
45

Skin in the “Dawn” Demo
Curtis Beeson
NVIDIA

Kevin Bjorke
NVIDIA

Chapter 3

3.2 Skin Shading

3.1 Introduction
“Dawn” is a demonstration that was created by NVIDIA to introduce the GeForce FX
product line and illustrate how programmable shading could be used to create a realis-
tic human character, as shown in Figure 3-1. The vertex shaders (described in Chapter
4, “Animation in the ‘Dawn’ Demo”) deform a high-resolution mesh through indexed
skinning and blend shapes, and they provide setup for the lighting model used in the
fragment shaders. The skin and wing fragment shaders produce both range and detail
that could not have been achieved before the introduction of programmable graphics
hardware.1

This chapter discusses how programmable graphics hardware was used to light and
accelerate the skin shader on the Dawn character in the demo.

3.2 Skin Shading
Skin is a difficult surface to simulate in computer graphics for a variety of reasons. Even
the high-end production graphics used in movies are unable to simulate a photorealistic
human character that can withstand close examination. Humans gain a great deal of

1. Concept and implementation with the help of Gary King and Alex Sakhartchouk of NVIDIA.

gems_ch03.qxp 2/25/2004 6:10 PM Page 45

46 Chapter 3 Skin in the “Dawn” Demo

information with nonverbal cues: the shifting of weight, the particular way of walking,
facial expressions, and even the blush of someone’s skin. Researchers have shown that
babies recognize and gaze at facial expressions within moments of birth. We humans are
therefore very perceptive when it comes to detecting irregularities in the way characters
move and emote, and in the subtle coloring of their skin. Although few people may
understand terms such as subsurface scattering and rim lighting, almost anybody can tell
you when your rendering got them wrong.

In addition to shading issues, people may be quick to say that a skin shader looks like
plastic because of the way the skin moves, so it is important to address the problems of
character setup. Chapter 4 describes those techniques used in the “Dawn” demo for
driving the body using accumulated indexed skinning, and for adding emotion to
Dawn’s face through blend targets. These techniques provide a passable approximation
for Dawn and for the actions she needs to perform, but they might fail to fully describe

Figure 3-1. Dawn

gems_ch03.qxp 2/25/2004 6:11 PM Page 46

3.3 Lighting the Scene 47

the way skin slides, flexes, and sags over a real skeleton for other purposes. When creat-
ing a character, it’s important to model both the rigging and the shading appropriately
for the range of views that the observer will actually see.

3.3 Lighting the Scene
Once the skin is moving in as realistic a manner as possible, you can focus on the shad-
ing. The most straightforward way to break down the shading of a surface is to examine
the lighting environment of the scene and then look at the skin’s response to that light.

3.3.1 A High-Dynamic-Range Environment
We wanted to create our character and place her in a setting that defied the sort of flat,
simple-looking shading that typifies traditional real-time graphics techniques. Older
graphics architectures were built around the concepts of Gouraud and Phong shading,
which describe all incoming light as radiating from infinitely small point, directional,
and spot lights. The diffuse and specular responses of material surfaces were usually
described using textures and equations that failed to describe a suitable range of light
response.

One undesirable result of the previous approach is that scenes tended to lack the
brightness range seen in the real world. A white piece of paper on the floor would be as
bright as a white light source above; characters in complex environments often looked
out of place because they were lit by discrete points instead of by their surroundings.

Paul Debevec has done a great deal of research in the area of high-dynamic-range image
processing and manipulation to address exactly this problem. His work can be found in
a variety of SIGGRAPH publications and is made more tangible through examples in
his rendered films.2 We sought to take advantage of the new programmable real-time
graphics architectures to apply these concepts to a real-time character. In particular, we
wished to have Dawn lit by the environment and to allow the bright spots to cause
light to bleed and soften her silhouette edges.

Dawn being a fairy, we found a suitable woodsy area and took a number of calibrated
pictures. We used an iPIX kit that included a tripod that locks at opposite angles, a
digital camera, and a 183-degree fish-eye lens. In this case, the two hemispherical pic-
tures were taken across several shutter speeds using one of the camera’s built-in macros.

2. Much of Paul Debevec’s work can be found at www.debevec.org.

gems_ch03.qxp 2/25/2004 6:11 PM Page 47

48

This collection of images provides better information about the light intensities at each
pixel, as opposed to the single pixel color produced at any individual shutter speed.

We used the iPIX software to stitch the corresponding hemispheres into a single
panorama, and then we used Debevec’s HDRShop software to create a high-dynamic-
range panorama that encodes the light color and intensity of the environment at every
given angle. See Figure 3-2. HDRShop can then create a diffuse lookup map that per-
forms a convolution to create a diffuse or specular map for a surface with a given sur-
face roughness (which in the past would have been modeled using a Phong exponent).

The diffuse map is a cube map, as shown in Figure 3-3, indexed using the surface nor-
mal of the mesh, and it stores a cosine-weighted average of the incoming light for that
direction. Ignoring for now the fact that parts of the hemisphere may be occluded at a
given point, this weighted average gives the appropriate value for computing diffuse
reflection for points on the surface.

The specular map is also a cube map, as shown in Figure 3-4, and is indexed using the
reflection vector (the way “usual” cube maps are used for reflections). This specular
map is blurred based on the roughness factor to simulate the changing surface normal
at any given point on the surface.

Chapter 3 Skin in the “Dawn” Demo

Figure 3-2. The Cube Map of the Environment Figure 3-3. The Diffuse Cube Environment Map

gems_ch03.qxp 2/25/2004 6:13 PM Page 48

3.3.2 The Occlusion Term
One problem with using environment maps to describe an environment or a lighting
solution is that the mapped samples are really accurate for only a single point in space.
The first side effect of this is that if the fairy walks around, the background appears to
be “infinitely” far away. This was a suitable approximation for us, because the fairy is
small and the background should look far away in this instance.3

The second side effect is that the diffuse and specular maps describe the incident light
from the environment that was photographed, but they do nothing to describe the
shadows introduced by simulated elements such as Dawn herself. Thus, it was necessary
to develop a technique to incorporate this information.

Many real-time shadowing techniques produce hard shadows, and we wanted a particu-
larly soft look. Thus, we generated an occlusion term that approximated what percent-
age of the hemisphere above each vertex was obstructed by other objects in the scene.4

3.3 Lighting the Scene 49

Figure 3-4. The Specular Cube Environment Map

3. One could interpolate between panoramas taken at different points or skew panoramas to simulate travel
akin to plenoptic modeling (McMillan and Bishop 1995).

4. A similar technique is outlined in Chapter 17 of this book, “Ambient Occlusion.”

gems_ch03.qxp 2/25/2004 6:14 PM Page 49

50

This was done using a custom software tool that casts rays stochastically over that ver-
tex’s visible hemisphere and found collisions with other geometry. We used this tech-
nique in the “Dawn” demo and in the “Ogre” demo (content courtesy of Spellcraft
Studio), though the results were then used differently. For Dawn, the occlusion term
was kept constant for the vertices of her figure; her face used a blend of occlusion terms
from the various morph targets.

Having reached the limits of what we could do on a prerelease GeForce FX 5800
(Dawn was created to be a launch demo for that product), we stopped shy of animating
the occlusion term for every vertex on every frame, as we did for the Ogre character in
Spellcraft Studio’s “Yeah! The Movie” demo.

3.4 How Skin Responds to Light
Skin is unlike most surfaces that we model in computer graphics because it is composed
of layers of semitranslucent epidermis, dermis, and subcutaneous tissue. Subsurface
scattering is the term we give to the phenomenon whereby light enters the surface, scat-
ters through the medium, and exits at another point. This effect can commonly be seen
as an orange glow of light passing through the skin when you hold your hand up in
front of the Sun. This scattering under the skin is important to skin’s appearance at all
angles and helps give it a soft, highly distinctive character. Unfortunately, this reality
defies a common assumption in graphics APIs and architectures: namely, light at one
point on an object doesn’t affect reflection at other points.

In the past, some groups have tried to emulate skin’s complexity using multiple, layered
texture maps. In general this approach has proven to be difficult to manage and diffi-
cult for the texture artists to work with as they previsualize the final blended color.
Instead, we used a single color map, with color variations added through the shading,
as shown in Figure 3-5.

Furthermore, skin has extremely fine variations that affect its reflective properties.
These have subtle effects on skin’s appearance, particularly when the light is directly
opposite the camera position—that is, edge and rim lighting. Real skin has tiny features
such as vellus hairs and pores that catch the light. These details were too small for us to
model explicitly, but we wanted a surface that still gave us an appropriate overall look.
Adding a bump map provided some additional detail when seen in close-up—particu-
larly for small wrinkles—but we wanted a soft appearance, not shiny, stippled plastic,

Chapter 3 Skin in the “Dawn” Demo

gems_ch03.qxp 2/25/2004 6:14 PM Page 50

and we wanted the effects to be visible regardless of the size on screen (bump maps are
usually visible only when seen up close).

We approximated both of these shading attributes by recognizing that we could model
them as simple formulas based on the surface normal and the lighting or viewing vec-
tors. In particular, along silhouette edges we sampled the lighting from behind Dawn,
as indexed by the view vector—mixing the light coming “through” Dawn with her base
skin tones to create the illusion of subsurface and edge-effect lighting, particularly for
very bright areas in the background map. See Figure 3-6.

3.5 Implementation
The processes of lighting are split between the vertex and the fragment shaders. This is
a one-pass lighting solution: no additional render passes or alpha blending is required to
create the skin surface.

3.5 Implementation 51

Figure 3-5. The Diffuse Color Map for the Front Half of Dawn’s Head
Texture resolution is 1024×1024.

gems_ch03.qxp 2/25/2004 6:15 PM Page 51

52

3.5.1 The Vertex Shader
The primary functions of the vertex shader are to transform the coordinate into projec-
tion space and to perform those mathematical operations that are prohibitively expen-
sive to compute in the fragment shader. As mentioned in Section 3.3.2, the vertex
shader in the “Dawn” demo first applied morph targets (if any), and then skinned the
mesh of over 180,000 vertices with a skeleton of 98 bones. See Chapter 4 for more.

For each vertex, we receive from the CPU application the data shown in Listing 3-1.5

The factors that are computed in the vertex shader and passed as interpolated values in
the fragment shader include the world-space eye direction vector (worldEyeDirec-
tion), describing the direction from the viewer’s eye to any given vertex; the 3×3
tangent to world-space matrix (tangentToWorld)6; and a variety of terms collectively
called blood transmission terms (bloodTransmission). Listing 3-2 shows the data
structure of the output vertices.

Chapter 3 Skin in the “Dawn” Demo

Figure 3-6. The Tangent-Space Normal Map (Bump Map) for the Front of Dawn’s Head
With contrast enhanced. Texture resolution is 1024×1024.

5. Much of the data and code in the vertex shader pertains to the skinning and morph targets described in
Chapter 4 of this book, “Animation in the ‘Dawn’ Demo.”

6. Only a 3×3 matrix is needed because surface vectors (such as the normal, binormal, and tangent)
should not be translated in the way points are.

gems_ch03.qxp 2/25/2004 6:16 PM Page 52

Listing 3-1. The Per-Vertex Data Received from the CPU Application

// Here is the PER-VERTEX data — we use 16 vectors,

// the maximum permitted by our graphics API

struct a2vConnector {

float4 coord; // 3D location

float4 normal;

float4 tangent;

float3 coordMorph0; // 3D offset to target 0

float4 normalMorph0; // matching offset

float3 coordMorph1; // 3D offset to target 1

float4 normalMorph1; // matching offset

float3 coordMorph2; // 3D offset to target 2

float4 normalMorph2; // matching offset

float3 coordMorph3; // 3D offset to target 3

float4 normalMorph3; // matching offset

float3 coordMorph4; // 3D offset to target 4

float4 normalMorph4; // matching offset

float4 boneWeight0_3; // skull and neck bone

float4 boneIndex0_3; // indices and weights

float4 skinColor_frontSpec; // UV indices

};

Listing 3-2. The Data Structure of the Output Vertices

// Here is the data passed from the vertex shader

// to the fragment shader

struct v2fConnector {

float4 HPOS : POSITION;

float4 SkinUVST : TEXCOORD0;

float3 WorldEyeDir : TEXCOORD2;

float4 SkinSilhouetteVec : TEXCOORD3;

float3 WorldTanMatrixX : TEXCOORD5;

float3 WorldTanMatrixY : TEXCOORD6;

float3 WorldTanMatrixZ : TEXCOORD7;

};

Because we are bump mapping, our fragment shader will have to find the world-space
bumped normal, so we must provide it a way to get from the tangent-space bumped
normal (provided by a texture map) into world space. The common way of doing
bump mapping is to have the vertex shader pass the world-space normal, binormal, and
tangent, and then to use these three vectors as a 3×3 matrix to rotate vectors from

3.5 Implementation 53

gems_ch03.qxp 2/25/2004 6:16 PM Page 53

54

world space into tangent space for computation. In this case, the fragment shader will
have to look into the lighting solution using the world-space vectors, so we map the
transpose of this matrix (the transpose is the inverse for a rotation matrix), resulting in
nine MOV instructions in the vertex shader to load the WorldTanMatrixX, World-
TanMatrixY, and WorldTanMatrixZ terms.

Finally, the vertex shader blood transmission or “skin silhouette” terms are a float4
vector, composed of the occlusion term; different variations on the expression (N · V)
(that is, the dot product of the surface normal and the view vector); and a rotation of
the normal against the coordinate system of the cube map lighting. See Figure 3-7.

OUT.SkinSilhouetteVec = float4(objectNormal.w,

oneMinusVdotN * oneMinusVdotN,

oneMinusVdotN,

vecMul(G_DappleXf, worldNormal.xyz).z);

These steps provided just a few ways of parameterizing how near a silhouette the pixel
was, and they gave us a toy box of values to play with while developing the fragment
shader. Mathematically astute readers may notice that the (N · V) terms may not inter-
polate correctly on large triangles via Gouraud (linear) shading. Fortunately for this
specific case, Dawn is finely tessellated, and the camera needs to be very near her face
before any error is apparent. This is a good example of using a shader that is highly
specific to a particular model, to be seen in a range of predictable screen sizes. The
(N · V) could have been done in the fragment shader, but that would have made for a
significantly more expensive (and hence slower) shader.

Note that all of the vertex shaders in the “Dawn” demo were procedurally generated.
We assign fragment shaders in Maya, and we have a vertex shader generator that looks
at the character setup (skeletons, morph targets, and so on) and the inputs requested by
the fragment shader; it then generates the optimal vertex shader from a rules file using
an A* search.7

Listing 3-3 is a sample annotated vertex shader, as used on Dawn’s face area (incorpo-
rating both matrix skinning and shape blends, along with values used for the color
calculations in the fragment shader).

Chapter 3 Skin in the “Dawn” Demo

7. A* is a variant brute-force search that uses an aggregate-cost metric to guide the search to converge on
the optimal result.

gems_ch03.qxp 2/25/2004 6:16 PM Page 54

Listing 3-3. A Sample Vertex Shader for Dawn’s Face

// Helper function:

// vecMul(matrix, float3) multiplies like a vector

// instead of like a point (no translate)

float3 vecMul(const float4x4 matrix, const float3 vec)

{

return(float3(dot(vec, matrix._11_12_13),

dot(vec, matrix._21_22_23),

dot(vec, matrix._31_32_33)));

}

// The Vertex Shader for Dawn's Face

v2fConnector faceVertexShader(a2vConnector IN,

const uniform float MorphWeight0,

const uniform float MorphWeight1,

const uniform float MorphWeight2,

const uniform float MorphWeight3,

const uniform float MorphWeight4,

const uniform float4x4 BoneXf[8],

const uniform float4 GlobalCamPos,

3.5 Implementation 55

Figure 3-7. Dot Products Stored in SkinSilhouetteVec
On the left, (1 – (N · V)); on the right, (1 – (N · V))2.

gems_ch03.qxp 2/25/2004 6:16 PM Page 55

56

Listing 3-3 (continued). A Sample Vertex Shader for Dawn’s Face

const uniform float4x4 ViewXf,

const uniform float4x4 G_DappleXf,

const uniform float4x4 ProjXf)

{

v2fConnector OUT;

// The following large block is entirely

// concerned with shape skinning.

// First, do shape blending between the five

// blend shapes ("morph targets")

float4 objectCoord = IN.coord;

objectCoord.xyz += (MorphWeight0 * IN.coordMorph0);

objectCoord.xyz += (MorphWeight1 * IN.coordMorph1);

objectCoord.xyz += (MorphWeight2 * IN.coordMorph2);

objectCoord.xyz += (MorphWeight3 * IN.coordMorph3);

objectCoord.xyz += (MorphWeight4 * IN.coordMorph4);

// Now transform the entire head by the neck bone

float4 worldCoord = IN.boneWeight0_3.x *

mul(BoneXf[IN.boneIndex0_3.x], objectCoord);

worldCoord += (IN.boneWeight0_3.y *

mul(BoneXf[IN.boneIndex0_3.y], objectCoord));

worldCoord += (IN.boneWeight0_3.z *

mul(BoneXf[IN.boneIndex0_3.z], objectCoord));

worldCoord += (IN.boneWeight0_3.w *

mul(BoneXf[IN.boneIndex0_3.w], objectCoord));

// Repeat the previous skinning ops

// on the surface normal

float4 objectNormal = IN.normal;

objectNormal += (MorphWeight0 * IN.normalMorph0);

objectNormal += (MorphWeight1 * IN.normalMorph1);

objectNormal += (MorphWeight2 * IN.normalMorph2);

objectNormal += (MorphWeight3 * IN.normalMorph3);

objectNormal += (MorphWeight4 * IN.normalMorph4);

objectNormal.xyz = normalize(objectNormal.xyz);

float3 worldNormal = IN.boneWeight0_3.x *

vecMul(BoneXf[IN.boneIndex0_3.x],

objectNormal.xyz));

Chapter 3 Skin in the “Dawn” Demo

gems_ch03.qxp 2/25/2004 6:16 PM Page 56

Listing 3-3 (continued). A Sample Vertex Shader for Dawn’s Face

worldNormal += (IN.boneWeight0_3.y *

vecMul(BoneXf[IN.boneIndex0_3.y],

objectNormal.xyz));

worldNormal += (IN.boneWeight0_3.z *

vecMul(BoneXf[IN.boneIndex0_3.z],

objectNormal.xyz));

worldNormal += (IN.boneWeight0_3.w *

vecMul(BoneXf[IN.boneIndex0_3.w],

objectNormal.xyz));

worldNormal = normalize(worldNormal);

// Repeat the previous skinning ops

// on the orthonormalized surface tangent vector

float4 objectTangent = IN.tangent;

objectTangent.xyz = normalize(objectTangent.xyz -

dot(objectTangent.xyz,

objectNormal.xyz) *

objectNormal.xyz);

float4 worldTangent;

worldTangent.xyz = IN.boneWeight0_3.x *

vecMul(BoneXf[IN.boneIndex0_3.x],

objectTangent.xyz);

worldTangent.xyz += (IN.boneWeight0_3.y *

vecMul(BoneXf[IN.boneIndex0_3.y],

objectTangent.xyz));

worldTangent.xyz += (IN.boneWeight0_3.z *

vecMul(BoneXf[IN.boneIndex0_3.z],

objectTangent.xyz));

worldTangent.xyz += (IN.boneWeight0_3.w *

vecMul(BoneXf[IN.boneIndex0_3.w],

objectTangent.xyz));

worldTangent.xyz = normalize(worldTangent.xyz);

worldTangent.w = objectTangent.w;

// Now our deformations are done.

// Create a binormal vector as the cross product

// of the normal and tangent vectors

float3 worldBinormal = worldTangent.w *

normalize(cross(worldNormal,

worldTangent.xyz));

3.5 Implementation 57

gems_ch03.qxp 2/25/2004 6:16 PM Page 57

58

Listing 3-3 (continued). A Sample Vertex Shader for Dawn’s Face

// Reorder these values for output as a 3 x 3 matrix

// for bump mapping in the fragment shader

OUT.WorldTanMatrixX = float3(worldTangent.x,

worldBinormal.x, worldNormal.x);

OUT.WorldTanMatrixY = float3(worldTangent.y,

worldBinormal.y, worldNormal.y);

OUT.WorldTanMatrixZ = float3(worldTangent.z,

worldBinormal.z, worldNormal.z);

// The vectors are complete. Now use them

// to calculate some lighting values

float4 worldEyePos = GlobalCamPos;

OUT.WorldEyeDir = normalize(worldCoord.xyz - worldEyePos.xyz);

float4 eyespaceEyePos = {0.0f, 0.0f, 0.0f, 1.0f};

float4 eyespaceCoord = mul(ViewXf, worldCoord);

float3 eyespaceEyeVec = normalize(eyespaceEyePos.xyz –

eyespaceCoord.xyz);

float3 eyespaceNormal = vecMul(ViewXf, worldNormal);

float VdotN = abs(dot(eyespaceEyeVec, eyespaceNormal));

float oneMinusVdotN = 1.0 - VdotN;

OUT.SkinUVST = IN.skinColor_frontSpec;

OUT.SkinSilhouetteVec = float4(objectNormal.w,

oneMinusVdotN * oneMinusVdotN,

oneMinusVdotN,

vecMul(G_DappleXf, worldNormal.xyz).z);

float4 hpos = mul(ProjXf, eyespaceCoord);

OUT.HPOS = hpos;

return OUT;

}

3.5.2 The Fragment Shader
Given the outputs of the vertex shader (and everywhere on Dawn’s body, the vertex
shaders output a consistent data structure), we can generate the actual textured colors.

Listing 3-4 shows the complete fragment shader as used by the face.

Chapter 3 Skin in the “Dawn” Demo

gems_ch03.qxp 2/25/2004 6:16 PM Page 58

Listing 3-4. The Fragment Shader for Dawn’s Face

float4 faceFragmentShader(v2fConnector IN,

uniform sampler2D SkinColorFrontSpecMap,

uniform sampler2D SkinNormSideSpecMap, // xyz normal map

uniform sampler2D SpecularColorShiftMap, // and spec map in "w"

uniform samplerCUBE DiffuseCubeMap,

uniform samplerCUBE SpecularCubeMap,

uniform samplerCUBE HilightCubeMap) : COLOR

{

half4 normSideSpec tex2D(SkinNormSideSpecMap,

IN.SkinUVST.xy);

half3 worldNormal;

worldNormal.x = dot(normSideSpec.xyz, IN.WorldTanMatrixX);

worldNormal.y = dot(normSideSpec.xyz, IN.WorldTanMatrixY);

worldNormal.z = dot(normSideSpec.xyz, IN.WorldTanMatrixZ);

fixed nDotV = dot(IN.WorldEyeDir, worldNormal);

half4 skinColor = tex2D(SkinColorFrontSpecMap, IN.SkinUVST.xy);

fixed3 diffuse = skinColor * texCUBE(DiffuseCubeMap, worldNormal);

diffuse = diffuse * IN.SkinSilhouetteVec.x;

fixed4 sideSpec = normSideSpec.w * texCUBE(SpecularCubeMap,

worldNormal);

fixed3 result = diffuse * IN.SkinSilhouetteVec.y + sideSpec;

fixed3 hilite = 0.7 * IN.SkinSilhouetteVec.x *

IN.SkinSilhouetteVec.y *

texCUBE(HilightCubeMap, IN.WorldEyeDir);

fixed reflVect = IN.WorldEyeDir * nDotV – (worldNormal * 2.0x);

fixed4 reflColor = IN.SkinSilhouetteVec.w *

texCUBE(SpecularCubeMap, reflVect);

result += (reflColor.xyz * 0.02);

fixed hiLightAttenuator = tex2D(SpecularColorShiftMap,

IN.SkinUVST.xy).x;

result += (hilite * hiLightAttenuator);

fixed haze = reflColor.w * hiLightAttenuator;

return float4(result.xyz, haze);

}

First, we get bump-mapped surface normal. The texture stored in SkinNormSide-
SpecMap contains tangent-space normals in its RGB components, and the specular
map—a grayscale representing highlight intensities—is piggybacking in the alpha chan-
nel (we’ll refer to the component RGB as xyz here for code clarity). By rotating the

3.5 Implementation 59

gems_ch03.qxp 2/25/2004 6:16 PM Page 59

60

tangent-space xyz values against the WorldTanMatrix, we recast them in world
coordinates—exactly what we need to perform our world-space lighting algorithm.

We then compare the newly calculated surface normal to the view direction. We use
this nDotV value later.

half4 normSideSpec tex2D(SkinNormSideSpecMap,

IN.SkinUVST.xy);

half3 worldNormal;

worldNormal.x = dot(normSideSpec.xyz, IN.WorldTanMatrixX);

worldNormal.y = dot(normSideSpec.xyz, IN.WorldTanMatrixY);

worldNormal.z = dot(normSideSpec.xyz, IN.WorldTanMatrixZ);

fixed nDotV = dot(IN.WorldEyeDir, worldNormal);

Diffuse color is the skin texture map, multiplied by the preconvolved diffuse-lighting
cube map. We modulate this a bit by the hemispherical occlusion term passed in
SkinSilhouetteVec.

half4 skinColor = tex2D(SkinColorFrontSpecMap, IN.SkinUVST.xy);

fixed3 diffuse = skinColor * texCUBE(DiffuseCubeMap, worldNormal);

diffuse = diffuse * IN.SkinSilhouetteVec.x;

Edge specular color comes from our specular cube map, modulated by the specular
intensity map that we got with the normal map (that is, in the alpha channel of Skin-
NormSideSpecMap). We start building a cumulative result.

fixed4 sideSpec = normSideSpec.w * texCUBE(SpecularCubeMap,

worldNormal);

fixed3 result = diffuse * IN.SkinSilhouetteVec.y + sideSpec;

Next, we retrieve the color of the environment behind Dawn, by indexing on
WorldEyeDir, and we get the traditional reflection cube-map color. Add these, along
with some artistic “fudge factoring,” to our result.

fixed3 hilite = 0.7 * IN.SkinSilhouetteVec.x *

IN.SkinSilhouetteVec.y *

texCUBE(HilightCubeMap, IN.WorldEyeDir);

fixed reflVect = IN.WorldEyeDir * nDotV – (worldNormal * 2.0x);

fixed4 reflColor = IN.SkinSilhouetteVec.w *

texCUBE(SpecularCubeMap, reflVect);

result += (reflColor.xyz * 0.02);

Chapter 3 Skin in the “Dawn” Demo

gems_ch03.qxp 2/25/2004 6:17 PM Page 60

fixed hiLightAttenuator = tex2D(SpecularColorShiftMap,

IN.SkinUVST.xy).x;

result += (hilite * hiLightAttenuator);

Finally, we add a little extra silhouette information into the alpha channel of the final
output, so that the “bloom” along Dawn’s silhouette edges looks more natural when
alpha blending.

fixed haze = reflColor.w * hiLightAttenuator;

return float4(result.xyz, haze);

3.6 Conclusion
Although many of the implementation details in the Dawn skin shaders may be too re-
strictive for many game engines, most of the concepts can be achieved using other means.
The fundamentals of high dynamic range, subsurface scattering, rim lighting, and the like
can also be computed from synthetic light sources or other scene information.

In many ways, it was difficult to work with Dawn being lit by the environment. More
complex and more realistic lighting solutions often come at the expense of artistic con-
trol. In this instance, we wanted her goose bumps to be more visible, but the environ-
ment was diffuse enough that we had to unrealistically exaggerate her surface bump to
compensate.

If we were to implement Dawn a second time, we would probably use a more hybrid
approach to lighting, in which we would look up into the diffuse and specular map
(given the smooth normal) and then use a primary “light direction” to compute the
contribution of the bump map. This would give us more direct control over the look of
the bump map and eliminate the need for the expensive matrix transpose performed in
the vertex shader.

3.7 References
Debevec, Paul. 1998. “Rendering Synthetic Objects into Real Scenes: Bridging Tradi-

tional and Image-Based Graphics with Global Illumination and High Dynamic
Range Photography.” In Proceedings of SIGGRAPH 98, pp. 189–198.

3.7 References 61

gems_ch03.qxp 2/25/2004 6:17 PM Page 61

62

Gritz, Larry, Tony Apodaca, Matt Pharr, Dan Goldman, Hayden Landis, Guido Qua-
roni, and Rob Bredow. 2002. “RenderMan in Production.” Course 16, SIGGRAPH
2002.

McMillan, Leonard, and Gary Bishop. 1995. “Plenoptic Modeling: An Image-Based
Rendering System.” In Proceedings of SIGGRAPH 1995.

Stout, Bryan. 1996. “Smart Moves: Intelligent Pathfinding.” Game Developer, October
1996. Available online at the Gamasutra Web site:
http://www.gamasutra.com/features/19970801/pathfinding.htm

Chapter 3 Skin in the “Dawn” Demo

gems_ch03.qxp 2/25/2004 6:17 PM Page 62

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

