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ABSTRACT 
 
We describe software techniques that will enable Open 
GL capable graphics cards to implement antialiasing and 
depth of field  effects in software. The methods allow any 
hardware facilities that are available on the graphics card 
to be used to improve performance but do not require 
hardware support in order to work. 
 
 
INTRODUCTION 
 
Sophisticated graphical and optical effects have in the 
past been the preserve of pre-rendered animation 
sequences taking hours or even days to calculate. In other 
cases these effects were incorporated in real time systems 
but only in very expensive military simulators, Potmesil 
and Chakravarty 1981, Cant and Sherlock 1987, Montrym 
et al, 1997. Since that time high end graphics 
workstations have also incorporated these techniques, e.g. 
Silicon Graphics.   However recent advances in 
technology suggest that some of these effects should now 
be considered for real time implementation even on 
relatively low cost systems, such as PCs and games 
consoles. In this paper we will explore the possibilities of 
implementing some of these features by making use of 
existing facilities in hardware 3-D accelerators via 
OpenGL.   
 
ANTI-ALIASING 
 
For the implementation of anti-aliasing, this paper will 
attempts to replicate nVidia’s quincunx anti-aliasing 
(which is built into the hardware of an expensive GeForce 
3 card) Figure 1, by using the existing hardware calls of 
common 3D accelerators. 
 
nVidia’s quincunx does the filtering at the stage where the 
buffer is rasterized to the screen. The 3D-scene is 
rendered normally, but the Pixel Shader is storing each 
pixel twice, Figure-2, in two different locations of the 
frame buffer. This does not cost more rendering power 

than the rendering without AA, but requires twice the 
memory bandwidth of the pixel write operation at the end 
of the pixel rendering process.  
 

 
 

Figure 1: Quincunx Anti-aliasing 
 
By the time the last pixel of the frame has been rendered, 
the HRAA-engine of GeForce3 virtually shifts the one 
sample buffer half a pixel in x and y direction (Figure 3). 
 
 

 
Figure 2: Storing pixels twice 

 

 
Figure 3 

 



  

This has the effect that each pixel of the 'first' sample is 
surrounded by four pixels of the second sample that are 
1/SQR(2) pixels away from it in diagonal direction. The 
HRAA-engine filters over those five pixels to create the 
anti-aliased pixel. The weights of the pixels are shown in 
Figure 4. 
 
 
 
 
 
 
 
 
 

Figure 4: Weights of the quincunx pixels 
 
Figure 5 is a comparison of quality between the anti-
aliasing results. These images were captured by 
www.tomshardware.com for an article on the GeForce 3 
video card. The image was taken from a frame in Quake 
III: Arena. (Nowadays, Quake III: Arena is used more 
often as a benchmarking tool than a game.) 
 
It is quite clear that the quality of quincunx filtering is 
quite close to that of the 4x super-sampling anti-aliasing. 
 

 

No anti-aliasing 2x anti-aliasing 

  

Quincunx anti-aliasing 4x anti-aliasing 
 

Figure 5: Comparison of anti-aliasing quality 
 
Coming up with a similar technique with the available 
hardware is quite intuitional. By examining figure 2.3 and 
2.4 a little bit closer, one can deduce that the quincunx 
sample can be reduced to the 2x2 sample in figure 6. 
 

 
 

 
 
 

Figure 6 
 
The top-left pixel and the centre pixel are virtually the 
same pixel in the case of a quincunx sample. The 
implemented algorithm simply captures the entire back 
buffer and draws it back to the same position {offset(0,0)} 
with 0.625 of the original value, blend with alpha value of 
0.125 for three other images at offset(0,1), offset(1,0) and 
offset(1,1). This would be equivalent of averaging the 2x2 
sample with the new weights in Figure 6: 
 

R= 0.625*offsetR(0,0) + 0.125*[offsetR(1,0) + offsetR(0,1) + 
offsetR(1,1)] 

G= 0.625*offsetG(0,0) + 0.125*[offsetG(1,0) + offsetG(0,1) + 
offsetG(1,1)] 

B= 0.625*offsetB(0,0) + 0.125*[offsetB(1,0) + offsetB(0,1) + 
offsetB(1,1)] 

 
The algorithm can be summed up in the following 
diagram: 
 

  Draw Scene in 
back buffer 

 

  

 Read buffer  

  

 Draw 0.625 of original 
value on back buffer 

 

  

 Set blending at 
0.125 

 

  

 Blend 0.125 of original value on back 
buffer at offset(1,0) 

Blend 0.125 of original value on back 
buffer at offset(0,1) 

Blend 0.125 of original value on back 
buffer at offset(1,1) 

 

  

  
Swap buffer  

 

 
 
MIP MAPPING DEPTH OF FIELD 
 
MIP mapping is a popular technique intended to reduce 
aliasing. The essence of the technique is to pre-compute 
the texture at different levels of detail, Figure 7, and to 
use smaller textures for polygons further away from the 
viewer. It aims to improve graphics performance by 
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generating and storing multiple versions of the original 
texture image. The graphics processor chooses a different 
MIP map based on how large the object is on the screen, 
so that low-detail textures can be used on objects that 
contain only a few pixels and high-detail textures can be 
used on larger objects where the user will actually see the 
difference. This technique saves memory bandwidth and 
enhances performance. The acronym MIP stands for 
Multum In Parvo (Latin for 'much in small') 
 

 
Figure 7: A 320x240 image reduced to 160x120, 80x60, 

40x30 and so on… 
 
The 3D hardware bilinear hardware kicks in when the 
smaller images are enlarged and as it attempts to fill in the 
missing pixels, an image that is more blurred will be 
generated (Figure 8). This algorithm will attempt to abuse 
this aspect of the MIP mapping hardware of a modern 3D 
accelerator to generate the blurred portions in an image 
with depth-of-field. 
 

 

Figure 8: Enlarging a scaled down image 
 
Since MIP mapping is such a standard technique, it would 
be safe to assume that all hardware accelerators, even the 
pioneering 3dfx Voodoo card, will be able to do it without 
much effort at all. The scene can either be rendered on the 
back buffer or the memory buffer before requesting the 
hardware to generate the MIP maps. 
 
If the hardware does not natively allow rendering to a 
buffer other than the back buffer, rendering can be done 
on the back buffer first and the memory block will have to 
be copied by hand. And similarly, if MIP-map generation 
is not supported in hardware, it can also be read by hand 
and averaged with neighbouring pixels when scaling 
down. 

 
“MIP-map Pixel Value” = [ pixel(1,1) + pixel(1,2) + 
pixel(2,1) + pixel(1,2) ] >>2 

(where ‘>>’ refers to shifting the bits to the right) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MIP mapping DOF algorithm 
 

Render Scene onto 
back buffer and Z-
buffer. 
{ 
 : 
}

Capture Scene from back buffer 
{ 
       for (y=0;y<height;y++){ 
             for (x=0;x<width;x++){ 
                     image(x,y)=backbuffer(x,y) 
             } 
       } 
} 

Generate MIPMAPs 
{ 
      int level=0 
     Repeat until image is 1x1 
     { 

scale image to 
             ( 
                    WIDTH 
                       2level 

 
           by 
 

      HEIGHT 
                        2level 
              ) 
             Use as LOD ‘level’ image 
              Increment ‘level’ by 1 
      } 
} 

Draw DOF image back onto back buffer 
{ 
      for (y=0;y<height;y++) 
     { 
             for (x=0;x<width;x++) 
            { 
                    backbuffer(x,y)=MIPMAP[ Z-value for  
                             pixel(x,y)](x,y) 
                    //MIPMAP[float i](int t,int s) 
                    // where ‘i’ is a choice of which  
                    // level of mipmap to use 
             } 
      }  
}



  

Since the next level of detail is always a quarter of the 
current level, the averaging isn’t as taxing as it sounds. 
Each destination MIP map pixel is just the average of the 
four corresponding source pixels, arranged in a 2x2 
square. 
 
MIP mapping and bilinear sampling can be merged to 
form tri-linear sampling where two neighbouring levels of 
detail from the texture are averaged to generate an in-
between image. This will effectively allow the blurring of 
an image to be varied without the use of a filtering kernel 
and therefore speeding up the process of generating 
depth-of-field because multiple different degree of 
blurring will be needed for every single render. 
 
It may be handy to be able to do a full screen blur with 
ease but this is an extreme effect and may not be much 
use when it comes to rendering a 3D scene other than 
doing transitions. It is, however, more desirable to be able 
to blur out some objects and leave the others sharp. 
Depth-of-field effects is can now be possible where only 
objects in the extreme distance or foreground are blurred, 
image focussing, in real-time. Depth-of-field would give a 
very impressive photo-realistic look to a rendered image 
(as shown with the cartoon image in Figure 9). 
 

 

 
Figure 9: An image after MIP mapping depth of 

field 
 

The next step in the algorithm is to decide which portion 
of the image would use what level of blurring. This will 
have to be done when the image is being rasterized onto 
the back buffer. The decision for each pixel will be made 
based on the Z-buffer value at the same position. 

By definition depth of field is the total distance, on either 
side of the point of focus, which , when viewed from an 
appropriate distance, appears sharp in the final image. The 
interest of this algorithm is to move real-time graphics 
away from their usual artificial look which is caused by 
shaded triangles projected in a 2 dimensional space. 
 
The cartoon image is intentionally chosen as an example 
because like all or most real-time 3D computer graphics, 
everything appears to be in the foreground and without 
the perspective drawn into the cartoon, the confusion may 
be even greater. Notice how the depth of field increase the 
realism as well as reducing the confusion between the 
background and foreground image which plagued the left 
image of Figure 9. This forces the viewer's eye to 
concentrate on the more important, non-blurred 
characters. 
 
Since the backbone of the major part of the algorithm 
relies on the 3D hardware, the whole process could be 
automated into the hardware itself. This would provide 
easy access to the depth-of-field or blurring effect with 
just an API call. 
 
As with all great things, there is a down side to this 
algorithm. One of the deficiencies of this technique is the 
effect which appears like an aura around a focused object. 
The appearance of this effect is not at all bad as it creates 
a “Vaseline lens” effect (Figure 10) on an image and 
brings it closer to photo-realism. 
 

 
 

Figure 10: Photo of Xena, the cat, without and with the 
“Vaseline lens” effect 

 
The other effect that is not pleasant appears when the 
focused object is in the background. Due to the cut-off of 
the Z-buffer when the foreground is blurred, instead of 
fuzzing out the foreground, a distinct line can be seen 
where the foreground edge meets the background. 
 
So while the effect obtained when focusing the 
foreground and blurring the background adds realism to 
an image, the effect when focusing the background and 
blurring the foreground is less forgiving. This renders this 
technique only effective when doing depth of field of the 
former. 
 



  

A possible solution to stop this effect is to blur out the Z 
buffer when doing this method of depth-of-field so that no 
sharp edges would be present, and hence will give a 
smoother transition from the foreground object to the 
background object. 
 
Another possible but less appealing solution would be to 
render the foreground objects (objects before the focal 
point) onto individual memory buffers. These images will 
then be used as sprites, drawn on the position where the 
object will be if drawn in 3D. Do multi-pass blending 
jitters with 
 

Offsets = (focal_point – 
object_distance_from_focal_point) * constant 
 
with the sprites to create the fuzzy edged objects that are 
at the foreground. 
 
For the mentioned MIP mapping DOF implementation to 
work effectively, one would need to get to the metal of 
the hardware. For the purpose of this project, a simplified 
version of the algorithm, which could produce a similar 
result on existing 3D accelerators, was implemented. 
 

 
Figure 11: Original screenshot image from the 

game Airblade. 

 
Figure 12: Images with different LOD layered 

and scaled to appear as the same size and position 
to the viewer 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MIP mapping DOF algorithm (second 
implementation) 

Render Scene onto 
back buffer and Z-
buffer. 
{ 
 . 

. 
} 

Capture Scene from back buffer 
{ 
     for (y=0;y<height;y++) 
     { 
           for (x=0;x<width;x++) 
           { 
               image(x,y)=backbuffer(x,y)

           } 
     } 
} 

Generate MIPMAPs 
{ 
    int level=0 
    Repeat until image is 1x1 
        { 

scale image to 
( 

                      WIDTH 
                          2level 

          by 
 
                      HEIGHT 
                           2level 
                   ) 

Use as LOD ‘level’ 
image, 
Increment ‘level’ 
by 1 
} 

} 

Draw DOF image back onto back buffer 
{ 

On Depth Testing but do not write changes 
to depth buffer 

Let Z be the depth where objects are to be 
sharpest 

Draw LOD[3] at Z-3*offset 
Draw LOD[2] at Z-2*offset 
Draw LOD[1] at Z-1*offset 
Draw LOD[0] at Z 
Draw LOD[1] at Z+1*offset 
Draw LOD[2] at Z+1*offset 
Draw LOD[3] at Z+1*offset 

} 



  

While the first implementation assumes an infinite 
amount of LODs in the image, this implementation will 
reduce that to a finite amount of LODs. 
 
As before, a scene like the one in Figure 11 will be 
rendered, MIP maps generated. These maps will be 
layered and scaled in such a way that they will all appear 
the same size and position to the viewer (Figure 12). 
These images will be effectively be billboards cutting 
through the depth of the scene based on the existing Z-
buffer values. 
 
By positioning the desired LOD on appropriate position 
along the Z-axis, the Z-buffer mechanism will 
automatically cut out the unwanted portions of a layer that 
might block the layers at the back. 
 

 
Figure 13: Simplified Z-buffer of the image. 

 

 
 

Figure 14: MIP mapping depth-of-field in effect. 
 
In figure 13, the darker portions are objects that are 
further away and the brighter portions are objects nearer 
to the front. Figure 14 is drawn by drawing the LOD 
images in the way illustrated in figure 12 using the Z 
buffer values in figure 13. 

As can be seen from Figure 14, although the levels of 
LODs have been reduced to a finite amount, the technique 
can still deliver a convincing effect of depth-of-field. 
 
The effects that are found in the previous implementation 
will still exist in this implementation, however the 
‘foreground blurring edge’ effect will not be visible in 
Figure 14 because the focused character is in the 
foreground. 
 
 
CONCLUSIONS AND FUTURE WORK 
 
Techniques were proposed and implemented to perform 
anti-aliasing and depth of field processing using features 
of OpenGL and current 3-D accelerators. Surprisingly 
impressive images have been obtained in spite of the fact 
that these facilities are not supported 'natively' by the 
equipment in use. Future work will include refinements of 
these algorithms, exploration of the possibilities for direct 
implementation in future hardware and investigation of 
other effects such as motion blur, sun glare and film grain. 
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