In-Game Special
Effects and
Lighting

Tomas Arce and
Matthias Wloka

Overview — Motion Blur

= Motivation

m Our technique

m Variations

® Pros and cons

m Interactive demo

Motion Blur: Motivation

m Motion blur is a finite shutter-speed
artifact

m Still photography
m Motion blur expresses dynamic motion

m But |leaving the shutter open looks blurred,
not motion-blurred (1)

m Photographers use rear-curtain-sync flash
Instead

Motion Blur: Without Flash

Motion Blur: Motivation

m Movies

m Non-blurred objects look jerky and stilted
(see RKO Pictures’ original “King Kong” from
1933)

m Slow-motion action sequences: pick your
favorite action/adventure movie

m Real-life
m Airplane propellers
m Celling fans

Motion Blur: Uses In Games

m Any fighting game
= Sword
m Hand-to-hand

® Any game with in-game replay (think
“Matrix”-style instant replay)
= Driving games
m Fighting games
m Sports titles

Motion Blur: Screenshot

Motion Blur: Technique
Overview

m First render object normally

= We will get back to why this may be
necessary later

m Render object again using DirectX 8
vertex-shader

m Stretch object from previous frame’s
position to current frame’s position

m Apply alpha-blending (similar to rear-
curtain-sync flash)

Motion Blur: The Technigue

Previous Frame Current Frame
‘subtract /
\
L
- > D > @D
dual-transform alpha-blend

Per-Vertex Motion Vectors

Motion Blur: The Technigue

m Take vertex to view-space
m Using current frame’s transform
m As well as the previous frame’s transform

m The difference i1s a motion vector M

m If (M dot N > 0) then vertex faces into the
motion
m Transform it using the current frame’s transform
m Else vertex faces away from motion
m Use the previous frame’s transform
m Force the vertex into semi-transparency

Motion Blur: Some Gotcha’s

m Use of transparency requires

m Back-to-front for non-convex objects

= Create six index lists sorted corresponding to
view-direction aligned w/ object’s £x, ty, xz axis

= Choose index-list closest to actual view direction

= When object moves away from camera

= All motion-front-facing vertices, i.e., all opaque
vertices, are camera-back-face culled

= Object seems to disappear
= Thus, first render object normally

Motion Blur: Necessity of First
Pass

Previous Frame Current Frame

‘subtract /
>
‘ dual-transform

Per-Vertex Motion Vectors
(pointing into the screen)

Background

alpha-blend

Motion Blur: Single Pass
Artifact

Motion Blur: Variations

m Emphasize/De-emphasize motion blur
= Artificially lengthen/shorten motion vector

m Transparency of motion-back-facing
vertices

m Must vary with length of motion vector: If
motion vector zero, vertices must be opaque

s MAX(0.1, 1 - length(motion vector)/extent) works well
m Try non-linear equations

Motion Blur: Pros

m General technique
m Applies to any object
m Takes camera movement into account

m Two pass technique, possibly one pass
= Runs fully on GPU for GeForce 3 and up

m Looks like motion blur
= Not multiple (Jagged) renderings

Motion Blur: Vs. Multiple
Rendering

T LT

Motion Blur: Cons

m Potentially wrong visibility

m Per-vertex operation: no texture blurring
m Lowering texture LOD-level looks fine
m Pre-process textures in motion-directions

E Linear interpolation from frame to frame
m Fast rotating objects problematic

m Uses transparency, I.e., back-to-front
rendering

Overview — Depth of Field

= Motivation

m Our technique

m Variations

® Pros and cons

m Interactive demo

Depth of Field: Motivation

m Depth of field: aperture-based artifact

= Virtually all still- and motion-picture
photography uses aperture-based lenses

m Depth of field is shallower
= The wider the aperture (low light or fast shutter)
= The longer the focal-length (telephoto)
= The closer the focusing distance

m Depth of field focuses attention

m Look at any movie or professional
photograph

Depth of Field: Potential Uses
In Interactive Games

m Anytime there Is a naturally limited focus
m Surrounding environment IS non-essential

m Have the environment come in- and out-of-
focus as players change position or camera
parameters adjust

m Careful: frustration If player ever has to
discern anything out-of-focus

® In-game movie sequences
® In-game replay (mimicking TV-coverage)

Depth of Field: Screenshots

Depth of Field: Technigue
Overview

m Render scene to texture
m Vertex shaders compute distance to camera

m Pixel shader uses interpolated camera-
distance to look up “blurriness interpolator”

m Stores that interpolator in texture’s alpha
m Copy and blur the texture multiple times

m Blit texture-target to back-buffer

m Pixel shader chooses between original and
blurred versions based on blurriness
Interpolator

Depth of Field: Render Scene to
Texture

m Match texture dimensions to back-buffer
= Non-power of two texture
m Subrect of next larger power-of-two texture

m Every object uses a vertex shader to compute
distance to camera
m Radial distance is correct, takes 3 instructions

m Linear z-distance looks similar (especially for tele-
photo lenses), takes 1 instruction

= Normalize to [0, 1] and output as texture
coordinate

Depth of Field: Render Scene

m Every object uses a pixel shader to

m Transform interpolated camera-
distance to blurriness interpolator

m Store blurriness interpolator in texture-
alpha

Depth of Field: Circle of
Confusion

m World-points map to dots on film-plane

m Diameter of dot: circle-of-confusion
m Measure of blurriness

m Circles of diameter < € are “in-focus”

m Formula

C(d,fD,fL,fS) = abs((P/y - 1) * ™/ tsxip11y)
d: distance to camera, fD: camera’s focus distance
fL. camera’s focal length, fS: camera’s f-stop

Depth of Field: Blurriness
Interpolator

m Original texture render-target
corresponds to circles of confusion of €
or less

m Maximally blurred texture render-target
corresponds to circles of confusion of E
or more

m Generate texture T
T.r(d) = C(d, D, fL, fS) - €) / (E - €)

Depth of Field: Copy and Blur
Textures

m Map texture onto screen-covering quad

m Render the quad to texture

m Lower the resolution
= Copying and blurring becomes faster
= But introduces unique artifacts

m Filter-blit
m Choice of filters: box, cone, etc

= Roughly as fast as rendering texture w/o
filtering

m Repeat

Depth of Field: Filter Blit (1/4)

m Image sampling:

Neighbor to the right

°
0|00
o
o
0|0
0 ®D
0

Neighbor to the left

m All pixels are sampled the same

Depth of Field: Filter Blit (2/4)

m All stages use the same texture
m Quad’s UV-coordinates provide offset

Neighbor to the right

Neighbor to the left

Depth of Field: Filter Blit (3/4)

m Four texture units allow 4 samples:

O
©)
e ©°

m Bilinear texture-sampling does right thing
m Filter kernel may be arbitrarily rotated

m Can assign arbitrary weights to samples:
r0 = cO*t0 + c1l*tl + c2*t2 + c3*t3

m Blur, sharpen, diagonal edge-detection, etc.

Depth of Field: Filter Blit (4/4)

m Take advantage of bilinear texture-

Interpolation
m Weights are assigned implicitl

a

)

b Lc

d

g

(O

J

/eﬁ
h

Actual Samples

T1 = (b+c+e+f)/4

T3 = (e+f+h+i)/4
RO = (TO+T1+T2+T3)/4
= el/4 + (b+d+f+h)/8
+ (a+c+g+i)/16

Q e ®
» e
i | b |

Effective Samples

Depth of Field: Render to
Backbuffer

m Texture 0, contains
m RGB: scene
m Alpha: blurriness interpolator

m Texture n, Is texture O blurred n-times
m Texture 2n, Is texture n blurred n-times

B Render screen-size quad to back-buffer
m [ex O = texture O
m [ex 1 = texture n
m Tex 2 = texture 2n

Depth of Field: Variations

m Use 1D, 2D, or volume texture for the
blurriness interpolator look-up

mT.r(d)

m.r(d, f

mT.r(d, f
m Texture

=C(d, fD, fL, fS) - €) / (E - ¢)
B) =C(d, fD, fL, fS) - €) / (E - €)
D, fL) =C(, fD, fL, fS) -€) / (E - €)

olurring

m Filter type, e.d., 9-sample box
m Variable n, e.q., 5
m Resolution reduction, e.g., none

® Blurriness interpolator interpolation

Depth of Field: Pros

m General technique

m Takes camera’s f-Stop, focal-length and -
distance into account

m Allows different parts of a model (triangle
even) to be in- or out-of-focus

m Blurs textures and geometry
= NO pre-processing required

B Scene needs to be rendered only once
= Runs fully on GPU

Depth of Field: Cons

m Not physically accurate
m Visibility on blurred edges potentially wrong

m Limitations

= Maximum blur depends on how much
original texture is processed

m Camera-distance only computed per-vertex

m Alpha-channel precision (8bits) for camera-
distance

m Final pass only uses 3 blurriness textures
m No fixed-function rendering

Further Reading

® M. Wloka and R. Zeleznik, "Interactive,
Real-Time Motion Blur," Visual Computer,
Springer Verlag, 1996

m M. Potmesil and I. Chakravarty, "A lens
and aperture camera model for synthetic
Image generation,” Computer Graphics
(Proceedings of SIGGRAPH 81), 15 (3),

pp. 297-305 (August 1981, Dallas,
Texas)

Further Reading

m David M. Jacobsen, “Photographic
_enses Tutorial,”
nttp://www.qgraflex.ora/lenses/photogra
phic-lenses-tutorial.html

Questions...

(?

http://devel oper.nvidia.com/

Extra Slides

Motion Blur: Prior Art In
Games

m Any sword-fighting game...
m Zelda
m Soul Calibur

m Jet Grind Radio Future

m Blur is pre-modeled and —calculated
= Not a general technique
m T00 expensive to use on everything

Motion Blur: The Vertex
Shader (1/4)

; Transform position into view-space with previous
; worldview- transform

dp4 r0.x, vO, c[CV_PREV_WORLDVIEW_ TXF_O]
dp4 r0.y, vO, c[CV_PREV_WORLDVIEW_ TXF_1]
dp4 r0.z, vO, c[CV_PREV_WORLDVIEW_ TXF 2]

; Transform position into view-space with current
; worldview-transform

dp4 rl.x, vO, c[CV_CURR_WORLDVIEW_TXF_O0]
dp4 rl.y, vO, c[CV_CURR_WORLDVIEW_TXF_1]
dp4 rl.z, vO, c[CV_CURR_WORLDVIEW_TXF_2]

; the transform difference in view-space is the motion
vector

Motion Blur: The Vertex
Shader (2/4)

; artificially shorten (lengthen) this motion vector
mul r2.xyz, r2, BLUR_FRACTION

; transform normal into view-space

dp3 r3.x, v3, c[CV_CURR_WORLDVIEW _IT_O]
dp3 r3.y, v3, c[CV_CURR_WORLDVIEW _IT 1]
dp3 r3.z, v3, c[CV_CURR_WORLDVIEW IT_2]

; dot the motion vector with the projected vertex normal
dp3 r2.w, r2, r3

Motion Blur: The Vertex
Shader (3/4)

; the result of the dot-product decides which transform
we

: use
slt r3.w, r2.w, ZERO

mad r4.xyz, r3.w, -r2, rl
expp rd.w, VvO0.xX ; generate constant 1.0

; compute final position by transforming r4 to clip-space
dp4 oPos.x, r4, c[CV_PROJ _TXF_O]
dp4 oPos.y, r4, c[CV_PROJ_TXF 1]
dp4 oPos.z, r4, c[CV_PROJ TXF 2]

Anad ADAcE v vA A~ATC\N/ DDN1 TVLEC 921

Motion Blur: The Vertex
Shader (4/4)

; compute alpha component depending on length of
motion

; vector
dp3 r2.w, r2, r2
rsq rl.w, r2.w

mul r2.w, r2.w, rl.w ' r2.W now contains
length(motion vec)

; how compute r2.w = 1 - length(motion vec)/extent

mad r2.w, -r2.w, c[CV_OBJECT_EXTENT].x,
c[CV_OBJECT EXTENT].y

; clamp color and alpha to minimum values
max r5, c[CV_PREV_COLOR], r2.w

Depth of Field: Prior Art In
Games

m NFL 2K for Sega Dreamcast
m Focusing on players after plays

m Lowers texture LOD-bias for all far-away
objects

m Works great only for screen-aligned sprites
m Cannot focus on part of an object

Depth of Field: Vertex Shader

; compute z-linear distance (instead of radial distance)
dp4 r0.z, vO, c[CV_WORLDVIEW _2]

; subtract mMinDistance & divide by maxDistance-minDistance

; cC[CV_MINMAX DIST].x = mMinDistance /

’ (mMaxDistance-mMinDistance)

; C[CV_MINMAX DIST].y = 1.0f/(mMaxDistance-mMinDistance)
mad oTO0.x, r0.z, c[CV_MINMAX_DIST].y, -c[CV_MINMAX_DIST].x

; copy current focus distance & focal length to texture coord
mov 0T0.yz, c[CV_FOCUS CONST].xxyy

Depth of Field: Final Pixel
Shader

def cO, 0.0f, 0.0f, 0.0f, 0.5f

tex 10)
tex (i
tex 2

; Interpolate interpolator: straight tO produces ghosting
; (DoF selection is hi-res (ie, t0) even for blurred parts).

Irp r0.a, c0, t2.a, t0.a

mov_x2 satrl.a, r0.a /] pretend 0 <=r0.a <=
0.5

Irp rl.rgb, rl.a, tl, tO // interpolate tO, t1 &
store

Mmooy, cat r1 a rO hv? a I/ nratend D R <— rN 2

Depth of Field: Interactive
Demo

Putting It Together

Demo courtesy of
II1EV[I'FIBLE""

Thanks to Tomas Arce

