Quiz #1 - CSU540 Computer Graphics - Spring 2005

Professor Futrelle

Given on February 1st 2005

Linear Algebra and Geometric Transformations

Put your answers and all your calculations in your Blue Book. No calculator is needed or should be used. For example, a value such as $\sqrt{2}$ should be kept in that form and certainly not written down as 1.41421356237309504880, etc. In drawing diagrams based on such values, a reasonable approximation suffices.

For convenience in writing out your answers, vectors can be written in row format, as [x,y] or [x,y,z], and for homogeneous coordinates too, in contrast to the book's column format.

When you are asked to do a transformation step-by-step, write, draw and, comment on the results of each step.

- 1. Draw the vectors A = [8,0], B = [0,6] and the sum C = A + B. Using the coordinates of C, compute its length.
- 2. As in Problem 1, but draw and compute the difference, C B.
- 3. Write out the normalized form of the vector [3,4] and show how you computed it.
- 4. Write out the general form of the rotation matrix R for $\theta = 3\pi/4$. You might want to plot the functions $\sin\theta$ and $\cos\theta$ from $\theta = 0$ to $\theta = 2\pi$ to be sure you're using the correct values.
- 5. Write out the rotation matrix R2 for $\theta = -\pi/2$. Apply R2 to the endpoints of the line segment from [3,3] to [5,5]. Does the result agree with what you'd expect intuitively? Explain.
- 6. Write out the 3x3 translation matrix Td for a translation by [tx,ty]. By multiplying out the components, show in general that the product of Td and Td produces a translation of twice the extent.
- 7. Write out the 3D transform for $+\pi$ rotation around the z axis Apply it to the point [7,9,14]. Explain why you expected the result you obtained.

Go to CSU540 home page. or RPF's Teaching Gateway or homepage