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C onverting documents to knowl- 
edge bases requires that the 
computer function as an intelli- 

gent document “reader” or “viewer.” 
This artificial intelligence task involves 
computer vision and natural-language 
understanding. The Biological Knowl- 
edge Laboratory at Northeastern Uni- 
versity is developing such a system. The 
lab’s goal is to develop a knowledge 
base of biological research papers that 
supports the Scientist’s Assistant, an in- 
telligent system that will provide a sci- 
entist with interactive access to the re- 
search results, methods, and reasoning 
in a collection of scientific papers. 

Document Understanding System. 
The system (see Figure 1) comprises a 

series of modules, starting with docu- 
ment scanning and ending with the Sci- 
entist’s Assistant. The Scientist’s Assis- 
tant is based on the paradigm of 
conceptual retrieval, which allows the 
user to find specific passages and data 
even if the user doesn’t know the exact 
form in which the material is stored. 
With the Scientist’s Assistant, a scien- 
tist ultimately should be able to point to 
a feature in a diagram from an older 
paper and ask, “Do people now under- 
stand the origin of this?” The Scientist’s 
Assistant will then be able to find the 
most recent discussion of the phenome- 
non. For this to occur, the diagrams in 
the documents will have to be analyzed 
and the diagram contents added to the 
knowledge base. 

We already know how to implement 
some of the modules shown in Figure 1, 
but implementing other modules will 
require extensive research and experi- 

This means that it is not 
yet possible to test the entire system or 
even get input for some of the later 
modules when they depend on modules 
still under development. To avoid this 
impasse, we use alternative paths 
through the system during development 
and testing (represented by the dashed 
lines in Figure 1). 

The novel aspects of the system in- 
clude the design and use of graphics 
constraint grammars for describing and 
analyzing diagrams, the use of spatial 
indexing in diagram analysis and under- 
standing, and extensions of natural- 
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Figure 1. Overview of the Document Understanding System. Ovals denote databases and knowledge bases, rectangles 
represent processing systems and subsystems, and dashed arrows show the alternative strategies used during system de- 
velopment. 
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language processing techniques to com- 
plex scientific text. This article will em- 
phasize the Diagram Understanding 
System. See Futrelle et al.’ for a discus- 
sion of text processing. 

The Diagram Understanding System 
(shown in Figure 1) entails: 

Documents:Our corpuscontains 1,518 
papers covering essentially all of a sub- 
field of biology (bacterial chemotaxis) 
from its beginning in 1965. 

Object form of diagrams: Using im- 
age processing or the alternative of trac- 
ing over scanned images, the diagrams 
are converted from scanned, pixel-based 
images into a collection of graphical 
objects, such as lines, polygons, and 
positioned text. 

Diagram understanding: Graphics 
constraint grammars are used for syn- 
tactic and semantic diagram analysis. 
Spatial indexing is used to rapidly dis- 
cover spatial relations. The output is 
knowledge frames. 

Tagged text: This comprises an in- 
dexed database of the entire text of 
each paper, encoded using the Standard 
Generalized Markup Language 
(SGML). The encoding marks every 
logical element such as sections, para- 
graphs, and sentences, as well as nota- 
tions such as superscripts, subscripts, 
and Greek letters. 

Natural-language understanding: This 
is a complex enterprise employing 
lexicons, grammars, parsers, and seman- 
tic interpreters, resulting in linked 
knowledge frames representing text se- 
mantics. 

The Scientist’s Assistant, the intelli- 
gent system that allows a scientist to 
navigate through the knowledge bases, 
is the goal of the project. 

Diagram Understanding System - 
graphics constraint grammars. Just as 
we must learn the language we read and 
write, we must also learn the represen- 
tational conventions of diagrams. Once 
learned, the process of reading or inter- 
preting a diagram is relatively effort- 
less. However, for a machine, these tasks 
are not so easy. A human must first 
describe the representational conven- 
tions formally and concisely in a way 

Figure 2. A data graph is the common 
type of diagram appearing in scientific 
and technical papers. The data points 
are the most important informational 
elements. The more regularly ar- 
ranged elements, such as the tick 
marks, serve a supporting role. 

that allows the computer to carry out an 
analysis. For diagrams, this description 
is similar to the grammars that are writ- 
ten to describe natural language. 

One of the major conventions in dia- 
grams is the separation of the informa- 
tional components from the substrate 
on which the information is presented. 
For example, in Figure 2, the primary 
informational items are the data points. 
The vertical and horizontal scale lines 
are substrate items, serving as a “frame” 
in which to present the data. This divi- 
sion of labor can be subtle. For exam- 
ple, the positions of the circular data 
points are informational, whereas the 
diameters of the circles are not. 

We describe the organization of dia- 
grams with grammars. A grammar is a 
logical specification of a possibly infi- 
nite set of structures. It specifies a set of 
objects, the objects’ attributes, and their 
relations. In the graphics constraint 
grammars we have developed, low- 
level elements are objects such as lines 
and polygons. High-level objects are 
more complex structures such as 
Data-points or Scale-lines. Graphics 
constraint grammars are similar to the 
approach Helm, Marriott, and Oder- 
sky3 developed independently. The 
major difference in the approaches is 
that ours includes generalized equiva- 
lence relations and spatial indexing (both 
described below). Another difference 
between the approaches is that our gram- 

mars are incorporated in a complete 
system for document understanding. 

Each graphics constraint grammar is 
a collection of rules (see Figure 3) com- 
prising a production, a set of constraints, 
and a set of propagators: 

A production names the rule object 
as its left-hand side and the constituents 
of the object as its right-hand side. 

Constraints consist of spatial rela- 
tions (such as Near, Horizontal, Aligned, 
etc.) as well as type constraints, which 
require that an object be of a certain 
type, such as a line or text. 

Propagators describe the relations 
between the attributes of the rule ob- 
ject and the attributes of the constitu- 
ents. For example, the Center attribute 
of a set of lines might be computed as 
the center-of-mass of the set of lines. 

The constituents of a rule may each 
be complex entities defined by still oth- 
er rules. This allows us to build hierar- 
chical descriptions of complex diagrams. 

Example diagram and grammar. The 
example diagram of Figure 2 is a typical 
data graph. The highest level object of 
its hierarchical description has the con- 
stituents Data-set, Vertical-scale, and 
Horizontal-scale. The Horizontal -scale 
in turn has constituents Horizon- 
tal -scale-line and Axis-label -“Time 
(in hours)” in the example. 

Figure 3 presents a fragment of the 
graphics constraint grammar for a data 
graph. Rule 1 defines the rule object, 
Horizontal-scale-line, with constituents 
Horizontal-axis-line and Ticks. The 
Ticks object is of type Labeled-x-ticks, 
which rule 2 defines as a pair of sets 
whose elements are Tick and Label, 
respectively. The propagator for rule 1 
sets the value of the Head attribute of 
Horizontal-scale-line to the line ob- 
ject, Horizontal-axis-line. The Head 
attribute is the single item that best 
represents the rule object. The propa- 
gator for rule 2 sets the value of Head to 
a bounding box, the smallest rectangle 
surrounding all the objects in the sets 
Tick-marks and Label-set. 

Generalized equivalence relations as 
constraints. One of the distinguishing 
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characteristics of the substrate of the 
data graph in Figure 2 is its simple and 
regular organization. For example, the 
x-axis tick marks are horizontally aligned 
and equally spaced. This organization is 
reflected in the two corresponding con- 
straints in rule 2. 

Sets of items that group together like 
the tick marks in the example can be 
described by equivalence relations. A 
simple equivalence relation is 
Equal-length. When applied to a col- 
lection of lines, Equal-length divides 
the lines into a collection of nonover- 
lapping equivalence classes, each con- 
taining lines of the same length. An 
equivalence relation is reflexive, sym- 
metric, and transitive. We have extend- 
ed the notion of the equivalence re- 
lation to that of the generalized 
equivalence relation. A generalized 
equivalence relation generalizes an or- 
dinary equivalence relation in two ways: 

(1) It can be approximate in nature 
so that it can produce classes that over- 
lap. 

(2) It has grouping relations (such as 
Equal-spaced) that are not normally 
thought of as equivalence relations. 

An example of a strict equivalence 
relation is Coincident, referring to the 
positions of two objects. A generaliza- 
tion of Coincident is Near, a relation of 
great importance in diagram analysis. If 
two objects are near one another, they 
often have a logical relation, as do tick 
marks and their labels. Near is a gener- 
alized equivalence relation; it is not a 
true equivalence relation because it vi- 
olates transitivity (for example, if A is 
Near B and B is Near C, it is not neces- 
sarily true that A is Near C). Another 
useful generalized equivalence relation 
is Strictly-near used in rule 1. 
Strictly-near requires that all parts of 
one object be near some part of anoth- 
er; it is not a symmetric relation. 

Efficient parsing of graphics constraint 
grammars. Solving a graphics constraint 
grammar problem can be an expensive 
computation. In finding a solution to a 
given rule, a number of possible assign- 
ments of objects tovariables might have 
to be tried. This is the classic constraint 

Rule 1: 

Production: 
Horizontal-scale-line Horizontal-axis-line, Ticks 

Type constraints: 
(Line Horizontal-axis-line) 
(Labeled-x-ticks Ticks ) 

Geometrical constraints: 
(Strictly-near Horizontal-axis-line Ticks L1) 

Propagators: 
Head e Horizontal-axis-line 

Rule 2: 

Production: 
Labeled-x-ticks 3 Tick-marks, Label-set 

Type constraints: 
(Set-and-members Tick-marks Tick) 
(Set-and-members Label-set Label) 
(Line Tick) 
(Text Label) 

Geometrical constraints: 
(Vertical Tick) 
(Horizontally-aligned Tick-marks) 
(Equal-spaced Tick-marks) 
(Vertically-aligned :some Tick :every Label) 
(Near :some Tick :every Label L2) 

Propagators: 
Head G (Bounding-box Tick-marks Label-set) 

Figure 3. Two graphics constraint grammar rules that describe the horizontal 
scale line in the data graph shown in Figure 2. Rule 1 refers to an object of type 
Labeled-x-ticks, which is in turn defined by rule 2. 

satisfaction p r ~ b l e m . ~ T h e  usual combi- 
natorial explosion met in these prob- 
lems is mitigated by adopting the hier- 
archical view, which factors the problem 
into a set of small, independent prob- 
lems that can be solved sequentially. 
Furthermore, the constraints that deal 
with the largest number of objects are 
typically generalized equivalence rela- 
tions. These are designed to generate 
only solutions that include the maximal 
number of objects satisfying the con- 
straint. In this way, large numbers of 
elements, such as the data points or tick 

marks in data graphs, are turned into 
single entities before they have to be 
dealt with in higher level rules. 

Another potentially expensive set of 
computations involves geometrical re- 
lations such as Near or Aligned. For 
example, given an object A ,  we might 
need to find all objects B within a dis- 
tance L from A ,  that is, satisfying (Near 
A B L) .  The normal method of doing 
this is to inspect every object in the 
diagram, compute its distance from A ,  
and compare that to L. 

Given the large amount of random- 
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access memory in modern machines, it 
is more efficient to do such computa- 
tions by precomputing large data struc- 
tures that make such computations run 
quickly - that is, by trading space for 
time. 

In the Diagram Understanding Sys- 
tem, this is done by building a pyrami- 
dal data structure.* Each level of the 
pyramid is a square array of cells repre- 
senting the diagram at a different level 
of resolution. During the precomputa- 
tion, each graphic object is examined, 
and a reference to the object is placed in 
any cell touched by or containing the 
object. The pyramidal data structure 
then operates as a spatial index. 

Given a point in space, the objects at 
that point can be found immediately. 
Conversely, given any object, the cells it 
occupies are immediately available in a 
list stored in the object. The approach is 
general, because the same cell-based 
representation is used whether the ob- 
jects are lines, polygons, curves, or text. 
Therefore, only one version of each 
geometrical constraint algorithm needs 
to be written - one that deals with 
cells. 

Spatial indexing can then be used to 
efficiently compute a constraint such as 
(Near A B L).  A level of the pyramid is 
picked on the basis of the parameter L. 
Only the cells adjacent to the cells in- 
cluding A are examined, and all the 
objectsfoundin those cells are returned. 
The resolution of the pyramid stops well 
short of pixel-level resolution, so the 
pyramidal data structure is not particu- 
larly large - typically no larger than 
128 x 128. 

Some objects cover a lot of area, so it 
is inefficient to generate the number of 
cell references required for them. For 
example, as the parsing proceeds, 
bounding boxes to high-level objects, 
such as the one propagated in rule 2, 
might be quite large. They are stored in 
a different data structure, optimized 
for the efficient computation of con- 
straints. 

There are many complex issues in 
diagram parsing that we will not at- 
tempt to discuss here. For example, a 
diagram might have many interpreta- 
tions, so information in a figure caption 
could be used to narrow the interpreta- 

tion. Also, once the data is extracted 
from a data graph, further analysis is 
necessary to find data maxima, regions 
of high slope, etc., for building the knowl- 
edge representation that is to be que- 
ried. 

Results. Thus far, the text of 137 arti- 
cles has been encoded using SGML, 
and 270 diagrams have been converted 
to object form. The Diagram Under- 
standing System is working; about a 
dozen diagrams have been analyzed with 
early versions of the system. For data 
graphs, the analysis has been able to 
reconstruct the datapoint values them- 
selves. The current prototype of the 
Scientist’s Assistant incorporates ob- 
ject-based diagrams - not bitmaps - 
and contains automatically generated 
hypertext links between text references 
and figures, tables, bibliographic items, 
and footnotes. Biologists have used the 
prototype system and given us valuable 
feedback. This feedback is helping to 
guide the ongoing task of incorporating 
more knowledge-based features in the 
assistant. 

Conclusions. The technology we are 
developing has countless applications. 
The biomedical literature alone has 
grown by 7 million items since 1966 (as 
indexed in the Medline on-line infor- 
mation retrieval service) and is increas- 
ing at a rate of 300,000 items per year. 
Essentially every one of the 7 million 
items is available solely in hard copy, so 
all the techniques described here are 
necessary if any of this knowledge is to 
be converted into electronic form. 

In the future, when scientific “pa- 
pers” are originated, stored, and ac- 
cessed purely electronically, it will still 
be necessary to analyze the text and 
diagrams in these electronic documents 
in order to build useful knowledge bases. 
The research described here is helping 
to prepare us for the age of fully elec- 
tronic documents. W 
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