

NEW ANTI-ALIASING AND DEPTH OF FIELD
TECHNIQUES FOR GAMES

RICHARD CANT, NATHAN CHIA, DAVID AL-DABASS

Department of Computing and Mathematics

The Nottingham Trent University
Nottingham NG1 4BU.

Email: richard.cant/david.al-dabass@ntu.ac.uk

KEYWORDS

Computer Graphics, Anti-aliasing, super-sampling, depth
of field, focus, Open GL.

ABSTRACT

We describe software techniques that will enable Open
GL capable graphics cards to implement antialiasing and
depth of field effects in software. The methods allow any
hardware facilities that are available on the graphics card
to be used to improve performance but do not require
hardware support in order to work.

INTRODUCTION

Sophisticated graphical and optical effects have in the
past been the preserve of pre-rendered animation
sequences taking hours or even days to calculate. In other
cases these effects were incorporated in real time systems
but only in very expensive military simulators, Potmesil
and Chakravarty 1981, Cant and Sherlock 1987, Montrym
et al, 1997. Since that time high end graphics
workstations have also incorporated these techniques, e.g.
Silicon Graphics. However recent advances in
technology suggest that some of these effects should now
be considered for real time implementation even on
relatively low cost systems, such as PCs and games
consoles. In this paper we will explore the possibilities of
implementing some of these features by making use of
existing facilities in hardware 3-D accelerators via
OpenGL.

ANTI-ALIASING

For the implementation of anti-aliasing, this paper will
attempts to replicate nVidia’s quincunx anti-aliasing
(which is built into the hardware of an expensive GeForce
3 card) Figure 1, by using the existing hardware calls of
common 3D accelerators.

nVidia’s quincunx does the filtering at the stage where the
buffer is rasterized to the screen. The 3D-scene is
rendered normally, but the Pixel Shader is storing each
pixel twice, Figure-2, in two different locations of the
frame buffer. This does not cost more rendering power

than the rendering without AA, but requires twice the
memory bandwidth of the pixel write operation at the end
of the pixel rendering process.

Figure 1: Quincunx Anti-aliasing

By the time the last pixel of the frame has been rendered,
the HRAA-engine of GeForce3 virtually shifts the one
sample buffer half a pixel in x and y direction (Figure 3).

Figure 2: Storing pixels twice

Figure 3

This has the effect that each pixel of the 'first' sample is
surrounded by four pixels of the second sample that are
1/SQR(2) pixels away from it in diagonal direction. The
HRAA-engine filters over those five pixels to create the
anti-aliased pixel. The weights of the pixels are shown in
Figure 4.

Figure 4: Weights of the quincunx pixels

Figure 5 is a comparison of quality between the anti-
aliasing results. These images were captured by
www.tomshardware.com for an article on the GeForce 3
video card. The image was taken from a frame in Quake
III: Arena. (Nowadays, Quake III: Arena is used more
often as a benchmarking tool than a game.)

It is quite clear that the quality of quincunx filtering is
quite close to that of the 4x super-sampling anti-aliasing.

No anti-aliasing 2x anti-aliasing

Quincunx anti-aliasing 4x anti-aliasing

Figure 5: Comparison of anti-aliasing quality

Coming up with a similar technique with the available
hardware is quite intuitional. By examining figure 2.3 and
2.4 a little bit closer, one can deduce that the quincunx
sample can be reduced to the 2x2 sample in figure 6.

Figure 6

The top-left pixel and the centre pixel are virtually the
same pixel in the case of a quincunx sample. The
implemented algorithm simply captures the entire back
buffer and draws it back to the same position {offset(0,0)}
with 0.625 of the original value, blend with alpha value of
0.125 for three other images at offset(0,1), offset(1,0) and
offset(1,1). This would be equivalent of averaging the 2x2
sample with the new weights in Figure 6:

R= 0.625*offsetR(0,0) + 0.125*[offsetR(1,0) + offsetR(0,1) +
offsetR(1,1)]

G= 0.625*offsetG(0,0) + 0.125*[offsetG(1,0) + offsetG(0,1) +
offsetG(1,1)]

B= 0.625*offsetB(0,0) + 0.125*[offsetB(1,0) + offsetB(0,1) +
offsetB(1,1)]

The algorithm can be summed up in the following
diagram:

 Draw Scene in
back buffer

 Read buffer

 Draw 0.625 of original
value on back buffer

 Set blending at
0.125

 Blend 0.125 of original value on back
buffer at offset(1,0)

Blend 0.125 of original value on back
buffer at offset(0,1)

Blend 0.125 of original value on back
buffer at offset(1,1)

Swap buffer

MIP MAPPING DEPTH OF FIELD

MIP mapping is a popular technique intended to reduce
aliasing. The essence of the technique is to pre-compute
the texture at different levels of detail, Figure 7, and to
use smaller textures for polygons further away from the
viewer. It aims to improve graphics performance by

1
2

1
8

1
8

1
8

1
8

1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
8

5
8

generating and storing multiple versions of the original
texture image. The graphics processor chooses a different
MIP map based on how large the object is on the screen,
so that low-detail textures can be used on objects that
contain only a few pixels and high-detail textures can be
used on larger objects where the user will actually see the
difference. This technique saves memory bandwidth and
enhances performance. The acronym MIP stands for
Multum In Parvo (Latin for 'much in small')

Figure 7: A 320x240 image reduced to 160x120, 80x60,

40x30 and so on…

The 3D hardware bilinear hardware kicks in when the
smaller images are enlarged and as it attempts to fill in the
missing pixels, an image that is more blurred will be
generated (Figure 8). This algorithm will attempt to abuse
this aspect of the MIP mapping hardware of a modern 3D
accelerator to generate the blurred portions in an image
with depth-of-field.

Figure 8: Enlarging a scaled down image

Since MIP mapping is such a standard technique, it would
be safe to assume that all hardware accelerators, even the
pioneering 3dfx Voodoo card, will be able to do it without
much effort at all. The scene can either be rendered on the
back buffer or the memory buffer before requesting the
hardware to generate the MIP maps.

If the hardware does not natively allow rendering to a
buffer other than the back buffer, rendering can be done
on the back buffer first and the memory block will have to
be copied by hand. And similarly, if MIP-map generation
is not supported in hardware, it can also be read by hand
and averaged with neighbouring pixels when scaling
down.

“MIP-map Pixel Value” = [pixel(1,1) + pixel(1,2) +
pixel(2,1) + pixel(1,2)] >>2

(where ‘>>’ refers to shifting the bits to the right)

MIP mapping DOF algorithm

Render Scene onto
back buffer and Z-
buffer.
{
 :
}

Capture Scene from back buffer
{
 for (y=0;y<height;y++){
 for (x=0;x<width;x++){
 image(x,y)=backbuffer(x,y)
 }
 }
}

Generate MIPMAPs
{
 int level=0
 Repeat until image is 1x1
 {

scale image to
 (
 WIDTH
 2level

 by

 HEIGHT
 2level
)
 Use as LOD ‘level’ image
 Increment ‘level’ by 1
 }
}

Draw DOF image back onto back buffer
{
 for (y=0;y<height;y++)
 {
 for (x=0;x<width;x++)
 {
 backbuffer(x,y)=MIPMAP[Z-value for
 pixel(x,y)](x,y)
 //MIPMAP[float i](int t,int s)
 // where ‘i’ is a choice of which
 // level of mipmap to use
 }
 }
}

Since the next level of detail is always a quarter of the
current level, the averaging isn’t as taxing as it sounds.
Each destination MIP map pixel is just the average of the
four corresponding source pixels, arranged in a 2x2
square.

MIP mapping and bilinear sampling can be merged to
form tri-linear sampling where two neighbouring levels of
detail from the texture are averaged to generate an in-
between image. This will effectively allow the blurring of
an image to be varied without the use of a filtering kernel
and therefore speeding up the process of generating
depth-of-field because multiple different degree of
blurring will be needed for every single render.

It may be handy to be able to do a full screen blur with
ease but this is an extreme effect and may not be much
use when it comes to rendering a 3D scene other than
doing transitions. It is, however, more desirable to be able
to blur out some objects and leave the others sharp.
Depth-of-field effects is can now be possible where only
objects in the extreme distance or foreground are blurred,
image focussing, in real-time. Depth-of-field would give a
very impressive photo-realistic look to a rendered image
(as shown with the cartoon image in Figure 9).

Figure 9: An image after MIP mapping depth of

field

The next step in the algorithm is to decide which portion
of the image would use what level of blurring. This will
have to be done when the image is being rasterized onto
the back buffer. The decision for each pixel will be made
based on the Z-buffer value at the same position.

By definition depth of field is the total distance, on either
side of the point of focus, which , when viewed from an
appropriate distance, appears sharp in the final image. The
interest of this algorithm is to move real-time graphics
away from their usual artificial look which is caused by
shaded triangles projected in a 2 dimensional space.

The cartoon image is intentionally chosen as an example
because like all or most real-time 3D computer graphics,
everything appears to be in the foreground and without
the perspective drawn into the cartoon, the confusion may
be even greater. Notice how the depth of field increase the
realism as well as reducing the confusion between the
background and foreground image which plagued the left
image of Figure 9. This forces the viewer's eye to
concentrate on the more important, non-blurred
characters.

Since the backbone of the major part of the algorithm
relies on the 3D hardware, the whole process could be
automated into the hardware itself. This would provide
easy access to the depth-of-field or blurring effect with
just an API call.

As with all great things, there is a down side to this
algorithm. One of the deficiencies of this technique is the
effect which appears like an aura around a focused object.
The appearance of this effect is not at all bad as it creates
a “Vaseline lens” effect (Figure 10) on an image and
brings it closer to photo-realism.

Figure 10: Photo of Xena, the cat, without and with the
“Vaseline lens” effect

The other effect that is not pleasant appears when the
focused object is in the background. Due to the cut-off of
the Z-buffer when the foreground is blurred, instead of
fuzzing out the foreground, a distinct line can be seen
where the foreground edge meets the background.

So while the effect obtained when focusing the
foreground and blurring the background adds realism to
an image, the effect when focusing the background and
blurring the foreground is less forgiving. This renders this
technique only effective when doing depth of field of the
former.

A possible solution to stop this effect is to blur out the Z
buffer when doing this method of depth-of-field so that no
sharp edges would be present, and hence will give a
smoother transition from the foreground object to the
background object.

Another possible but less appealing solution would be to
render the foreground objects (objects before the focal
point) onto individual memory buffers. These images will
then be used as sprites, drawn on the position where the
object will be if drawn in 3D. Do multi-pass blending
jitters with

Offsets = (focal_point –
object_distance_from_focal_point) * constant

with the sprites to create the fuzzy edged objects that are
at the foreground.

For the mentioned MIP mapping DOF implementation to
work effectively, one would need to get to the metal of
the hardware. For the purpose of this project, a simplified
version of the algorithm, which could produce a similar
result on existing 3D accelerators, was implemented.

Figure 11: Original screenshot image from the

game Airblade.

Figure 12: Images with different LOD layered

and scaled to appear as the same size and position
to the viewer

MIP mapping DOF algorithm (second
implementation)

Render Scene onto
back buffer and Z-
buffer.
{
 .

.
}

Capture Scene from back buffer
{
 for (y=0;y<height;y++)
 {
 for (x=0;x<width;x++)
 {
 image(x,y)=backbuffer(x,y)

 }
 }
}

Generate MIPMAPs
{
 int level=0
 Repeat until image is 1x1
 {

scale image to
(

 WIDTH
 2level

 by

 HEIGHT
 2level
)

Use as LOD ‘level’
image,
Increment ‘level’
by 1
}

}

Draw DOF image back onto back buffer
{

On Depth Testing but do not write changes
to depth buffer

Let Z be the depth where objects are to be
sharpest

Draw LOD[3] at Z-3*offset
Draw LOD[2] at Z-2*offset
Draw LOD[1] at Z-1*offset
Draw LOD[0] at Z
Draw LOD[1] at Z+1*offset
Draw LOD[2] at Z+1*offset
Draw LOD[3] at Z+1*offset

}

While the first implementation assumes an infinite
amount of LODs in the image, this implementation will
reduce that to a finite amount of LODs.

As before, a scene like the one in Figure 11 will be
rendered, MIP maps generated. These maps will be
layered and scaled in such a way that they will all appear
the same size and position to the viewer (Figure 12).
These images will be effectively be billboards cutting
through the depth of the scene based on the existing Z-
buffer values.

By positioning the desired LOD on appropriate position
along the Z-axis, the Z-buffer mechanism will
automatically cut out the unwanted portions of a layer that
might block the layers at the back.

Figure 13: Simplified Z-buffer of the image.

Figure 14: MIP mapping depth-of-field in effect.

In figure 13, the darker portions are objects that are
further away and the brighter portions are objects nearer
to the front. Figure 14 is drawn by drawing the LOD
images in the way illustrated in figure 12 using the Z
buffer values in figure 13.

As can be seen from Figure 14, although the levels of
LODs have been reduced to a finite amount, the technique
can still deliver a convincing effect of depth-of-field.

The effects that are found in the previous implementation
will still exist in this implementation, however the
‘foreground blurring edge’ effect will not be visible in
Figure 14 because the focused character is in the
foreground.

CONCLUSIONS AND FUTURE WORK

Techniques were proposed and implemented to perform
anti-aliasing and depth of field processing using features
of OpenGL and current 3-D accelerators. Surprisingly
impressive images have been obtained in spite of the fact
that these facilities are not supported 'natively' by the
equipment in use. Future work will include refinements of
these algorithms, exploration of the possibilities for direct
implementation in future hardware and investigation of
other effects such as motion blur, sun glare and film grain.

REFERENCES

1. M. Potmesil and I Chakravarty, "A Lens and Aperture
Camera Model for Synthetic Image Generation", in
Proceedings of ACM-SIGGRAPH 81, Dallas, Texas,
August 3-7 1981, pp297-305, Vol. 15, No.3.
2. Richard S. Wright, Jr and Micheal Sweet, " OpenGL
Super Bible", 2nd Edition, Waite Group Press.
3. Cant, R.J. and P.E. Sherlock. 1987, "CIG System for
Periscope Observer Training", in Proceedings of the 9th
Inter-Service/Industry Training Systems Conference, 311-
314.
4. J. Montrym, D Baum, D Dignam, and C Migdal,
"InfinitReality: A Real-Time Graphics System", in
Proceedings of ACM SIGGRAPH'97, pp 293-301,
August 1997.
5. S Nishimura, and T Kunii, "VC-1: A Scalable Graphics
Computer with Virtual Local Frame Buffers", in
Proceedings of ACM SIGGRAPH'96, pp 365-372,
August 1996.
6. Sergei Savchenko, "3D Graphics Programming",
SAMS.
7. Rod Stephens, "Visual Basic Graphics Programming",
Wiley.

