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Abstract 

Virtually all scientific documents contain 
informational diagrams. To build knowledge bases 
representing this literature, the diagrams must be 
semantically analyzed. In our system, diagrams are 
represented as collections of geometric objects. The 
fundamental organizing principle for these objects is 
the Generalized Equivalence Relation (GER). 
Examples include Near, Parallel, and Aligned. These 
relations can be computed efficiently using 
GOSSAMER, a pyramidal data structure that allows 
spatially associative access to objects. Animate Vision 
(AV), in which the image is scanned either 
continuously or discontinuously, is used to mimic the 
efficient strategy used by humans to view diagrams. 
The system is implemented in Common Lisp and is 
being applied to data graphs and gene diagrams in the 
biological literature. 

1. Introduction 

Ideas that are difficult to explain in words are usually 
illustrated through informational diagrams [l]. These 
include data graphs, schematic drawings of structures 
from molecules to galaxies, and representations of 
abstract entities such as processes or family trees [21. To 
be optimally accessible, the electronic literature of the 
future will have to be encoded as a knowledge base 
after semantic analysis of both the text and the 
diagrams. 

It is the analysis of diagrams that is our concern here. 
For example, a data graph such as Figure 1 can be 
analyzed in stages: Vectorization and OCR would be 
applied to produce geometric and text objects. Next it 
would be analyzed at the syntactic level -- the scale 
lines and their labels and numerical values would be 
found, the data points would be identified and their 
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values determined in relations to the scales. Then 
semantic analysis would be done to capture concepts 
such as, "the data values are monotonically 
increasing", and other statistical information. The 
ultimate semantic analysis would merge this with the 
accompanying text which might indicate that the 
response in Figure 1 was "more rapid for chemical X 
than chemical Y', etc. 

I '  
0 Time (min) 30 

Figure 1. A simple data graph diagram. 
Some of the most salient features are the use 
of vertical and horizontal alignment and 
repeated elements. 

Though there is ongoing research on vectorization and 
optical character recognition, much less is done on the 
syntactic and semantic stages. We will focus on these 
later stages by assuming that the diagrams are already 
available as flat files of objects, e.g., as the 21 objects 
labeled in Figure 2. This paper describes the concepts 
and techniques we have developed that will support 
syntactic analysis. 

This paper focuses on three new ideas in computer 
vision that we have developed and implemented for 
the diagram understanding problem. The first is a 
dual multiresolution (pyramid) data structure, 
GOSSAMER, that acts as a spatially associative database 
for graphical objects. The second is the organization of 
objects in the image by generalized equivalence 
relations, GERs. These are implemented as discovery 
procedures that return corresponding static relational 
data objects that can then be used for pattern matching. 
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The third idea is the use of animate vision, AV, for 
static scenes. AV is the analog of human visual 
scanning of a scene. Our techniques are robust and 
efficient and have implications for other areas of 
image processing and computer vision. 

The system described here is implemented in Procyon 
Common Lisp and CLOS (the Common Lisp Object 
System) running on 5 to 8MB Macintosh 11s and will be 
moved to Symbolics machines with the release of 
version 8.0 of their Genera system that includes CLOS. 

2. Diagram structure and GERs 

Informational diagrams contain two classes of 
information which can be called background and 
foreground. For Figure 1, the background consists of 
the x and y scale structures and the foreground consists 
of the three data points. The spatial organization of 
background material is simple and contains redundant 
elements. Foreground material consists of the 
information-bearing data elements, which by their 
very nature are rarely redundant or simply organized. 

Graphical elements that form a single higher-level 
structure are typically related by what we have named 
generalized equivalence relations (GERs) .  For 
example, one way to indicate an association between 
two objects is to place them near one another, such as 
the numbers and their corresponding tick marks in 
Figure 1. Near is a generalized (or approximate) 
equivalence relation. (Near is not a strict equivalence 
relation because it is not transitive as the stricter 
coincident relation is.) Other GERs include aligned, 
parallel, same-shape, equal-length, same-type a n  d 
more specialized relations such as strictly-near,  
vertically-aligned and horizontally-aligned. 

Figure 1 abounds with examples of GERs. The "50" 
and "100" are vertically-aligned; they are also of the 
same-type, integer. The tick marks at 50 and 100 are 
vertically-aligned also and the 50 and 100 are each 
horizontally-aligned with and near their respective 
tick marks. 

The basic near relation is of the form, 

Near(ob1, how-near, ob-set) 

such that given a geometrical object obl, all objects in 
the set ob-set have a minimal separation from ob l  
that is less than or equal to how-near. If the procedure 
is given ob1 and how-near, it returns a data object, a 
static near object, containing the three items, o b l ,  
how-near, ob-set. 

Many GERs are related to near. These GERs apply to 
all four classes of geometric objects shown in Figure 2. 
(The points do not appear explicitly in Figure 1 but are 
generated as terminators of the lines.) In Figure 2, the 
top tick mark L1 is strictly-near the long vertical line 

L2, but the converse is not true. To find what items are 
horizontally-aligned with the top tick mark L1, a 
horizontal line is constructed (not shown) through the 
tick mark and all items that are strictly-near to the 
constructed line are considered horizontally-aligned 
with L1. This means for example that L2, which is not 
str ic t ly-near L1, will not be counted as 
horizontally-aligned with L1. 
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Figure 2. The diagram of Figure 1 is shown 
exploded with labels for the geometric 
objects -- L for lines, T for text, P for points, 
and B for blobs. The terminators of lines are 
so important that they are introduced as 
separate geometric objects (points). 

3. The GOSSAMER data structure 

We will give the motivation for the design of 
GOSSAMER and then describe its implementation. 
Since the near GER is basic, a data structure that allows 
it to be computed quickly is good choice. If we look at 
the long vertical line in Figurel, it is easy to notice 
items that are near the line. We simply scan the line 
with our eyes and the tick marks and numbers are seen 
close to the line in our visual field. We would like a 
data structure that has this same simple property: if we 
use a point in space as the index into the structure then 
the value returned is the set of objects that have parts 
near the point. This simple idea is the basis of 
GOSSAMER. The GOSSAMER data structure is a 
square array of square cells in which each cell that has 
any part of a geometric object in it has a reference to 
the object. GOSSAMER is actually a multiresolution 
collection of such arrays with additional structure to be 
described. 

There are a few immediate objections to this approach 
that need to be addressed. First, the data structure 
would appear to be enormous, because we might use a 
resolution of 1024 x 1024 so that each line or text object 
mighthave to be referenced in thousands of cells. The 
answer is that the data structure is designed to organize 
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geometrical objects; it does not need resolution at the 
pixel level. A 128 x 128 (16K) array gives resolution to 
the single character level in a typical diagram. 
Currently, 8MB Macintoshes easily support 128 x 128 
arrays with hundreds of thousands of pointers to 
objects even without virtual memory. Another 
problem is that when there are multiple references to 
objects they will have to be processed repeatedly. This 
objection has some validity but we use tagging and 
recursive algorithms that limit the complexity of 
calculations to linear or logarithmic in the object size 
(number of cells occupied) or the number of objects in 
a region. Some computations take only constant time, 
e.g., to find all objects near a point requires looking 
only at the point's cell and its eight neighbor cells. 
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Figure 3. Representation of Figure 1 in 
level 1 of the GOSSAMER pyramidal data 
structure. (The greyed objects are to orient 
the reader.) Each square cell contains 
pointers to all geometric objects that touch it, 
where the pointer labels were given in 
Figure 2. The x and y projection arrays are 
shown at the bottom and left, respectively. 
The full GOSSAMER structure is a pyramid 
extending to n=7, typically. This is a spatially 
associative structure, because querying any 
small region of space immediately returns 
the set of all objects touching that region. 

3.1 Implementation of GOSSAMER 

GOSSAMER is implemented as a pyramid, a multi- 
resolution collection of arrays with 2n x 2n cells in 
each layer, n=O, ..., nmax, where typically, nmax=7.  
Each layer of the pyramid represents the total x,y space, 
at one resolution. The pyramid uses 4/3 the memory 
space that the bottom (highest resolution) level uses. 

Each element of the array has a single cell object as its 
value. The most important slot in a cell is content, the 
list of geometrical objects it contains. Each cell is 
linked to its four children and to its parent, forming a 
complete quadtree. The GOSSAMER structure 
combines the M-pyramid (matrix-based) and 
T-pyramid (tree structure) [3]. To rapidly analyze 
horizontal and vertical alignment, two one- 
dimensional arrays exist at each level whose cells 
contain the union of all cell contents in the 
corresponding row or column. 

Figure 3 shows level 1 of the pyramid corresponding to 
the items in Figure 2. Each geometrical object is 
installed in the GOSSAMER structure by adding it to 
the contents of the appropriate cells at the lowest, 
nmax, level of the pyramid and propagating the 
contents up the tree by set union. There are specialized 
methods for the installation of each class of 
geometrical object. All geometrical objects and cells 
have a tag slot that allows operations such as set union 
to run in linear time. For example, when a parent cell 
has its content slot filled from its children, a unique 
tag is generated for the parent, each object added is 
tagged, and no tagged object is added to that parent 
again. Tagging is especially efficient near the top of the 
pyramid because otherwise, lists of hundreds or 
thousands of objects would have to be searched to 
avoid or remove duplicates. 

3.2 How GOSSAMER is used to compute GERs 

When a geometrical object is installed in the pyramid 
the cells it occupies at each level are recorded within 
the object. In order that near and similar relations can 
be computed correctly, avoiding near misses, the set of 
8-neighbors of the occupied cells is also recorded. 
These sets of cells become the primary means of 
characterizing geometrical objects and computing the 
various GERs. This makes it possible for example, to 
treat lines, curves, and text on an equal footing -- all 
are represented by sets of cells. This means that near 
and the other GERs are each computed by a single 
algorithm for all classes of geometrical objects. 

Referring to Figure 4, the operation of the near 
algorithm is as follows: Near  is called with the 
arguments L and how-near .  The value of the 
how-near distance is used to select a level in the 
pyramid so that the objects found are, on average, no 
more than how-near from L. In Figure 4, the level 
n=3 is shown. At this level there are 9 cells occupied 
by L and 24 additional 8-neighbor cells. These 33 cells 
are examined and all geometrical objects within them, 
other than L itself, are collected into a set (using 
tagging to avoid the 2nd, 3rd and 4th occurences of line 
A). The result is that the circle in cell 16 and line A are 
returned as the set of items near L. The 8-neighbors 
are used to avoid "near misses" such as the circle. 
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Figure 4. The operation of near, a GER 
(Generalized Equivalence Relation) at 
pyramid level 3. The line L passes through 9 
cells and has 24 8-neighbors. Objects (A and 
the circle) touching these 33 cells are 
considered near to L at this resolution. In 
animate vision (AV), the cells are scanned in 
the order shown. The scan may interrupt and 
return when the circle is found and then be 
restarted later to find A. 

The algorithm for computing near is linear in the 
length of the line, its first argument. The pyramid of 
cells allows us to implement a recursive descent 
algorithm which is linear in the depth of the tree, 
which is logarithmic in the resolution. The algorithm 
can be described by focusing on the discovery of the top 
tick mark in Figure 1 as an object that is very near to 
the long vertical line, see Figure 5. The algorithm 
works as follows: 

1. Begin at the top of the pyramid and put the 
root cell into cell-list. 

2. Retain from cell-list only those cells that 
contain both the object and possible neighbor 
objects. 

how-near is reached, return the current other 
objects. 

cell in cell-list and go to 2. 

3. If the level of the pyramid corresponding to 

4. Else, replace cell-list with the children of each 

Figure 5 shows the cells retained at step 2 for pyramid 
levels 2 through 7. Referring to Figure 1, we see that 
this algorithm would converge on two objects, the top 
tick mark and the long horizontal line. This requires 
the examination of about 9 cells per level for each of 

the two neighbor objects, about 100 cells in total. The 
linear algorithm that looks at all %neighbors of the 
line at the n=7 level has to examine about 300 cells to 
do the same computation. The main reason the 
recursive algorithm is not much faster is the modest 
depth of the tree. 

1100 

Figure 5. Schematic of the recursive descent 
procedure to find the tick mark very near to 
the top of the vertical line in Figure 1. At 
each pyramid level only the subset of 
neighbors that contains both the line and any 
possible neighbors is retained. The cells 
retained from levels 2 through 7 are shown. 

3.3 Representation of regions 

It is important to be able to represent large regions 
efficiently in GOSSAMER. They cannot be represented 
easily by the methods outlined so far because a single 
region might be referenced in 10,000 cells. Instead, 
regions are treated as special geometric objects and 
represented as quadtrees made up of square cells drawn 
from different levels of the pyramid and integrated 
into the GOSSAMER structure. 

Efficient algorithms to compute functions on quadtrees 
such as point containment, union and intersection are 
exhaustively discussed by Samet [4]. Some of these 
methods can be further speeded up by tagging. Since 
the 8-neighborhood of a quadtree is itself a quadtree, 
near misses can be avoided. Quadtrees are intrinsically 
multi-level, so additional installation processing has to 
be done to represent them at different levels of 
resolution. 

3.4 "Aspects" of a diagram 

We have described the use of constructed lines in 
computing GERs such as horizontally-aligned. These 
constructed lines must not be confounded with the 
original source diagram. For this reason we have 
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made it possible to define an arbitrary set of geometric 
objects as an aspect. The two primary aspects we use 
are *source* and *constructed*.  It can be useful to 
divide the *source* further into the*fo-do* a n  d 
*done* aspects. Initially all of the source is in *to-do* 
aspect, and then as each collection of objects is analyzed 
and accounted for the objects are moved into *done*. 
In keeping with our introductory discussion, it can also 
be useful to have *foreground* and *background*  
aspects. All GER methods take an aspect as an 
(optional) argument so the filtering of the ob-set is 
done within the procedure, not afterwards. 

4. Animate Vision (AV) 

Human vision has a focal region of high acuity a few 
degrees wide in the center of the field where the gaze is 
directed. Outside of this, peripheral vision gives a low- 
resolution image. To gather information about a 
complex diagram, a person scans the diagram in a 
series of successive fixations of the gaze. The gaze is 
often moved along prominent lines, or if there is a gap 
in the figure, the gaze is moved discontinuously to 
some new region where there are objects to 
examine [5]. The decisions for gaze movement are 
made on the basis of analysis goals, information 
gathered so far, and information from peripheral 
vision. Ballard has called these aspects of vision, 
animate vision 161. 

4.1 Peripheral vision in GOSSAMER 

One of the motivations behind the design of 
GOSSAMER was to make it possible to efficiently 
implement animate vision. Peripheral vision is 
modeled by developing statistical summaries of large 
regions at low resolution, information collected in the 
large cells near the top of the pyramid. Various 
statistics are computed at the highest level of 
resolution and then propagated up the pyramid by 
summation or averaging [3,71. For example, the total 
number of objects in a region can be summed, or the 
estimated "blackness" can be averaged (based on line 
length times line width within each cell). 

4.2 Scanning algorithms 

The near relation directly implements a form of 
peripheral vision in which other objects are "visible" if 
they are near the object in question. A scanning 
version of near has been implemented in which a 
scan-state object is defined and given to a scanning 
procedure. The procedure inspects cells sequentially 
and can interrupt and return an updated scan-state. 
The situations for which an interrupt can be requested 
can be the discovery of a particular type of object, e.g., a 
short vertical line, or a reaction to any unusual object 
not on an "expected" list. Scanning gives the system a 
multitasking capability because one scan can be 
suspended while another is initiated to follow a 

promising lead. To avoid conflicts, object tagging for 
scanning is done on a per-process basis. An example of 
scanning is given in Figure 4. 

5. Strategies for analysis 

It is not the pupose of this paper to go into actual 
diagram analysis methods, which are still under 
development. But a few remarks are in order. Since 
the GERs return static relational objects, it is possible to 
do various types of pattern matching at higher levels. 
We hope to avoid matching to detailed and specific 
models because we think that generalized equivalence 
should be able to capture many of the regularities of 
diagrams independently of detailed models. There is 
also a lot to be gained by studying the successful but 
distinct approaches to the analysis of graphics by 
Srihari's and Kasturi's groups [8,91 

One of the attractive control paradigms is the 
blackboard architecture, because through the 
*constructed* aspect and other aspects we can 
delineate regions to explore and maintain multiple 
hypotheses as needed -- in a sense the 
two-dimensional space can act as its own blackboard. 
Another area we are exploring is the use of numerical 
or fuzzy measures for GERs, e.g., if two lines are not 
the same length, how close in length are they? 

6. Discussion 

About 30% of the space of scientific papers is not text, 
but diagrams, photos, and tables [ll. So we work on 
encoding both the text and graphics in documents. 
This is the emphasis of our Biological Knowledge 
Laboratory at Northeastern [10,11]. 

One of our goals is to produce a computational analog 
of human gestalt vision, or Pragnanz [121. In vision a 
great deal of organization is discovered preattentively 
[131. These rapidly discoverable items are the ones 
that can be rapidly grouped into equivalence classes 
(our GERs), such as Xs on a background of 0's. 

GERs are closely related to optimization and 
regularization techniques [141. For example, 
vertically-aligned represents a minimal cost solution 
to a constrained geometric problem. Our methods can 
implement the notion of "fuzzy equality", similar to 
GERs, discussed by Witkin and Tenenbaum [15]. 

Arguments for animate vision have been given in [61, 
but they are focused on moving objects or cameras. But 
scanning static images is an integral part of human 
vision. Yarbus [161 has shown that the particular task 
given to a subject influences the patterns of scanning. 
Scanning is also related to Ullman's "visual routines" 
[171, though he hardly discusses decision strategies. 
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He does discuss topological issues such as openlclosed, 
interiorlexterior, and c o n n e c t  e d l n  o t -con n ec t  ed . 
GOSSAMER is well suited for topological 
computations because it can do them above the pixel 
level to get results rapidly. 

We have already discussed issues of occlusion, when 
one diagram element partially overlays another [MI. 
Another important problem is inherent in our 
technique, the problem of choosing scale lengths for 
GERs such as Near. We are looking at clustering 
techniques to do this. Approximate geometrical 
relations has been developed in Davis's thesis [19]. 

In the future, electronic documents will be stored in a 
standard form such as SGML [20] and the diagrams in 
another standard such as Postscript [21]. Data will be 
stored in a spreadsheet format which would allow the 
reader to choose the display format. Even then, the 
approaches we've described will be useful. There are 
millions of articles that exist only as hardcopy and 
need to be converted to electronic form. We are doing 
this for a subset of the biological literature [10,11]. Also, 
it will be a long time before all of the major sources of 
technical literature will be produced and distributed in 
electronic form. Many diagrams will only be available 
in a low-level form and will still require syntactic and 
semantic analysis. Even spreadsheet data will require 
semantic analysis before a knowledge base can be built. 
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