and
Hawk). Of those, fewer still allow trans-
formation to be performed in context
so that important contextual information
can be used in selection and abstraction
(EDEM).

5.2 Some Anticipated Challenges

There is very little data published regard-
ing the relative utility of the surveyed
approaches in supporting usability eval-
uations. As a result, we have focused on
the technical capabilities of the surveyed
approaches in order to classify, compare,
and evaluate them. To take this analyti-
cal evaluation a step further: our under-
standing of the nature of Ul events (based
on extensive Java, Windows, and X Win-
dows programming experience) leads us
to conclude that more work will likely
be needed in the area of transforming
the “raw” data generated by such event-
based systems in preparation for other
types of analysis in order to increase the
likelihood of useful results. This is be-
cause most other types of analysis (includ-
ing simple counts and summary statistics
as well as sequence analysis techniques)
are sensitive to lexical-level differences
in event streams that can be removed
via transformation, as illustrated in
Section 3.2.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

415

There are a number of ways that in-
vestigators have successfully side-stepped
the transformation problem. For instance,
building data collection directly into a user
interface management system or requir-
ing applications to report events them-
selves can help ameliorate some of the is-
sues. However, both of these approaches
have important limitations.

User interface management systems
(UIMSs) typically model the relation-
ships between application features and Ul
events explicitly, so reasonable data col-
lection and analysis mechanisms can be
built directly in, as in the case of the
MIKE UIMS [Olsen and Halversen 1988],
KRI/AG [Lowgren and Nordqvist 1992],
and UsAGE [Ueling and Wolf 1995]. Be-
cause UIMSs have dynamic access to most
aspects of the user interface, contextual
information useful in interpreting the sig-
nificance of events is also available. How-
ever, many developers do not use UIMSs,
thus, a more general technique that does
not presuppose the use of a UIMS is
needed.

Techniques that allow applications to
report events directly via an event-
reporting API provide a useful service,
particularly in cases where events of in-
terest cannot be inferred from UI events.
This allows important application-specific
events to be reported by applications
themselves and provides a more general
solution than a UIMS-based approach.
However, this places an increased bur-
den on application developers to cap-
ture and transform events of interest,
for example, as in Kay and Thomas
[1995] and Balbo [1996]. This can be
costly, particularly if there is no cen-
tralized command dispatch loop, or sim-
ilar mechanism, that can be tapped
as a source of application events. This
also complicates software evolution since
data collection code is typically intermin-
gled with application code. Furthermore,
there is much usability-related informa-
tion not typically processed by appli-
cations that can be easily captured by
tapping into the Ul event stream, for
instance, shifts in input focus, mouse
movements, and the specific user interface

416

actions used to invoke application fea-
tures. As a result, an event-reporting API
is just part of a more comprehensive
solution.

Thus, we conclude that more work is
needed in the area of transformation
and data collection to ensure that useful
information can be captured in the first
place, before automated analysis tech-
niques, such as those surveyed above, can
be expected to yield meaningful results
(where “meaningful” means the results
can be related, without undue hardship, to
aspects of the user interface and applica-
tion being studied as well as users’ actions
at higher levels of abstraction than simple
key presses and mouse clicks). A reason-
able approach would assume no more than
a typical event-based user interface sys-
tem, such as provided by the Macintosh
Operating System, Microsoft Windows, X
Window System, or Java Abstract Window
Toolkit, and developers would not be re-
quired to adopt a particular UIMS nor call
an API to report every potentially interest-
ing event.

5.3 Related Work and Future Directions

There are a number of related techniques
that have been explored, both in academia
and industry, that have the potential of
providing useful insights into how to more
effectively exploit Ul events as a source of
usability information.

A number of researchers and practi-
tioners have addressed related issues in
capturing and evaluating event data in
the realm of software testing and debugg-
ing:

* Work in distributed event monitor-
ing, e.g., GEM [Mansouri-Samani and
Sloman 1994], and model-based testing
and debugging, e.g., EBBA [Bates 1995]
and TSL [Rosenblum 1991], have ad-
dressed a number of problems in the
specification and detection of composite
events and the use of context in inter-
preting the significance of events. The
event specification notations, infrastruc-
ture, and experience that have come out
of this work might provide useful in-
sights that can be applied to the prob-

D. M. Hilbert and D. F. Redmiles

lem of capturing and analyzing Ul event
data.

» Automated user interface testing tech-
niques, e.g., WinRunner™ [Mercury In-
teractive 1998] and JavaStar™ [Sun Mi-
crosystems 1998], are faced with the
problem of robustly identifying user in-
terface components in the face of user
interface change, and evaluating events
against specifications of expected Ul be-
havior in test scripts. The same prob-
lem is faced in maintaining the rela-
tionships between UI components and
higher-level specifications of application
features and abstract events of inter-
est in usability evaluations based on Ul
events.

* Monitoring of application programmatic
interfaces (APIs), e.g., Hewlett Packard’s
Application Response-time Measure-
ment API [Hewlett Packard 1998], ad-
dresses the problem of monitoring API
usage to help software developers eval-
uate the fit between the design of an
API and how it is actually used. Insights
gained in this area may generalize to the
problem of monitoring Ul usage to eval-
uate the fit between the design of a Ul
and how it is actually used.

Internet-based application monitoring
systems, e.g., AppScope™ [Aqueduct
Software 1998] and Talkback™ [Full
Circle Software 1998], have begun to
address issues of collecting application
failure data on a potentially large and
ongoing basis over the Internet. The
techniques developed to make this prac-
tical for application failure monitoring
could be applicable in the domain of
large-scale, ongoing collection of user in-
teraction data over the Internet.

A number of researchers have ad-
dressed problems in the area of mapping
between lower level events and higher
level events of interest:

* Work in the area of event histories,
e.g., Kosbie and Myers [1994], and undo
mechanisms has addressed issues in-
volved in grouping lower level Ul events
into more meaningful units from the
point of view of users’ tasks. Insights

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

gained from this work, and the actual
event representations used to support
undo mechanisms, might be exploited to
capture events at higher levels of ab-
straction than are typically available at
the window system level.

Work in the area of user modeling [User
Modeling 1998] is faced with the prob-
lem of inferring users’ tasks and goals
based on user background, interaction
history, and current context in order
to enhance human-computer interac-
tion. The techniques developed in this
area, which range from rule-based to
statistically-oriented machine-learning
techniques, might eventually be
harnessed to infer higher level events
from lower level events in support
of usability evaluations based on UI
events.

* Work in the area of programming
by demonstration [Cypher 1993] and
plan recognition and assisted comple-
tion [Cypher 1991] also addresses prob-
lems involved in inferring user intent
based on lower level interactions. This
work has shown that such inference
is feasible in at least some structured
and limited domains, and program-
ming by demonstration appears to be
a desirable method for specifying ex-
pected or unexpected patterns of events
for sequence detection and comparison
purposes.

Layered protocol models of interaction,
e.g., Nielsen [1986] and Taylor [1988a;
1988b], allow human-computer interac-
tions to be modeled at multiple levels
of abstraction. Such techniques might
be useful in specifying how higher level
events are to be inferred based on
lower level events. Command language
grammars (CLGs) [Moran 1981] and
task-action grammars (TAGs) [Payne
and Green 1986] are other potentially
useful modeling techniques for spec-
ifying relationships between human-
computer interactions and users’ tasks
and goals.

Work in the area of automated discovery
and validation of patterns in large corpora

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

417

of event data might also provide valuable
insights:

» Data mining techniques for discovering
association rules, sequential patterns,
and time-series similarities in large data
sets [Agrawal et al. 1996] may be ap-
plicable in uncovering patterns relevant
to investigators interested in evaluat-
ing usage and usability based on UI
events.

* The process discovery techniques inves-
tigated by Cook and Wolf [1996] provide
insights into problems involved in auto-
matically generating models to charac-
terize the sequential structure of event
traces

* The process validation techniques inves-
tigated by Cook and Wolf [1997] provide
insights into problems involved in com-
paring traces of events against models
of expected behavior.

Finally, there are numerous domains in
which event monitoring has been used as
a means of identifying and, in some cases,
diagnosing and repairing breakdowns in
the operation of complex systems. For ex-
ample:

* Network and enterprise management
tools for automating network and ap-
plication administration, e.g., TIBCO
Hawk™ [TIBCO 1998].

* Product condition monitoring, e.g., high-
end photocopiers or medical devices that
report data back to equipment manu-
facturers to allow performance, failures,
and maintenance issues to be tracked re-
motely [Lee 1996].

6. CONCLUSIONS

We have surveyed a number of computer-
aided techniques for extracting usability-
related information from UI events. Our
classification scheme includes the follow-
ing categories: synch and search tech-
niques; transformation techniques; tech-
niques for performing simple counts
and summary statistics; techniques for
performing sequence detection, compar-
ison, and characterization; visualization

418 D. M. Hilbert and D. F. Redmiles
Table IV. Index into the References Based on the Categories Established by the Comparison Framework
Category Approaches

Synchronization and Searching Playback [Neal & Simmons 1983), Apple [Weiler 19931, SunSoft
[Weiler 1993], Microsoft [Hoiem & Sullivan 1994], I-Observe [Badre

et al. 1995]
Transformation

Incident Monitoring [Chen 1990], User-Identified CIs [Hartson et al.

1996], CHIME [Badre & Santos 1991], EDEM [Hilbert & Redmiles

1997]
Counts and Summary Statistics

UIMS [Buxton et al. 1983], MIKE [Olsen & Halversen 1988], KRI/AG

[Lowgren & Nordqvist 1992], Long-Term Monitoring [Kay & Thomas
1995], AUS [Chang & Dillon 1997], EORS & EUVS [ErgoLight
Usability Software 1998]. Related: AppScope [Aqueduct Software
1998], Talkback [Full Circle Software 1998]

Sequence Detection

LSA [Sackett 1978], Fisher’s Cycles [Fisher 1988], TOP/G [Hoppe

1988], MRP [Siochi & Hix 1991], Expectation Agents [Girgensohn
et al. 1994], EDEM [Hilbert & Redmiles 1997], USINE [Lecerof &
Paterno 1998]. Related: TSL [Rosenblum 1991], Amadeus [Selby
et al. 1991], YEAST [Krishnamurthy & Rosenblum 1995], EBBA
[Bates 1995], GEM [Mansouri-Samani & Sloman 1997]

Sequence Comparison

ADAM [Finlay & Harrison 1990], USAGE [Ueling & Wolf 1995], EMA

[Balbo 1996], USINE [Lecerof & Paterno 1998], EUVS [ErgoLight
Usability Software 1998]. Related: Process Validation [Cook & Wolf

19971
Sequence Characterization

Markov-based [Guzdial 1993], Grammar-based [Olson et al. 1994].

Related: Process Discovery [Cook & Wolf 1995]

Integrated Support

MacSHAPA [Sanderson et al. 1994], DRUM [Macleod & Rengger

1993]. Hawk [Guzdial 1993], EORS & EUVS [ErgoLight Usability

Software 1998].

techniques; and finally, techniques that
provide integrated evaluation support.

Very few of the surveyed approaches
support transformation, which we argue is
a critical subprocess in the overall process
of extracting meaningful usability-related
information from Ul events.

Our current research involves explor-
ing techniques and infrastructure for per-
forming transformation and analysis au-
tomatically and in context in order to
greatly reduce the amount of data that
must ultimately be reported. It is an open
question whether such an approach might
be scaled up to large-scale and ongoing
use over the Internet. If so, we believe
that automated techniques, such as those
surveyed here, will be useful in captur-
ing indicators of the “big picture” regard-
ing application use in the field. How-
ever, we believe that such techniques may
be less suited to identifying subtle, nu-
anced usability issues. Fortunately, these
strengths and weaknesses nicely comple-
ment the strengths and weaknesses inher-
ent in current usability testing practice,
in which subtle usability issues are iden-

tified through careful human observation,
but in which there is little sense of the “big
picture” of how applications are used on a
large scale.

A usability professional from a large
software development organization re-
cently reported to us that the usability
team is often approached by design and de-
velopment team members with questions
such as “how often do users do X?” or “how
often does Y happen?” This is obviously
useful information for developers wishing
to assess the impact of suspected problems
or to focus development effort for the next
version. However, it is not information
that can be reliably collected in the usabil-
ity lab. We believe that automated usage
data collection techniques will eventually
complement traditional usability evalua-
tion practice, not only by supporting devel-
opers as described above, but also in help-
ing assess the impact of, and focusing the
efforts of, usability evaluations.

REFERENCES

ABBOTT, A. 1990. A primer on sequence methods. Or-
gan. Sci. 4.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

AcrawaL, R., ARNING, A., BOLLINGER, T., MEHTA, M.,
SHAFER, J., AND SRIKANT, R. 1996. The Quest
data mining system. In Proceedings of the 2nd
International Conference on Knowledge Discov-
ery in Databases and Data Mining.

Amno, A. V., KernicHAN, B. W., AND WEINBERGER, P. J.
1988. The AWK Programming Language.
Addison-Wesley, Reading, MA.

ArLisoN, P. D. anp LikeRr, J. K., 1982. Analyzing se-
quential categorical data on dyadic interaction:
A comment on Gottman. Psychological Bulletin
2.

AQuEDUCT SOFTWARE. 1998. AppScope Web Pages.
URL: http://www.aqueduct.com/.

Babre, A. N. anp Santos, P. J. 1991a. CHIME:
A Knowledge-Based Computer-Human Interac-
tion Monitoring Engine. Tech Rept. GIT-GVU-
91-06.

BaDRE, A. N. anD SanTos, P. J. 1991b. A Knowledge-
Based System for Capturing Human-Computer
Interaction Events: CHIME. Tech. Rept. GIT-
GVU-91-21.

BADRE, A. N., GuzpiaL, M., Hupson, S. E., AND SANTOS,
P.J.1995. A user interface evaluation environ-
ment using synchronized video, visualizations,
and event trace data. J. of Software Qual. 4.

BaeckeR, R. M, Grupin, J., BuxTon, W. A. S., AND
GREENBERG, S., Eds. 1995. Readings in Human-
Computer Interaction: Toward the Year 2000.
Morgan Kaufmann, San Mateo, CA.

Barpo, S. 1996. EMA: Automatic Analysis Mecha-
nism for the Ergonomic Evaluation of User In-
terfaces. CSIRO Tech. rep.

Bares, P. C. 1995. Debugging heterogeneous dis-
tributed systems using event-based models of
behavior. ACM Trans. on Comput. Syst. 13, 1.

BerLrorti, V. 1990. A framework for assessing ap-
plicability of HCI techniques. In Proceedings of
INTERACT *90.

Buxton, W., LamB, M., SHEMAN, D., anp SwmitH, K.
1983. Towards a comprehensive user inter-
face management system. In Proceedings of
SIGGRAPH ’83.

CHaNG, E. anD DiLLoN, T. S. Automated usability test-
ing. In Proceedings of INTERACT °97.

CHEN, J. 1990. Providing intrinsic support for user
interface monitoring. In Proceedings of INTER-
ACT ’90.

CooK, J. E. AND WoLF, A. L. 1994. Toward metrics for
process validation. In Proceedings of ICSP °94.

Cook, J. E. anp Worr, A. L. 1995. Automating pro-
cess discovery through event-data analysis. In
Proceedings of ICSE *95.

Cook, J. E. anD Worr, A. L. 1997. Software Process
Validation: Quantitatively Measuring the Cor-
respondence of a Process to a Model. Tech. Rep.
CU-CS-840-97, Dept. of Computer Science, Univ.
of Colorado at Boulder.

Cooxg, R., Kay, dJ., Rvan, G., anD THOMAS, R. C. 1995.
A toolkit for appraising the long-term usability
of a text editor. Software Qual. J. 4, 2.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

419

Cuomo, D. L. 1994. Understanding the applicabil-
ity of sequential data analysis techniques for
analysing usability data. In Usability Labora-
tories Special Issue of Behavior and Information
Technology, J. Nielsen, Ed., vol. 13, no.1 & 2.

CyYPHER, A. 1991. Eager: programming repetitive
tasks by example. In Proceedings of CHI 91.

CYPHER, A., Ed. 1993. Watch what I do: Program-
ming by Demonstration. MIT Press, Cambridge
MA.

Dobcg, M. anD STiNsoN, C. 1999. Running Microsoft
Excel 2000. Microsoft Press.

DoOUBLEDAY, A., RYAaN, M., SPRINGETT, M., AND SUTCLIFFE,
A. 1997. A comparison of usability techniques
for evaluating design. In Proceedings of DIS
97.

ELci, B. 1995. Subjective usability feedback from
the field over a network. In Proceedings of CHI
°95.

ErcoLicHT UsaBILITY SoFTWARE. 1998. Operation
Recording Suite (EORS) and Usability Vali-
dation Suite (EUVS) Web pages. URL: http:/
/www.ergolight.co.il/.

FaraoNE, S. V. anD DorrmaN, D. D. 1987. Lag sequen-
tial analysis: Robust statistical methods. Psycho-
logical Bulletin 101.

FeatHER, M. S., Naravanaswamy, K., Conen, D.,
AND Fickas, S. 1997. Automatic monitoring of
software requirements. Research Demonstra-
tion. In Proceedings of ICSE °97.

Fickas, S. aND FEATHER, M. S. 1995. Requirements
monitoring in dynamic environments. In IEEE
International Symposium on Requirements En-
gineering.

Finvay, J. anp Harrison, M. 1990. Pattern recogni-
tion and interaction models. In Proceedings of
INTERACT ’90.

FisHER, C. 1987. Advancing the study of program-
ming with computer-aided protocol analysis. In
Empirical Studies of Programmers, 1987 Work-
shop, G. Olson, E. Soloway, and S. Sheppard,
Eds. Ablex, Norwood, NdJ.

FisHERr, C. 1991. Protocol Analyst’s Workbench: De-
sign and Evaluation of Computer-Aided Protocol
Analysis. Unpublished Ph.D. thesis, Carnegie
Mellon University, Dept. of Psychology, Pitts-
burgh, PA.

FisHER, C. AND SANDERSON, P. 1996. Exploratory se-
quential data analysis: Exploring continuous ob-
servational data. Interactions 3, 2, ACM Press.

Firts, P. M. 1964. Perceptual motor skill learning.
In Categories of human learning, A. W. Melton,
Ed. Academic Press, New York, NY.

FurL CircLE SorFTwARE. 1998. Talkback Web pages.
URL: http://www.fullsoft.com/.

GIRGENSOHN, A., REDMILES, D. F., AND SHIPMAN, F. M. I11.
1994. Agent-based support for communication
between developers and users in software de-
sign. In Proceedings of the Knowledge-Based
Software Engineering Conference ‘94. Monterey,
CA, USA.

420

GoopMaN, D. 1998. Complete HyperCard 2.2 Hand-
book. ToExcel.

GoTT™MAN, J. M. AND Roy, A. K. 1990. Sequential anal-
ysis: A guide for behavioral researchers. Cam-
bridge University Press, Cambridge, England.

GRUDIN, J. 1992. Utility and usability: Research is-
sues and development contexts. Interacting with
comput. 4, 2.

GuzpiaL, M. 1993. Deriving Software Usage Pat-
terns from Log Files. Tech. Rept. GIT-GVU-93—
41.

GuzpiaL, M, WarTon, C., KONEMANN, M., AND SOLOWAY,
E. 1993. Characterizing Process Change Us-
ing Log File Data. Tech. Rep. GIT-GVU-93—
44,

GuzpiaL, M., Santos, P., BADRE, A., HUDSON, S., AND
Gray, M. 1994. Analyzing and visualizing log
files: A computational science of usability. In Pre-
sented at HCI Consortium Workshop.

Harrson, H. R., CasriLLo, J. C., KELSO, J., AND NEALE,
W. C. 1996. Remote evaluation: The network
as an extension of the usability laboratory. In
Proceedings of CHI "96.

Hevranper, M., Ed. 1998. Handbook of human-
computer interaction. Elsevier Science Publish-
ers B.V,, North Holland.

Hewrerr Packarp. 1998. Application Response
Measurement API. URL: http:/www.hp.com/
openview/rpm/arm/.

Himert, D. M. anp Repmiies, D. F. 1998a. An ap-
proach to large-scale collection of application us-
age data over the Internet. In Proceedings of
ICSE *98.

Hrmeert, D. M. anp REpmiies, D. F. 1998b. Agents
for collecting application usage data over the

Internet. In Proceedings of Autonomous Agents
’98.

Hiueert, D. M., RoBBINS, J. E., AND REDMILES, D. F.,
1997. Supporting Ongoing User Involvement
in Development via Expectation-Driven Event
Monitoring. Tech Report UCI-ICS-97-19, Dept.
of Information and Computer Science, Univ. of
California, Irvine.

HirscHBERG, D. S. 1975. A linear space algorithm

for computing maximal common subsequences.
Commun of the ACM 18.

Hoiem, D. E. anp Surnivan, K. D. 1994. Designing
and using integrated data collection and analy-
sis tools: challenges and considerations. In Us-
ability Laboratories Special Issue of Behavior
and Information Technology, J. Nielsen, Ed., vol.
13, no. 1 & 2.

Horpg, H. U. 1988. Task-oriented parsing: A diag-
nostic method to be used by adaptive systems.
In Proceedings of CHI "88.

JonN, B. E. aNp KiERras, D. E. 1996a. The GOMS fam-
ily of user interface analysis techniques: Com-
parison and contrast. ACM Trans. on Comput.—
Hum. Interaction 3, 4.

Jonn, B. E. anD Kigras, D. E. 1996b. Using GOMS
for user interface design and evaluation: which

D. M. Hilbert and D. F. Redmiles

technique? ACM Trans. on Comput.—Hum. Inter-
action 3, 4.

Kay, J. anD THOMAS, R. C. 1995. Studying long-term
system use. Commun. of the ACM 38, 7.

KosBig, D. S. aAND MYERS, B. A. 1994. Extending pro-
gramming by demonstration with hierarchical
event histories. In Proceedings of East-West Hu-
man Computer Interaction *94.

KrisHNAMURTHY, B. AND RosenBLum, D. S. 1995.
Yeast: A general purpose event-action system.
IEEE Trans. on Software Eng. 21, 10.

LEcEROF, A. AND PaterNo, F. 1998. Automatic sup-
port for usability evaluation. IEEE Trans. on
Software Engin. 24, 10.

LEE, B. 1996. Remote diagnostics and product life-
cycle monitoring for high-end appliances: a
new Internet-based approach utilizing intelli-
gent software agents. In Proceedings of the Ap-
pliance Manufacturer Conference.

LEewis, R. AND SToNE, M., Ed. 1999. Mac OS in a Nui-
shell. O’Reilly and Associates.

LowGREN, J. AND Norbqvist, T. 1992. Knowledge-
based evaluation as design support for graphical
user interfaces. In Proceedings of CHI *92.

MacLeop, M. aND RENGGER, R. 1993. The Devel-
opment of DRUM: A Software Tool for Video-
assisted Usability Evaluation. In Proceedings of
HCI ’93.

MANSOURI-SAMANI, M. AND SromaNn, M. 1997. GEM:
A generalized event monitoring language for
distributed systems. IEE /BCS /IOP Distributed
Syst. Eng. J. 4, 2.

MERCURY INTERACTIVE. 1998. WinRunner and XRun-
ner Web Pages. URL: http://www.merc-int.com/.

Moran, T. P. 1981. The command language gram-
mar: A representation for the user interface of
interactive computer systems. Int. J. of Man—
Machine Studies, 15.

NEaL, A. S. aNpD SivmoNs, R. M. PrayBack: A method
for evaluating the usability of software and
its documentation. In Proceedings of CHI °83.
1983.

NieLseN, dJ. 1986. A virtual protocol model for
computer-human interaction. Int. J. of Man—
Machine Studies 24.

NieLSEN, J. 1993. Usability engineering. Academic
Press/AP Professional, Cambridge, MA.

NieLsEN, J. aND Mack, R. L., Eds. 1994. Usability
inspection methods. Wiley, New York.

NvyE, A. anp O’RemLy, T. 1992. X Toolkit Intrin-
sics Programming Manual for X11, Release 5.
O’Reilly and Associates.

OLsEN, D. R. anp HALVERSEN, B. W. 1988. Interface
usage measurements in a user interface man-
agement system. In Proceedings of UIST ’88.

OLsoN, G. M., HerBsLEB, J. D., aND RUETER, H. H.
1994. Characterizing the sequential structure
of interactive behaviors through statistical and
grammatical techniques. Hum.—Comput. Inter-
action Special Issue on ESDA, Vol. 9.

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

Extracting Usability Information

Pavyng, S. G. anD GrekN, T. R. G. 1986. Task-action
grammars: A model of the mental representa-
tion of task languages. Hum.-Comput. Interac-
tion, Vol. 2.

PentLAND, B. T. 1994. A grammatical model of or-
ganizational routines. Administrative Sci. Quar-
terly.

PeENnTLAND, B. T. 1994. Grammatical models of orga-
nizational processes. Organ. Sci.

PerzoLp, C. 1998. Programming Windows. Mi-
crosoft Press.

PoLson, P. G., Lewis, C., RIEMAN, J., AND WHARTON,
C. 1992. Cognitive walkthroughs: A method
for theory-based evaluation of user inter-
faces. Int. J. Man-Mach. Studies 36, 5, 741—
773.

PREECE, J., RoGERS, Y., SHARP, H., BENYON, D., HOLLAND,
S., aND Carey, T. 1994. Human-computer inter-
action. Addison-Wesley, Wokingham, UK.

RosenBLuM, D. S. 1991. Specifying concurrent sys-
tems with TSL. IEEE Software, 8, No. 3.

Rus, C. 1999. Running Microsoft Word 2000. Mi-
crosoft Press.

SAckeTT, G. P. 1978. Observing Behavior, Vol. 2.
University Park Press, Baltimore, MD.

SANDERSON, P. M. aND FisHER, C. 1994. Exploratory
sequential data analysis: foundations. Hum.—
Comput. Interaction Special Issue on ESDA, 9.

SANDERSON, P. M., ScotT, J. J. P, JouNsTON, T., MAINZER,
dJ., WATANABE, L. M., AND JAMES, J. M. 1994. Mac-
SHAPA and the enterprise of Exploratory Se-
quential Data Analysis (ESDA). International J.
of Hum.—Comput. Studies, 41.

Santos, P. J. aND Bapre, A. N. 1994. Automatic
chunk detection in human-computer interaction.
In Proceedings of Workshop on Advanced Visual
Interfaces AVI ’94. Also available as Tech Report
GIT-GVU-94-4.

ScHieLE, F. anD Hoppe, H. U. 1990. Inferring task
structures from interaction protocols. In Pro-
ceedings of INTERACT °90.

SELBY, R. W., PORTER, A. A., ScamIDT, D. C., AND BERNEY,
J. 1991. Metric-driven analysis and feedback
systems for enabling empirically guided soft-
ware development. In Proceedings of ICSE "91.

Siocui, A. C. anp EnricH, R. W. 1991. Computer
analysis of user interfaces based on repetition

421

in transcripts of user sessions. ACM Trans. on
Inf. Syst.

StocHr, A. C. anp Hix, D. 1991. A study of computer-
supported user interface evaluation using max-
imal repeating pattern analysis. In Proceedings
of CHI ’91.

Smirowitz, E. D., DarNELL, M. J., AND BENsON, A. E.
1994. Are we overlooking some usability test-
ing methods? A comparison of lab, beta, and fo-
rum tests. In Usability Laboratories Special Is-
sue of Behavior and Information Technology, J.
Nielsen, Ed., Vol. 13, No. 1 & 2.

Sun MicrosysTEmMs. 1998. SunTest JavaStar Web
Pages. URL: http://www.sun.com/suntest/.

SWEENY, M., MAGUIRE, M., AND SHACKEL, B. 1993.
Evaluating human-computer interaction: A
framework. Int. J. of Man-Machine Stud., 38.

TavLor, M. M. 1988a. Layered protocols for
computer-human dialogue I: Principles. Int. J.
of Man-Machine Stud. 28.

Tavror, M. M. 1988b. Layered protocols for
computer-human dialogue II: Some practical is-
sues. Int. J. of Man—-Machine Stud. 28.

TAYLOR, R. N. AND CouTaz, J. 1994. workshop on soft-
ware engineering and human-computer inter-
action: Joint research issues. In Proceedings of
ICSE °94.

TIBCO, 1998. HAWK Enterprise Monitor Web
Pages. URL: http://www.tibco.com/.

Uenuing, D. L. ano Worg, K. 1995. User Action
Graphing Effort (UsAGE). In Proceedings of CHI
95.

User MobpELING INc. (UM Inc.), 1998. Home Page.
URL: http:/um.org/.
WEILER, P. 1993. Software for the usability lab: a

sampling of current tools. In Proceedings of IN-
TERCHI ’93.

WHITEFIELD, A., WILsON, F., AND DowkLL, J. 1991. A
framework for human factors evaluation. Behav.
and Inf. Technol., 10, 1.

Worr, A. L. anp RosenBLum, D. S. 1993. A study in
software process data capture and analysis. In
Proceedings of the Second International Confer-
ence on Software Process.

ZUKOWSKI, J. AND Loukipes, M., Ed. 1997. Java Awt
Reference. O'Reilly and Associates.

Received October 1998; revised July 1999; accepted March 2000

ACM Computing Surveys, Vol. 32, No. 4, December 2000.

