
NLP-NG - A New NLP System for Biomedical Text Analysis

Robert P. Futrelle, Jeff Satterley, Tim McCormack
Biological Knowledge Laboratory

College of Computer and Information Science
Northeastern University, Boston, MA 02115

{ futrelle, jsatt, timmc} @ccs.neu.edu

Abstract

 NLP-NG is a new NLP system consisting of three
components: NG-CORE (language processing), NG-DB
(database management), and NG-SEE (interactive
visualization and entry). The ultimate goal of NLP-NG is
to produce information retrieval systems in which users
can choose full-text schema, adding specific items to
focus their queries. Schema are created by a
normalization process which elides adjunctive
constructions as well as replacing items by prototypes.
Biomedical text contains domain-specific constructions
which are revealed by normalization. NLP-NG is based
on Construction Grammar. Computationally, all
representations are integer-based, allowing efficient
storage, indexing, and retrieval. SEE, an Ajax web
browser client, allows developers, linguists, and users to
view a corpus and modify its properties. NLP-NG uses a
300 million word BioMed Central corpus. NLP-NG does
not focus on specific strategies to extract limited classes
of information from papers. Instead, it is a universal
approach that can codify a wide variety of text in papers..

1. Introduction

 The research literature of Biology comprises billions of
words in full text papers and abstracts. Many techniques
are now available that can extract protein and gene
entities, as well as protein interaction and pathway
information. The goals of the work are generally to
populate databases with facts. Only a modest fraction of
the published text is mined by these techniques and only
certain types of data are recovered. Scientists working on
cutting edge research do not look at the literature as a
collection of facts. Rather, they explore outstanding
questions and new avenues of inquiry. In the scientific
process:

• Experiments are designed.
• Some experiments are of the classic hypothesis-

driven type.
• Others are designed to explore the unknown.
• Experiments are set up with organisms,

biochemicals, conditions, etc.

• Once set up, the scientist steps back - physical,
chemical, and genetic processes are in control.

• Instruments are used to visualize and measure
what happens.

• Results are analyzed and discussed, leading to
new discoveries.

 All elements of the experimental process are of vital
interest to scientists. But they cannot all be described as
facts. (For another view, see [1]). This is because many
results in science are not definite and conclusive. Instead,
they are part of ongoing searches for understanding, with
much uncertainty along the way. The challenge to natural
language processing (NLP) is to extract and codify
knowledge about all the steps in the scientific process.
This may seem like an impossible quest, given the state of
NLP today, but a closer look at the nature of the text in
the Biology literature suggests otherwise.

2. The apparent complexity of Biology text

 When communicating with their readers, scientists use
a limited collection of domain-specific "idiomatic" forms
which we call constructions. They do this to
communicate their ideas and discoveries in clear and
unambiguous ways. We came to this conclusion by way
of statistical analyses of large collections of Biology
papers. The apparent complexity is often due to the
inclusion of a few specific terms in otherwise
conventional constructions. A search in Google for the
following construction, uses two wildcards which we
label *1 and *2, and returns 2.4 million hits:

 "suggest a role for *1 in *2 transport"

Here are a few of the fillers found.

 For *1: PKC-, NAD+, "these motors in anterograde
axonal", "caveolae", "clusterin",
 For *2: DHEAS, "chloride", "the", "retrograde
protein", "the regulation of glucose",

Unlike the facts so many seek, the word "suggest" tells us
that this important construction deliberately avoids
making a firm statement. Millions of suggestions such as
these lead to new follow-up investigations. The example

makes three important points. 1) Important (frequent)
constructions are not statements of fact, 2) The high
frequency of important constructions gives us the opening
we need to apply statistical analyses to discover and
codify the constructions scientists use, and 3) The role of
wildcards suggests a strategy: Normalization.

3. Normalization reduces complexity

 To apply NLP techniques, we can't merely guess what
constructions might be important and then confirm them
statistically. We need a discovery mechanism. A simple
example illustrates the discovery strategy used in our
NLP-NG system ("NLP New Generation"). Assume we
create a large corpus and normalize it by substituting all
acronyms such as DNA with the prototype "ABC".
Statistical analysis of the text for n-grams of varying
lengths would discover more than 1 million patterns of
the form "lysates from ABC cells". Without this
substitution, the n-gram frequencies would be much
smaller, so this common construction might not rise
above the noise. For example, "Lysates from 293T cells"
appears at 1/30 the frequency of the ABC-substituted
form, and "Lysates from McA cells" returned a total of 2
hits. Fishing something of frequency 2 from a sea of 1
million items demonstrates the power of normalization.
Other normalization strategies could consist of replacing
all numbers by "10" and all chemical substances by
"carbon". An additional and important normalization
strategy is the deletion (elision) of terms of little
importance. Deletion of the adverb "extensively" from an
entire corpus can raise the frequency of typical
constructions by a factor of 50. "Extensively" is a hedge,
a word that shades meanings, without altering them in a
substantial way.

3.1. Normalization in information retrieval

 In the future, we will develop retrieval systems built on
NLP-NG. Our approach to IR will be situated between
wildcards and term-expansion. Wildcards are
indiscriminate. Term-expansion techniques cannot deal,
for example, with the tens of thousands of distinct
numbers that appear in papers. Normalization replaces all
numbers by "10". Once found, the system could drill
down to more specific constructions. Normalization is a
preprocessing step which avoids complex pattern searches
during retrieval.

4. Construction Grammar

 Construction grammar (CxG) was developed to go
beyond the limits of generative grammar [2, 3].
"Construction" refers to a wide range of linguistic
phenomena, from word morphology, to sentences, to

entire documents. CxG assumes a direct mapping
between form and content. CxG points out that many
constructions resist analysis by the classical techniques of
generative grammar or compositional semantics. In spite
of this, such constructions have meanings that are readily
apparent. Our approach goes beyond this in assuming
that because of the form/content mapping, a single form
in some domain may appear at high frequency to
unambiguously deliver a fixed meaning that all speakers
who know the domain understand. For example,
"resuspended in * buffer", returns 14M hits in Google.
There is no reasonable compositional semantics analysis
of this construction. But its meaning is clear to any cell
biologist - it is an intermediate or final step in washing
cells by one or more centrifugation-resuspension steps.
 In NLP-NG, the forms produced by normalization
should not be thought of as literal forms, but as
construction schema that often can represent millions of
specific instances. The normalization by "ABC"
substitution we mentioned creates acronym schema. A
substitution of numbers by "10", creates number schema.

5. NLP-NG Implementation

 NLP-NG is a new computational infrastructure we are
developing that implements the underlying NG-CORE,
NG-DB, and NG-SEE systems. The system is
implemented in Java. NG-DB uses embedded Apache
Derby as its underlying database engine. NG-SEE uses
the Google Web Toolkit (GWT) to build Ajax, web-based
tools.

5.1. NG-CORE - Data structures

 NG-CORE is the major system that reads the corpus,
builds and works with all data structures, drives NG-DB,
and functions as the server for NG-SEE.

 Tokenization. Tokenization normally separates tokens
by intervening whitespace and tries to identify the nature
of the tokens, e.g., real number, capitalized, etc. We have
developed Extreme Tokenization, which creates only six
types of tokens called atoms: alphabetic characters only,
digits only, whitespace, XML or HTML tags,
punctuation, and Unicode characters, e.g., '&916;'
representing 'Δ'. Atoms can later be re-combined to
create compounds. Many tokenizers make premature
decisions without using adequate context or domain-
specific information. Extreme tokenization shifts these
decisions to later, specialized procedures. Atoms are
stored in a Constructicon, CC, whose entries contain only
an integer UID and the atom's string. The Constructicon
is the only place in NLP-NG that contains strings. All
further references use UIDs. The Token Sequence is then
just a sequence of atom UIDs with each token indexed by

its sequence SID. For a given corpus, the Constructicon
and Token Seqeucne are append-only structures.
 Compounds are stored in the Compound Constructicon,
CCC. The CC and CCC are illustrated in Fig. 2. A
typical compound of biological interest is E. coli, made
up of six atoms: "<it>", "E", ".", whitespace, "coli",
"</it>".

 Relations and properties. Fig. 2 illustrates a number
of relations, e.g., the relation between the three tokens of
the compound "sodium chloride" in CCC-5, and the
atoms that make it up, in the the CC. Properties are
attribute-value pairs. Each attribute is represented by a
database table. The tables in figures 2 and 3 have version
numbers attached, e.g., "Enzyme-4". An obvious need
for such versions would be for part of speech tagging for
various tagsets such as Hepple (Penn), Biber, and BNC
Basic (C5). As in Fig. 3, a Part-of-Speech table would be
a table of pairs, (not shown), the Token Sequence SID,
and attributes such as NN, JJ, and IN (Penn tagset). Tags
are designated by an integer ID which is a component of
an NG-CORE Symbol, a Java class. Another attribute is
Suffix. In Suffix-6 in Fig. 2, 347 refers to the token
"GTPase", and 350 is the CC entry for "ase". Suffix
tokens such as "ase" are added to CC, in addition to the
tokens found by tokenization of the corpus. An entry in
the Constructicon such as 347 ("GTPase") could have
attributes "CAPITALIZED" (a binary attribute) and
"LENGTH" (an integer value). NLP-NG uses stand-off
annotation throughout [4].
 Many properties for the Constructicon, such as
"CAPITALIZED", would appear to occupy large tables,
in this case, dominated by "FALSE" values. Only the
"TRUE" entries are stored in NG-DB database system.
When brought into memory, they are effectively joined
with the Constructicon, matching on SID values, and
added to a Cache sequence, but only for the SID positions
which have "TRUE" values. The Constructicon cache
sequence is not shown in the Fig. 2, but is similar to
Cached spans-20 in Fig. 3. An example of a join instance
is the join of UID2 347 in Suffix-6 in Fig. 2 with the UID
347 in CC. In some cases, a hashmap is more efficient
than an array-based like the one shown in Fig. 3.

 Token Sequence Spans. All annotations of the Token
Sequence are implemented by Spans. A Span is
designated by its start and end SIDs as in the Elision-9
table in Fig. 3. A Span entry may have additional
information, as in Prototype-7 in Fig. 3.

 Elisions - Virtual deletions. An important
normalization procedure is elision that can hide non-
required elements such as parenthesized items. When a
subsequence of the Token Sequence is to be elided, a
Span entry is made in an Elision table such as the one
covering SIDs 890-892 in Elision-9 in Fig. 3. The Token

Sequence itself is untouched. Elision sets can be large,
e.g., the elision of all figure captions

 Prototypes - Virtual substitutions. The other major
Normalization procedure is the result of substituting one
term by another (Prototype-7 in Fig. 3). For example,
numbers such as "0.005" could be replaced by the
prototype, "10", and all chemical substances could be
replaced by "carbon". There might be situations in which
an insertion needs to be made. This could be done by
replacing a whitespace (a span of length 1) with:
whitespace <inserted term>, whitespace.

 Views. Views in NLP-NG are analogous to views in
database systems. Views are the result of the virtual
operations of elisions and substitutions. Views can be
combined by set operations. Thus, the figure caption
spans of an article can be subtracted from the body span
to yield only the non-caption text. A view of a Token
Sequence is fully represented by its Cached span, as in
Fig. 3. This means that it can be stored as a single entity
set in a database.

5.2. NG-CORE - Pattern Matcher

 Many of the data structures beyond the Constructicon
and the Token Sequence are created by the NG-CORE
Pattern Matcher which implements analogs of most of
the capabilities of the well-known character-based
matchers such as grep. Pattern elements can be combined
using alternations and sequences, which can be repeated
using quantifiers, either with specified minimum and
maximum repetitions, or with the Kleene operators (*, +,
and ?). Quantifiers can also be specified as greedy, lazy,
or possessive. However, unlike character-based
matchers, NG's pattern elements can specify token strings,
properties and/or span types that should or should not be
matched, not individual characters. Character-based
matching on atoms and compounds uses existing pattern
matchers, and indicates matches with properties. For
example, all tokens that match the pattern "*ing" will
have a property whose attribute is "SUFFIX" with a CC
UID value referencing "ing". The property can then be
found by NG's matcher. The pattern matcher is well-
integrated with Views, allowing searches to automatically
skip over elided parts of the corpus, continuing the match
after the elided span, and using prototypes instead of the
terms they replace.
 The Pattern Matcher is important in the larger tasks we
are pursuing, most importantly the discovery of a large
numbers of significant constructions. This is based on
gathering statistics on n-grams using views with a large
number of elisions and prototypes.

5.3. NG-DB - The database system

 The data structures shown in Figs. 2 and 3 are stored in
the NG-DB database system, implemented using
embedded Apache Derby. By working with large
amounts of main memory and portions of our 300M word
corpus, we can hold all the needed data in main memory.
The system does not have to use complex SQL commands
or rely on the database for joins and related processing.
Instead, tables are brought into memory in their entirety.
It is not necessary to write out entire tables when small
changes are made. For example, to remove a sentence
boundary, the tuples corresponding to two sentences
could be deleted and a single new tuple could be inserted.
Relational database systems such as Derby are designed
to perform such operations efficiently. Given that our
corpus could have on the order of ten million sentences,
efficiency is important.
 Apache Derby is free to download and use. The basic
system is contained in a Java jar file of less than 3MB.
Each database created is contained in a folder chosen by
the user. This allows a database to be easily copied or
moved around on a machine, the internet, or put on a
DVD. Derby can be used on the command line,
embedded using JDBC, or in server mode, behind an
HTTP server or a servlet container such as Apache
Tomcat. The limits for the number of attributes and
tables, as well capacity limits, go far beyond anything
needed by NLP-NG.

5.4. NG-SEE - An Ajax web client for
visualization and interaction

 NLP-NG supports both automated and user-based
analysis. The NG-SEE module, or "SEE", supports
visualization and interaction. SEE is an Ajax, browser-
based application. NG-CORE acts as the web server for
the SEE client. SEE was built using the Google Web
Toolkit (GWT) [5]. Implementation in GWT uses Java
which GWT converts to Javascript, which then executes
in browser clients.
 When NG-CORE receives a request from SEE, it
packages data into a container and sends it to SEE. The
data includes both annotated text and, in many cases, its
context. SEE renders the data and gives the user options
for interacting with it. If the user creates or modifies
annotations and transformations on the data, SEE sends
the new information back to NG-CORE. NG-CORE
initially sends the user a choice of projects, each with a
corpus and related data.

Figure 1. The NG-SEE system displaying a document
containing a number of prototypes, such as "_cellular",
"_PCR", etc., which replace the original document words.
 The user can hover over an prototype to see the text it is
replacing. In the figure, the user is hovering over the
prototype "_optical" to reveal the word it replaced,
"confocal". The checkbox on the upper left has activated
the highlighting and hover functionality. Some of the other
available tools are shown in the drop-down menu.
Flagging allows a user to declare an auto-generated
property as invalid. Token marking allows a user, for
example, to indicate that a token should be classed as a
hedge. Range marking allows a user to add or edit a span.
 For example for the text "sodium chloride", only "sodium"
might be highlighted as a chemical substance. The user
could change that to the pair "sodium chloride". ("EnGen"
in the title bar refers to a previous version of NLP=NG.)

 Document viewer. One tool currently supported in
NLP-NG and SEE is the document viewer, Fig. 1. NG-
CORE sends SEE an HTML string containing span tags,
which surround tokens to indicate their properties. SEE
highlights these properties in the browser using JavaScript
and CSS. The user can turn highlighting on or off for
each type of property, as in Fig. 1. The SEE system can
switch between showing the original and augmented text,
especially useful for viewing prototypes and elided
constructions.

 Manual Entry & Correction. It is often difficult to
design an algorithm to correctly find all instances of a
construction. So it is important for a researcher to be able
to correct erroneously identified constructions. NG-SEE
has tools that allow a user to check constructions for
correctness. SEE highlights all instances of a particular
type of construction so that the researcher can flag or alter
incorrect ones and inform NG-CORE. Supervised

learning requires training sets. For these tasks, a user, for
example, could select a subsequence of the displayed
document and choose a type of construction. The user
would mark the appropriate construction, which would
then be returned to NG-CORE. For example,
prepositional phrases are sometimes treated as non-
required elements. But if the preposition is part of a
prepositional verb ("phrasal verb") it would be a mistake
to class the following NP as the argument of the
preposition rather than its correct classification as the
argument of the verb. SEE allows a researcher to
manually identify constructions such as prepositional
verbs.

6. Discussion

 Comparison to other NLP systems. Prominent NLP
systems such as GATE [6] and NLTK [7] are used
extensively and have a wide range of capabilities. The
NLP-NG system has a number of important design and
implementation features that sets it apart from the two and
from virtually all other NLP systems. No other NLP
systems appear to have been built with construction
grammar at their core as NLP-NG has. The strategy of
normalization appears to be a unique aspect of NLP-NG.
Though a few systems, and GATE in particular, use
relational databases, our use of large numbers of "narrow"
attribute tables, only a few columns each, creates a highly
modular system. In addition, each such table functions as
an inverted index. We are adding a full inverted index for
the token sequence. When the pattern matcher is
enhanced to take advantage of the inverted indexes it will
be very efficient. The use of Derby makes it simple to
distribute our databases.

 Resources. Our major resource is the collection of
50,000+ papers in XML format from the BioMed Central
open access publisher, BMC. There are important
corpora that have been given detailed and useful markup,
primarily part-of-speech and chunking. Two that are
readily available are the GENIA corpus of 2,000+
Medline abstracts [8], and the American National Corpus
(ANC) [9] which currently contains 22M words, with a
goal of 100M words. Both come with their own set of
tools.

 Other domains. Beyond biology, the nature of any
focused domain will be reflected in the constructions it
uses. As one example, consider the schema, "To predict
the label of * using *". This returns 160,000 hits, with
instances such as, "To predict the class label of a tuple
using naïve Bayesian classification". Another: "assess the
seismic * bridges", returns 150,000 hits, with instances
such as, "assess the seismic fragility of bridges".

 Future plans for NLP-NG. This paper is our first
about NLP-NG. It describes our initial implementation of
the computational, database, and web-based portions of
the system. The next steps are clear and under way:
Normalization has to be implemented on a large scale.
Extensive statistics will be generated to identify important
constructions. It will take some time to assess and
understand the nature of the constructions we discover.
Widespread distribution of the software and databases is
another obvious goal. For the BMC corpus: "Anyone is
free: to copy, distribute, and display the work; to make
derivative works; to make commercial use of the work."
The NG-SEE system, by its very nature, allows
collaboration among multiple users anywhere on the
internet working on the same corpus at the same time.
Such collaborative projects can be further coordinated and
integrated using chat, video chat, and shared web
documents such as Google Docs. Our long term goal is to
build information retrieval systems that take advantage of
NLP-NG's unique and powerful capabilities.

7. References

[1] A. d. Waard, "A Pragmatic Structure for Research
Articles," in 2nd Intl. Conf. on the Pragmatic Web Tilburg,
The Netherlands: ACM, 2007, pp. 83-89.

[2] A. Goldberg, Constructions at work: The nature of

generalization in language: Oxford University Press, USA,
2006.

[3] D. Schönefeld, "Constructions," Constructions, SV, vol. 1,

2006.

[4] H. Thompson and D. McKelvie, "Hyperlink semantics for

standoff markup of read-only documents," in SGML
Europe 97 Barcelona, 1997.

[5] R. Dewsbury, Google web toolkit applications: Prentice-

Hall, 2008.

[6] K. Bontcheva, V. Tablan, D. Maynard, and H.

Cunningham, "Evolving GATE to meet new challenges in
language engineering," Natural Language Engineering,
vol. 10, pp. 349-373, 2004.

[7] S. Bird, E. Klein, and E. Loper, Natural Language

Processing with Python: O'Reilly Media, 2009.

[8] J.-D. Kim, T. Ohta, Y. Teteisi, and J. i. Tsujii, "GENIA

corpus - a semantically annotated corpus for bio-
textmining," Bioinformatics, vol. 19(suppl. 1), pp. i180-
i182, 2003.

[9] N. Ide and K. Suderman, "The American National Corpus

First Release," in Fourth Language Resources and
Evaluation Conference (LREC) Lisbon, 2004, pp. 1681-
1684

