In-Game Special Effects
and Lighting

Introduction

m Tomas Arce

m Special Thanks

Matthias Wioka
Craig Galley
Stephen Broumley
Cryrus Lum

Sumie Arce
Inevitable

nVidia

Bungy

NEVITABLE

www.inevitable.com

What Is Per-Pixel Lighting ...

m Bad name
m Texel-lighting iIs more accurate

m Texture resolution matters -- tiling helps

m Complex operation done per-pixel basis
m Texture lookups, dp3, and pixel shaders

m Use colors as data

What Is Per-Pixel Lighting ...

m Encode pixel-normals in texture, fill RGB as:
R=Normal.X, G=Normal.Y, B=Normal.Z

m Light dir is also encoded, fill vertex color as:
R=LightDir.X, G = LightDir.Y, B = LightDir.Z

= Now we can do:
(Texture.Texel) dot (Vertex.Color)

Why Is Per-Pixel Better? ...

m Per-vertex light is faster and more flexible but lacks
resolution

m Light-maps have pit-falls
m No real specular
m Low resolution
m Doesn’t work for dynamic objects

m Projected textures don’t give much detail for the
surface

Why Is Per-Pixel Better? ...

m Detall. Detall. Detall.

m ppLighting needs few polygons per-mesh
m Simplifies collision, stencil shadows, and memory

m Bump mapping is a subset of the ppLighting
s “Normal maps”

m Normal maps handle different types of lights and
surfaces well

Why Is Per-Pixel Better? ...

How to Store Normals in Texels ...

= What space?
m Local-Space vs Texture Space

m Local Space Normals (LS)
m Use the origin of the object to extract normals

m Texture Space Normals (TS)
m Store normals in generic space, e.g., Tangent Space

m Store a matrix per vertex that takes the light from local-
space to texture space

How to Store Normals 1n Texels .-

Local Space Texture Space

How to Store Normals in Texels ...

m LS is simple to work with and can be very fast
m But cannot be compressed
m Good for characters and objects such as cars

m TS is more complex to work with but has 2
advantages
m Tileable maps
m Palletized textures
m Good for big things like terrain with detail textures

Different Types of Lights ...

m 3 typical light types
m Directional
m Point
m Spot

m Point and spot lighting usually have attenuation
coefficients

m Store spot lighting attenuation function in a texture
m X is a function of the distance

m Y is a function of the angle
The dot-product direction of the light with the vertex

Different Types of Lights ...

® Implementing attenuation function (1/(k1+d*k2
+d*d*k3)) directly in the vertex shader

m Takes few instructions, but has issues going towards zero

m Light vector normalization is usually not needed but...
m Use cube-map lookup (32x32 or so)
m Or use Newton-Raphson approximation in pixel-shader:

mul rO, LightDir, 0.5
dp3 rl, LightDir, LightDir
mad r0, 1-r1, r0, LightDir

LS vs TS Standard Comparison ..

; LS Directional Light

; Transform position to clip space and output it
dp4 oPos. x, V_PCSITION, c[CV_WORLDVI EAWPRQJ 0]
dp4 oPos.y, V_PCSITION, c[CV _WORLDVI EWPRQJ 1]
dp4 oPos.z, V_PCSITION, c[CV _WORLDVI EWPRQJ 2]
dp4 oPos.w, V_PCSITION, c[CV_WORLDVI EAWPRQJ 3]

; Qut put tex coords
nov oTO, V_TEXTURE
nov oT1l, V_TEXTURE

LS vs TS Standard Comparison ...

; TS Directional Light

; Transform position to clip space and output it
dp4 oPos. x, V_POCSITION, c[CV_WORLDVI EWPRQJ 0]
dp4 oPos.y, V_PCSITION, c[CV_WORLDVI EWPRQJ 1]
dp4 oPos.z, V_POSITION, c[CV_WORLDVI ENWPRQJ 2]
dp4 oPos.w, V_POSITION, c[CV_WORLDVI EWPRQJ 3]

; Transform | ocal space |light by basis vectors to put it
; into texture space

dp3 LIGHT _T.x, V.S, c[L_D R LOCAL]

dp3 LIGHT T.y, V. T, c[L_D R LOCAL]

dp3 LIGHT T.z, V.Q c[L_D R LOCAL]

: Scale to 0-1
add LIGHT T, LIGHT_ T, c[CV_ONf]
mul oDO, LIGHT T, c[CV_HALF]

; Qutput tex coords
nov oTO, V_TEXTURE
nov oTl1l, V_TEXTURE

LS vs TS Standard Comparison ..

m This example is mostly for rigid geometry
m Optimized TS: 11 instructions
m Optimizes LS: 6 instructions

m Note that the LS could do up to 5 lights

m All light directions in local space are loaded into
the pixel-shader constants

m The TS uses light direction in local space
m Faster than transforming the basis vectors

LS vs TS Soft-Skin

LS vs TS Soft-SKin + vsy 1

[l Transform pos with Wight 1
nmov a0. x, V_I NDI CES. x

dp4 r1.x, V_PCSITION, c[a0.x + CV_BONESTART + O]
dp4 rl.y, V_PCSITION, c[a0.x + CV_BONESTART + 1]
dp4 r1.z, V_PCSITION, c[a0.x + CV_BONESTART + 2]

/1 Weight the light part 1
mul r7, c[a0.x + CV_LDI R LOCALSPACE], V_WVEI GHTO. x

[l Transform pos with Wight 2
mov a0. x, V_INDICES.y

dp4 r2.x, V_PCSITION, c[a0.x + CV_BONESTART + O]
dp4 r2.y, V_POSITION, c[a0.x + CV_BONESTART + 1]
dp4 r2.z, V_PCSITION, c[a0.x + CV_BONESTART + 2]

[l Weight the 2 part of the |ight
mad r8, c[a0.x + CV_LDI R LOCALSPACE], V_VEIGHT1.x, r7

LS vs TS Soft-SKin (.5 2

/1 Blend between r1 and r2
mul rl.xyz, rl.xyz, V_WElIGHTO. x
mad r2, r2.xyz, V_VEICGHT1.x, rl.xyz

mov r2.w, c[CV_CONSTANTS].z //set wto one
[l r2 now contains final position

; Do the texture conpression by multiplying
;, 1 or -1 as needed
mul rl.x, rl.x, V_M RROR FLAG

/1 Normalize |ight vector
dp3 rl.w, rl, rl
rsqrl.w, rl.w

mul rl1, rl1, rl.w

LS vs TS Soft-SKin (.s.) s

/[l Transformto clip space

dp4 oPos. x, r2, c[CV_WORLDVI EWPRQJ O]
dp4 oPos.y, r2, c[CV_WORLDVI EWPRQ] 1]
dp4 oPos.z, r2, c[CV_WORLDVI EWPRQJ 2]
dp4 oPos.w, r2, c[CV_WORLDVI EWPRQJ 3]

/] Scale to 0-1

/[l [-1, 1] --> [0, 1]
add rl1, rl, c[CV_CONSTANTS].z
mul oDO, r1, c[CV_CONSTANTS].y

/| Pass through texcoords
mov oTO0. xy, V_TEX
mov oT1l. xy, V_TEX

LS vs TS Soft-SKin ¢+ s

[l Transform pos with Wight 1
nmov a0. x, V_I NDI CES. x

dp4 r1.x, V_PCSITION, c[a0.x + CV_BONESTART + O]
dp4 rl.y, V_PCSITION, c[a0.x + CV_BONESTART + 1]
dp4 rl.z, V_PCSITION, c[a0.x + CV_BONESTART + 2]

/1 Transformthe light fromthe bone | ocal space to the TS
dp3 r7.x, V_S, c[a0.x + CV_LDI R _LOCALSPACE]
dp3 r7.y, V.T, c[a0.x + CV_LDI R LOCALSPACE]
dp3 r7.z, V_SxT, c[a0.x + CV_LDI R LOCALSPACE]

[l Transform pos with Wight 2
mov a0. x, V_I NDI CES.y

dp4 r2.x, V_POSITION, c[a0.x + CV_BONESTART + 0]
dp4 r2.y, V_POSITION, c[a0.x + CV_BONESTART + 1]
dp4 r2.z, V. POSITION, c[a0.x + CV_BONESTART + 2]

LS vs TS Soft-SKin ¢+ sas

[l Transformthe |light fromthe bone | ocal space to the
/] texture space

dp3 r8.x, V_S, c[a0.x +
dp3 r8.y, V. T, c[a0.x +
dp3 r8.z, V_SXT, c[a0.x +

CV_LDI R_LOCALSPACE]
CV_LDI R_LOCALSPACE]
CV_LDI R_LOCALSPACE]

/1 Blend between rl1 and r2, r2 now contains final position
mul rl.xyz, rl.xyz, V_WElICGHTO. x

mad r 2, r2.xyz, V_WEICGHT1.x, rl.xyz

nmov r2.w, c[CV_CONSTANTS] . z /[l set wto one

/1 Blend the |ight
mul r7, r7.xyz, V_WElICGHTO. x
mad r8, r8.xyz, V.VEICGHT1.x, r7

/1 Normalize |ight vector
dp3 rl.w, r1, rl
rsqrl.w rl.w

mul r1, ri, rl.w

LS vs TS Soft-SKin ¢+

/1l Transformto clip space

dp4 oPos. x, r2, c[CV_WORLDVI EWPRQJ O]
dp4 oPos.y, r2, c[CV_WORLDVI EWPRQ] 1]
dp4 oPos.z, r2, c[CV_WORLDVI EWPRQJ 2]
dp4 oPos.w, r2, c[CV_WORLDVI EWPRQJ 3]

/[l [-1, 1] --> [0, 1]
add rl1, rl, c[CV_CONSTANTS].z
mul oDO, r1, c[CV_CONSTANTS].y

/| Pass through texcoords
mov oTO0. xy, V_TEX
nmov oT1l. xy, V_TEX

LS VS TS SOft'Skln 70f7

m Optimized LS: 25 instructions
m Optimized TS: 30 instructions

m Skinning the light direction is as good as skinning a normal

m The LS technique works well for characters
m Unique pixel per polygon and symmetrical

m Passing the light in the local space for each bone for the TS is a
good idea

m Standard TS technique is about 50 instructions

LS VS TS SOft'Skln 8 0f 8

m Evolution demo shader is 42 instructions
m Vertex-shader was the first bottle neck that we hit

m Geforce3 Ti500 runs a 240Mhz
m 1 clock per instruction = 240M instruction/sec
m @ 60fps is 4M so 4M/25 = 160K Peak

m The Geforced4 can do 600M instruction/sec
m Step in the right direction

Working with Shaders ...

m 1 to n lights and different types of lights
m Compile and cache vertex/pixel shaders on the fly

m Layout code so they can be combined
m Doomlll does 1 light per pass

m Geforce3 has max. 8 instructions in the pixel-shader
m But can use an off-screen texture as a temporary register

m Then project texture in consequent passes
m Allows for unlimited length of pixel shaders (with extra cost

of course)

Working with Shaders ...

m “Anisotropic” textures are a good way to do
complex lighting equations based on the
specular and diffuse angles

Working with Shaders ...

m Use UVs to set the lightDir and half-vector

m Then use “texm3x2pad” and “texm3x2tex” to compute the
look up UVs

m Pre-scale the lightDir and the half-vector by 0.5 to
get the full range —1 to 1 of the light equation

m Useful for back-lighting

m Be creative with your lighting equation
m “Diffuse + Specular” pretty much sucks
m Try: “Diffuse + X * Specular * Diffuse”

Working with Shaders ...

m Use multiple layers to achieve complex lighting
m Evolution demo had 3: Diffuse, Anisotropic, and ppSpecular

m Make sure to use all channels in your textures
m Don’t forget about the alpha channel

m Compress textures (DXT1, DXT3)

m Post-Effects are becoming part of the shading
technology; don’t miss that (check out Wreckless)

Wreckless

Nice job guys!

| J:, T 01:35.56 B

s
il 2.

Shadows .«

® Two main techniques projected textures
(nVidia/ATI/plain) and stencil volumes

m Projected textures are easier to implement
m Self-shadow
m Can do 4 lights/shadows at a time
m But can only do spot and directional lights

m Hint: try to use orthogonal projections
m Do per-object projected textures

Shadows .«

m Stencils are a more generic solution
m But fill rate is an issue

= Worth looking at
m SVBSP and order tree structures
m As well as Cut and Continue type of techniques

m Make sure to cache shadow volumes

m For perfect lighting, use stencil to not write lit pixels
m VS darkening them

Shadows .-

INEVITABLE

- . i e
e
-
< -
)
H-
-
S i -

i

The Future ...

m In the near future new versions of vertex/pixel
shaders will make another big leap

m Expect to see lighting independent of geometry
complexity, and a final generalized lighting solution

m Shadows will still be a thing to try to achieve
efficiently

m Although it may be helped via fill-rate increases etc.

m Post-effects will be very important as they start to
became part of the final shader render

The Future ...

We still live in very exciting times, but it would be more
exciting If they do a real time ray-tracer!

INEVITABLE

4

