
Graphics Recognition in PDF documents

Mingyan Shao and Robert P. Futrelle

College of Computer and Information Science
Northeastern Univeristy

Boston, MA 02115
E-mail:

�
myshao, futrelle � @ccs.neu.edu

Abstract

Much of the work on graphics recognition for raster-based input focuses on accurate and rapid discovery
of primitives such as lines, arrowheads, and circles. Some of the work goes further to discover higher-level
objects such as circuit elements, pie-chart components, and architectural components. Some systems work to
discover even higher levels of organization. This paper focuses on graphics recognition of figures in vector-
based PDF documents. The first stage consists of extracting the graphic and text primitives corresponding
to figures. The mapping from PDF to the rendered page can be complex, so an interpreter was constructed
to translate the PDF content into a set of self-contained graphics and text objects, freed from the intricacies
of the original PDF file. The second stage consists of discovering simple graphics entities which we call
graphemes, the simplest being a pair of primitive graphic objects satisfying certain geometric constraints.
The third stage uses machine learning to classify figures using grapheme statistics as descriptive attributes.
Figure recognition can then be accomplished by applying a classifier so trained to the attribute set of a figure
to be recognized (classified). The system is implemented in Java. In the study reported here, a boosting-
based learner (LogitBoost in the Weka toolkit) was able to achieve 100% classification accuracy in hold-out-
one training/testing using 16 grapheme types extracted from 36 diagrammatic figures from BioMed Central
research papers. The approach can readily be adapted to raster graphics recognition; once primitives are
found, graphemes can be constructed from them and used in the learning-based recognition and classification
system.

Keywords: Graphics Recognition, PDF, Graphemes, Vector Graphics, Machine Learning.

1 Introduction

Knowledge mining from documents is advancing on many fronts. These efforts are focused primarily on text.
But figures (diagrams and images) often contain important information that cannot reasonably be represented
by text. This is especially the case in the Biomedical research literature where figures and figure-related text
make up a surprising 50% of a typical paper. We arrived at this figure by tabulating statistics from papers in a
variety of journals. The importance of figures is attested in the leading Open Access Biomedical journal, PLoS
Biology which furnishes a “Figures view” for each paper.

The focus of this paper is on figures which are diagrams, rather than raster images, e.g., photographs. This
new paper deals with graphic recognition in the large, describing a system that begins with the electronic
versions of papers and leads to a classifier trained by machine learning methods that can successfully classify
the diagrams from the papers. This will then allow knowledge bases to be built for organized browsing and
diagram retrieval. Retrieval will normally involve related text and should be able to retrieve diagrams from
queries that use diagram examples or system-chosen exemplars.

But to apply machine learning, we must first specify a set of attributes that, taken together, can success-
fully characterize a diagram. Algorithms must be designed and applied to generate attribute statistics for each
diagram. This step in turn depends on converting the original electronic format of the diagram into machine-
resident objects with specified geometric parameters. The attribute statistics can then be generated from these
objects.

Taken in order then, there are three sequential stages in the processing/analysis chain: Extraction of the
figure-related graphics from papers, attribute computation, and machine learning. The three stages are summa-
rized in Section 2 and developed in more detail in the sections that follow it.

In online papers in PDF format, diagrams may exist in raster or vector format; the great majority in the
Biomedical literature are in raster format. This paper focuses on diagrams available in vector format. But
our approach is equally applicable to raster formats. They would require an additional preprocessing step,
vectorization, a sometimes imperfect process for deriving a vector representation [1].

Though most published diagrams are in raster format, BioMed Central (BMC), a leading Open Access
publisher, has, to date, published about 12,000 papers, of which approximately 40% contain vector formatted
figures. In the preliminary research reported here, we have used a small subset of these BMC vector figures.

It might seem straightforward to extract graphic objects from PDFs, which are already in vector format. This
is not the case. PDF is a page-space, geometry-based language with various graphics/text state assignments
and shifts that must be untangled. PDF has no logical structure at any high level, such as explicitly delimited
paragraphs, captions, or figures. Even white space in text is not explicitly represented, other than by a position
shift before the next character is rendered. A small number of studies have attempted to extract vector infor-
mation from PDFs, typically deriving an XML representation of the original [2]. But to proceed to the second
and third stages of our analysis, we need in-memory, manipulable program objects. We’ve chosen to use Java
for this object representation.

The document understanding community has been focused on text. We would suggest, overly focused. For
example, Dengel [3] in a keynote devoted to ”all of the dimensions” of document understanding, doesn’t even
mention figures. Much of the work on graphic recognition for raster images has been devoted to vectorization
of technical drawings and maps, with the assumption that manual cleanup is often needed, e.g., in CAD ap-
plications [1, 4]. One piece of research on chart recognition from raster images, for bar and pie charts, used
hand-crafted algorithms for recognition [5]. But much of the research stops at the vectorization stage and does
not go on to extract structure, much less to apply machine learning techniques to the results.

For vector figures in CAD and PDF, hybrid techniques have been used which rasterize the vector figures
and then apply well-developed raster-based document analysis algorithms. This settles the issue of where on
the page the various items appear, but the object identity of the items is lost [6, 2]. Our approach is quite
different, because we render (install) the object references in a spatial index, which is a raster-like spatial array
of objects, typically a low resolution array [7, 8, 9]. This combines the best of both worlds; it allows us to
efficiently discover sets of objects that obey specified spatial constraints.

There is some work on vector-based figure extraction. A system was developed for case-based reasoning,
basically a system that did matching of new diagrams to a CAD database of ones found earlier (ref: Yan).
Graph matching was used in which the graphs had geometrical objects at the nodes and geometric relations on
the arcs. The approach was complicated by attempts to assign direction senses to line segements, which seems
unsupportable.

For PDFs, a brief but useful description of PDF file structure can be found in [10]. The Xed system converts
PDF to XML and is described in [2]. This is one of the few papers we could find that shows the results of
extracting geometric state and drawing information from PDF. As we have said, such a result would have to
be converted back to in-memory objects before further analyses could be done. We have no need for XML in
our work, since Java objects can be serialized to files and visualized using Java 2D. Their paper describes four
similar tools, only one of which, the commercial system, SVG Imprint, appears to generate geometric output;
the other three produce raster output for figures or entire pages only.

2 Graphics Recognition System for PDF

In our approach, we accomplish graphics recognition for vector figures in PDF in the three stages as shown in
Fig 1.

The first stage consists of extracting the graphic and text primitives corresponding to figures. The mapping
from PDF to the rendered page can be complex, so an interpreter was constructed to translate the PDF content
into a set of self-contained graphics and text objects, freed from the intricacies of the original PDF file. Since
our focus is on vector-based figures and their internal text, heuristics are used to locate this material on each
page. The target form for the extracted entities is Java objects in memory (or serialized to files). This allows us
to elaborate them as necessary and to do the processing for the next two stages.

The second stage consists of discovering simple graphics entities which we call graphemes, the simplest
being a pair of primitives satisfying certain geometric constraints [11]. A large number of different grapheme
types are defined in an effort to extract as much information from the diagram as can be done using these
”atomic” elements. Single graphemes may contain many primitives. Examples include a set of tick marks on
an axis or a set of small triangles used as data point markers in a data graph. Such large sets are described as
obeying a generalized equivalence relations [7, 12]. Discovering geometrical relations between objects is aided
markedly by a preprocessing stage in which primitives are rendered (installed) in a spatial index [8, 9].

The third stage uses machine learning to classify figures using grapheme statistics as descriptive attributes.
In this paper we report on supervised learning studies. Statistics for 16 different grapheme types were collected
for 36 diagram figures extracted from BioMed Central papers. The diagrams werepre-classified and used for
training. A boosting algorithm, LogitBoost from the Weka toolkit [13], was used for multi-class learning.
LogitBoost was able to achieve 100% classification accuracy in hold-out-one training/testing. Other learning
algorithms we tried achieved less than 100% accuracy. We can’t expect any machine learning algorithm to
achieve 100% accuracy in the scaled up work we will be doing that will involve tens of thousands of diagrams,
using a mix of supervised and unsupervised methods. Nevertheless the preliminary result is heartening. Using a
large collection of atomic elements (graphemes) to characterize complex objects (entire diagrams) is analogous
to the ”bag of words” approach which has been so successful in text document categorization and retrieval.
Once trained, the learning system can classify new diagrams presented to it for which the grapheme statistics
have been computed.

Combining extraction, grapheme discovery, and machine learning for diagrams is a new approach. The
techniques developed and the results achieved in this preliminary study bode well for the future.

3 Extraction of Figure-Related PDF Entities

3.1 Features of PDF Documents and Their Graphics

A PDF document is composed of a number of pages and their supporting resources (Fig. 2). Both pages and
resources are numbered objects. A PDF page contains a resource dictionary and at least one content stream. The
resource dictionary keeps a list of pairs of a resource object number and its reference name. A resource object
may be font, graphics states, color space, etc. Once the resource objects are defined, they can be referenced
within any page in one PDF file with a reference name.

The content streams define the appearance of PDF documents. They are the most essential parts of PDF
since they are the parts that utilize resources to render text and graphics, etc. A content stream consists of a
sequence of instructions for text and graphics. Text instructions include text state instructions and text rendering
instructions. Text state instructions specify how and where text will be rendered to a page, such as location,
transform matrix, word space, text rise, size, color, etc.

Graphics instructions include graphics rendering instructions and graphics state instructions. Graphics ren-
dering instructions draw graphics primitives such as line, rectangle, and curve. Graphics states include width,
color, join style, painting pattern, clipping, transforms, etc. Graphics states can be specified either in internal
graphics state instructions or in some referenced external graphics state objects. PDF also provides a graphics
state stack so that local graphics states can be pushed or popped to change the graphics state temporarily and
then return to a previous state.

Figure Classification and Recognition

Grapheme Recognition based on Spatial Analysis

and Conversion them to Self−Contained Java 2D objects
Extraction of the PDF Vector entities

Stage 1

Stage 2

Stage 3

Figure 1: Stages of our PDF vector figure recognition system. The first stage consists of extraction of the PDF vector
entities in the file and their conversion to self-contained objects, Java instances compatible with Java 2D. The second
stage involves the discovery of simple items in the figure, graphemes, a typical one being two or three primitives obeying
geometric constraints such as an arrowhead, or a large set of simply related objects such as a set of identically appearing
(congruent) data point markers. The third stage is to use the statistics of various graphemes found in a figure as a collection
of attributes for machine learning. In the study reported here, we have applied supervised learning to classify diagrams.

3.2 Extraction strategies

To extract graphics, first we need to translate PDF documents into some format we can manipulate in software.
We apply the open source package, Etymon PJX [14], to translate entire PDF documents into Java objects
corresponding to PDF objects or instructions. Thus, for a PDF document, we get Java objects for pages,
resources, fonts, graphics states, content streams, etc. Given these Java objects, we need to determine which
objects should be extracted and which not. The objects we need to find and extract are graphics and text inside
of figures, as opposed to blocks of text outside the figures proper.

The extraction procedure is complicated due to the structural nature of the PDF content stream, and the lack
of a simple mapping between positions in the PDF file content stream and positions on the page.

First, the PDF content stream is a sequential list of instructions. The sequence is important because the
sequence of resources (graphics states and text states) defines the local environment in which the graphics and
text are rendered. The values of resources can be changed in the sequence, and the change affects only the
instructions that follow the change and before the next change. This property makes extraction complicated
because if we want to extract either graphics primitives or text inside graphics with all of their related state
parameters, we need to look back through the instruction sequence to find the last values of all the parameters
needed.

Second, despite the fact that the content stream is sequential, the instruction sequence in the content stream
is not necessarily in accord with their positions on the page. In fact, the content stream instruction sequence
and positioning on a page are totally different issues in PDF. Moreover, a PDF document may apply different
strategies to write content streams to produce the same appearance, though their instructions may be arranged
in different sequences. This property also makes extraction difficult. We can’t apply content stream position
information to help extraction.

Graphics States Color SpacesFonts

...

Ft 1 10
Ft 2 11

Ft 2 11
Ft x 18

Resources DictionaryResources Dictionary:

...

Content Stream: Content Stream:

...

...

... ...

Fonts

Color Spaces

Graphics States

...

... ...

Graphics States

Color Spaces

Fonts

GS 1 20
GS 2 21

CS 1 30

GS 1 20

CS 2 41
CS z 45

Obj 10

Pages:

Obj 40 Obj 21 Obj 18

Resources:

Obj 80 (a Page) Obj 90 (a Page)

Obj 11 Obj 20 Obj 33 Obj 41 Obj 45

Figure 2: A simplified PDF structure example. A PDF file is composed of pages and resources such as font, graphics state
and color space. Both page and resources are defined as objects with sequence number. In this example, page 1 is object�����

, and font 1 is object
���	�

. These sequence numbers are used as reference numbers when the object is referenced in
another object. In this example, object Font1 is referenced in page1’s resource dictionary as ’Font1 10’ in which 10 is
Font1’s object number. Once the resource objects are defined, they are globally available, i.e., they can be referenced by
any pages in the same PDF file.

A figure

Headnote

Footnote

Body Text rendering

in this content stream

Graphics rendering

Text (within graphics) rendering

If more than one figure

Figure 3: The content stream structure of BioMed Central (BMC) PDF papers. The content stream of all the BMC PDF
pages is organized in the following sequence: head-note, footnote, body-text, graphics instructions (including rendering
instructions, graphics state instructions, graphics state references), and text inside the graphics. In BMC PDF papers,
graphics, if any, are rendered at the end of each content stream, and text inside the graphics follows the graphics rendering
instructions. This structure help us to locate and extract the text inside graphics. As of Oct. 2005, there are approximately
12,000 BMC papers published, all with the same PDF structure.

3.2.1 Extraction of Figures

To extract figures, we devised a selection strategy to decide whether a page has figures or not. The selection
strategy is based on graphics primitive statistics for each page. Since some PDF pages only contain pure text
or a few simple figures such as tables, which are not of interest, we can apply the statistics of line primitives to
eliminate such a page – if a page has only a few line primitives, then this page does not contain any figure we
need to extract. If there are more than a certain number non-line primitives such as curves or rectangles, we can
conclude that this page must contain one or more figures. If there are neither curves nor rectangles in a page,
we can still conclude that a PDF page has figures if the count of line primitives is large enough.

Once we conclude that the graphics in a PDF page contains figure material, we extract both graphics ren-
dering instructions and their supporting graphics states. Graphics states can be specified in either the content
stream or in separate objects. Graphics state instructions in content streams can be easily extracted as normal
instructions, while graphics states in separate objects are extracted with the help of reference and resource dic-
tionary. We first read the reference instructions of these graphics state objects and get their reference names,
go to resource dictionary to find the object sequence numbers of these reference names, and then access and
extract the actual graphics state objects using the sequence numbers.

3.2.2 Extraction of Text within Figures

After extracting the all the graphics elements in a figure, the text inside the figures then needs to be extracted.
As explained in Section 3.1, the sequence of text and graphics instructions is not necessarily in accord with the
sequence in the rendered page. This makes it difficult to decide which part of text instructions in content stream
renders the text inside of graphics. Fortunately, since we use PDF articles published by BioMed Central (BMC)
they use a standard Adobe FrameMaker template to write content stream for their PDF documents. The content

stream in their PDF documents is arranged so that all the figure content, graphics and the text inside the figures
are at the end of the content stream. The text follows the graphics command in this final segment, so that it can
be reliably identified and extracted. The BMC content stream has the structure shown in Fig. 3.

Text instructions include text rendering and font references. A font reference is required for all rendered
text. Usually the text instructions start with a font reference instruction that the text rendering instructions will
utilize until another font reference is specified. If the text following the graphics instructions doesn’t start with
a font reference, its font must have been declared somewhere before the graphics. This fact requires us to keep
the last font reference when we go through the content stream so that once we get the text we need, we can
immediately use the last font reference to get the correct font. Given the font reference, we look it up in the
resource dictionary to get the object sequence number of this font, then access and extract the font definition
object.

As an intermediate result, we can create PDFs for viewing and validation. This is done by using Etymon
tools to generate PDF from the extracted subset of Java objects. These should contain only the figures and their
associated text.

3.3 An Interpreter to Create Self-Contained Objects

The results of the extraction step are Java objects of graphics/text drawing instructions, graphics/text states, and
fonts etc. Since they are simply a translation into Java format of PDF instructions or objects, it is difficult to
manipulate them since they directly mirror the sequential PDF ”code”.

The extracted Java objects are stored as a sequence, mirroring the PDF content stream. PDF rendering
instructions usually depend on the local environment defined by state instructions. For instance, a graphics
rendering object depends on its graphics state object and a text rendering object depends on its font definition
object. In principle, the entire preceding content stream must be read to get the state parameters needed for a
graphics primitive.

We have implemented an interpreter to translate these interdependent Java objects into self-contained objects.
Each self-contained object, either a graphics primitive or text, contains a reference to a state object describing
its properties. To enhance modularity, multiple self-contained objects may reference the same state object.

In PDF, the graphic state stack is used to temporarily save the local graphics state so that it will not affect the
environment that follows it. We deal with this problem by implementing a stack in our interpreter to simulate
the PDF state stack so that the local graphics state and the pushed prior state(s) are preserved. Then every
self-contained object, no matter how its graphics state is defined: internal graphics state instructions, external
graphics state object, or graphics state stack, references the correct state.

Our interpreter reads every object created by Etymon PJX and translates and integrates them into self-
contained objects that extend Java 2D classes so that they can be manipulated independently from the PDF
specification.

4 Spatial Analysis and Graphemes

Up to this point, we have described the extraction of graphics primitives. The ultimate utility of the extracted
primitives is for the discovery of the complex shapes and constructions that they comprise, and beyond that
to use them in systems that index and retrieve figures and present them to users in interactive applications. A
thorough analysis of a figure can involve visual parsing, for example to discover the entire structure of an x,y
data graph with its scale lines and annotations as well as data points and data lines, and so forth [15, 8]. But we
have found another level of analysis, graphemes, which is simple compared to full parsing, but still very useful.
A grapheme is a small object typically made up of only two primitives; examples are shown in Fig. 4.

Graphemes allow us to classify figures, using a variety of machine learning techniques. Different graphemes
can be used to characterize different classes of figures, as we will see in Section 5. Classification, in turn,

enables indexing and retrieval systems to be built.
A particular grapheme class is described as a tuple of primitives, usually just a pair, that obey constraints

on the individual primitives as well as geometrical constraints that must hold among them. For example the
Vertical Tick tuple in Fig. 4 can be described as a pair of lines,
�� and
� that obey the constraints described in
Algorithm 4.1.�

�

�

�

Algorithm 4.1: VERTICAL TICK(
�����
�)
Comment: Decide if a pair of lines
 � and
 construct aVertical Tick

if

��������� ��������

������ "!$#
%�'&'()+*$ "!-,/.10324#
 � &'(25�7698:#
�;&'(�<�7 ",/=>�76?!-0+24#
�;&'(@ *;2A��BC#
%�;��
��&'(!-�7DE.$�F#
%�;��
�$&'(
then G *$ "!-,/.1032 H�,/.$IKJ
 � ��

Comment: If
L� is a short vertical line and
M a long horizontal line,
�� is below
N , and
they are touching at one end, then they construct a Vertical Tick.

Graphemes such as Vertical Tick can be discovered by simplified versions of the Diagram Understanding
System developed earlier by one of us [8, 16]. One difficult aspect of such analyses is exmplfied by the
predicates short() and long() in Algorithm 4.1. This is dealt with by a collection of strategies, e.g., line length
histogram analyses, as well as comparing lengths to the size of the smallest text characters for short().

4.1 Spatial Indexes Aid Grapheme Parsing

The parsing algorithms that define graphemes operate efficiently because a preprocessing step is used to install
the primitives in a spatial index, allowing constraints such as below() and touch() to be evaluated rapidly.

A spatial index is a coarse 2D-array of cells (array elements) isomorphic to the 2D metric space of a figure.
Each graphics primitive is rendered into the spatial index so that every cell contains references to all graphics
primitives that occupy or pass through the cell. Each cell also records the position of each primitive in the
drawing sequence in order to faithfully represent occlusions that can occur accidentally or by design.

The spatial index provides a efficient way to deal with spatial relations among graphics primitives, and
enables us to deal with various graphics objects such as lines, curves, and text in a single uniform representation.
For example, the touch() predicate for two primitive simply checks to see if the intersection of the two sets of
cells occupied by the primitives is non-empty.

5 Machine Learning for Graphics Classification and Recognition

We analyze vector graphics in PDF articles published by BMC, and define the following five figure classes that
are also shown in Fig. 5.O A data point figure is a PQ�4R data graph showing only data points;

O A line figure is a PQ�4R data graph with data lines (may also have data points);
O A bar chart is a PF�4R data graph with a number of bars with the same width;
O A curve figure is a PF�4R data graph with only curves;
O A tree is a hierarchical structure made of some simple graphics such as rectangles or circles that are

connected by arrows or branches.

BranchBarsAdjacent Rectangles Data Point

A

Vertical Tick Line Segment CurveHorizontal Tick Callout

Figure 4: Some grapheme examples: Vertical Tick, Horizontal Tick, Line, Curve, Callout, Adjacent Rectangles, Bars,
Branches, and Data Point

Figure 5: Five graphics classes: A: Data point figure. B: Line figure. C: Bar chart. D: Curve figure. E: Tree/Hierarchy.
The original graphics are from BMC articles.

5.1 Machine Learning - Classifying Diagrams using Graphemes

To the extent that distinct classes of figures have different grapheme statistics (grapheme types and counts), we
can use machine learning techniques to distinguish figure classes based on the statistics.

In this study, we have used supervised learning to divide a collection of figures into the five classes described
in Fig. 5.

We extracted figures from PDF versions of articles published by BioMed Central. They publish electronic
articles online under an Open Access license, and they actively support data mining. Their vector graphics
make it possible for us and others to do data mining of figures. We examined 7,000 BMC PDFs and found
that about 40% of them contain vector graphics. (This is an unusually high percentage and is encouraged by
BioMed Central’s progressive policies)

For the preliminary study reported here, we extracted vector data from 36 diagrams. A total of 16 different
graphemes were used as attributes, all geometrical in nature. The counts of grapheme instances in particular
diagrams varied from 0 to 120, the latter value being the number of data points in one of the data graph
diagrams. Two multi-class learners in the Weka 3 Java-based workbench were used, the Multilayer Perceptron,
and LogitBoost. In hold-out-one testing, the perceptron was 94.2% accurate. LogitBoost is a member of the
new class of boosting algorithms in machine learning and was able to achieve 100% accuracy on the set of 36
diagrams. This excellent result is a testament both to the power of graphemes as indicators of diagram class
and to the power of modern boosting methods.

6 Conclusion

This paper has described the design, implementation, and results of a system made up of three analysis stages.
The system was applied to the content of diagrams from research articles published by BioMed Central.

Stage 1. The extraction of the subset of PDF objects and commands that comprise vector-based figures in
PDF documents. The process required building an interpreter that lead to a sequence of self-contained Java 2D
graphic objects mirroring the PDF content stream.

Stage 2. Graphemes were discovered by analysis of the objects extracted in Stage 1. Graphemes are defined
as simple subsets of the graphic objects, typically pairs, with constraints on element properties and geometric
relations between them.

Stage 3. Attributes for multi-class learners were generated using statistics of grapheme counts for 16
grapheme classes for 36 diagrams, divided into five classes. The best of these learners, LogitBoost from the
Weka 3 workbench, was able to achieve 100& accuracy in hold-out one tests.

Besides purely geometrical graphemes, it will be useful to create attributes based on various statistical mea-
sures in the figures such as histograms of line lengths, orientations, and widths, as well as statistics on font sizes
and styles. A typical attribute of this type would be the number of upper and lower case Greek characters. Some
of these attributes are redundant, but this presents no problem for contemporary machine learning algorithms.

The approach described here has focused on vector-based diagrams. We fully realize that the great majority
of figures published in electronic form are raster based, typically JPEGs. Vectorization of these figures [17, 18],
even if imperfect, can generate a vector-based representation of the figure that will allow graphemes to be
generated. This in turn will allow systems to be built that can take advantage of figure classification. Such
systems could, in principle, deal with all published figures, though most successfully when operating on line-
drawn schematic figures, that is, diagrams.

The grapheme approach can serve as a foundation for building full-fledged knowledge-based systems that
allow intelligent retrieval of figures. In practice, indexing and retrieval of figures will be aided by including
figure-related text as a component. We intend to use graphemes as an additional component in the new diagram
parsing system we are developing. The fully parsed diagrams that result will allow the construction of much
more fine-grained knowledge-based systems. These will allow user-level applications to be built that include
interactions with diagram internals, linkage to text descriptions, and so forth.

References

[1] S. Ablameyko and T. Pridmore, Machine interpretation of line drawing images : technical drawings,
maps, and diagrams, Springer, 2000.

[2] K. Hadjar, M. Rigamonti, D. Lalanne, and R. Ingold, “Xed: A new tool for extracting hidden structures
from electronic documents,” in First International Workshop on Document Image Analysis for Libraries
(DIAL’04), pp. 212–224, 2004.

[3] A. Dengel, “Making documents work: Challenges of document understanding,” in Proceedings IC-
DAR’03, 7nd Int’l Conference on Document Analysis and Recognition, pp. 1026–1035, (Edinburgh, Scot-
land), Aug 2003. Key Note Paper.

[4] K. Tombre and S. Tabbone, “Vectorization in graphics recognition: To thin or not to thin.,” in Proceedings
of 15th International Conference on Pattern Recognition, 2, pp. 91–96, Sep. 2000.

[5] W. Huang, C. L. Tan, and W. K. Leow, “Model-based chart image recognition.,” in GREC’03, pp. 87–99,
2003.

[6] H. Chao and J. Fan, “Layout and content extraction for PDF documents.,” in Document Analysis Systems
(DAS), pp. 213–224, 2004.

[7] R. P. Futrelle, “Strategies for diagram understanding: Object/spatial data structures, animate vision, and
generalized equivalence,” in 10th ICPR,

[8] R. P. Futrelle and N. Nikolakis, “Efficient analysis of complex diagrams using constraint-based parsing.,”
in ICDAR’95, pp. 782–790, 1995.

[9] R. P. Futrelle, M. Shao, C. Cieslik, and A. E. Grimes, “Extraction, layout analysis and classification of
diagrams in PDF documents.,” in ICDAR’03, pp. 1007–1014, 2003.

[10] M. Hardy, D. Brailsford, and P. Thomas, “Creating structured pdf files using xml templates,” in In Pro-
ceedings of the ACM Symposium on Document Engineering (DocEng’04), pp. 99–108, ACM Press, (Mil-
waukee, USA), October 2004.

[11] R. P. Futrelle, “Ambiguity in visual language theory and its role in diagram parsing.,” in VL’99, pp. 172–
175, 1999.

[12] R. P. Futrelle, I. A. Kakadiaris, J. Alexander, C. M. Carriero, N. Nikolakis, and J. M. Futrelle, “Under-
standing diagrams in technical documents,” IEEE Computer 25, pp. 75–78, 1992.

[13] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques, Morgan Kauf-
mann,San Francisco, 2nd ed., 2005.

[14] “Etymon pjx 1.2.” http://www.etymon.com/epub.html.

[15] S. S. Chok and K. Marriott, “Automatic generation of intelligent diagram editors,” ACM Trans. Comput.-
Hum. Interact. 10(3), pp. 244–276, 2003.

[16] R. P. Futrelle, “The diagram understanding system demonstration site.”
http://www.ccs.neu.edu/home/futrelle/diagrams/demo-10-98/.

[17] J. Lladós and Y.-B. Kwon, eds., Graphics Recognition, Recent Advances and Perspectives, 5th Interna-
tionalWorkshop, GREC 2003, Barcelona, Spain, July 30-31, 2003, Revised Selected Papers, Lecture Notes
in Computer Science 3088, Springer, 2004.

[18] M. Shao and R. P. Futrelle, “Moment-based object models for vectorizaiton,” in IAPR Conference on
Machine Vision Applications (MVA2005), pp. 471–475, 2005.

