
Strategies for Diagram Understanding:
Generalized Equivalence, Spatial / Object Pyramids and Animate Vision

Robert P. Futrelle*

Biological Knowledge Laboratory, College of Computer Science, 161CN
Northeastern University, 360 Huntington Avenue, Boston, MA 02115

futrelle8corwin.ccs.northeastern.edu

Abstract

Virtually all scientific documents contain
informational diagrams. To build knowledge bases
representing this literature, the diagrams must be
semantically analyzed. In our system, diagrams are
represented as collections of geometric objects. The
fundamental organizing principle for these objects is
the Generalized Equivalence Relation (GER).
Examples include Near, Parallel, and Aligned. These
relations can be computed efficiently using
GOSSAMER, a pyramidal data structure that allows
spatially associative access to objects. Animate Vision
(AV), in which the image is scanned either
continuously or discontinuously, is used to mimic the
efficient strategy used by humans to view diagrams.
The system is implemented in Common Lisp and is
being applied to data graphs and gene diagrams in the
biological literature.

1. Introduction

Ideas that are difficult to explain in words are usually
illustrated through informational diagrams [l]. These
include data graphs, schematic drawings of structures
from molecules to galaxies, and representations of
abstract entities such as processes or family trees [21. To
be optimally accessible, the electronic literature of the
future will have to be encoded as a knowledge base
after semantic analysis of both the text and the
diagrams.

It is the analysis of diagrams that is our concern here.
For example, a data graph such as Figure 1 can be
analyzed in stages: Vectorization and OCR would be
applied to produce geometric and text objects. Next it
would be analyzed at the syntactic level -- the scale
lines and their labels and numerical values would be
found, the data points would be identified and their

This work was supported in part by grant DIR-88-14522 from the
Biological and Behavioral Sciences Directorate of the National
Science Foundation.

values determined in relations to the scales. Then
semantic analysis would be done to capture concepts
such as, "the data values are monotonically
increasing", and other statistical information. The
ultimate semantic analysis would merge this with the
accompanying text which might indicate that the
response in Figure 1 was "more rapid for chemical X
than chemical Y', etc.

I '
0 Time (min) 30

Figure 1. A simple data graph diagram.
Some of the most salient features are the use
of vertical and horizontal alignment and
repeated elements.

Though there is ongoing research on vectorization and
optical character recognition, much less is done on the
syntactic and semantic stages. We will focus on these
later stages by assuming that the diagrams are already
available as flat files of objects, e.g., as the 21 objects
labeled in Figure 2. This paper describes the concepts
and techniques we have developed that will support
syntactic analysis.

This paper focuses on three new ideas in computer
vision that we have developed and implemented for
the diagram understanding problem. The first is a
dual multiresolution (pyramid) data structure,
GOSSAMER, that acts as a spatially associative database
for graphical objects. The second is the organization of
objects in the image by generalized equivalence
relations, GERs. These are implemented as discovery
procedures that return corresponding static relational
data objects that can then be used for pattern matching.

403
CH2898-5/90/0000/0403$01 .OO 0 1990 IEEE

http://futrelle8corwin.ccs.northeastern.edu

The third idea is the use of animate vision, AV, for
static scenes. AV is the analog of human visual
scanning of a scene. Our techniques are robust and
efficient and have implications for other areas of
image processing and computer vision.

The system described here is implemented in Procyon
Common Lisp and CLOS (the Common Lisp Object
System) running on 5 to 8MB Macintosh 11s and will be
moved to Symbolics machines with the release of
version 8.0 of their Genera system that includes CLOS.

2. Diagram structure and GERs

Informational diagrams contain two classes of
information which can be called background and
foreground. For Figure 1, the background consists of
the x and y scale structures and the foreground consists
of the three data points. The spatial organization of
background material is simple and contains redundant
elements. Foreground material consists of the
information-bearing data elements, which by their
very nature are rarely redundant or simply organized.

Graphical elements that form a single higher-level
structure are typically related by what we have named
generalized equivalence relations (GERs) . For
example, one way to indicate an association between
two objects is to place them near one another, such as
the numbers and their corresponding tick marks in
Figure 1. Near is a generalized (or approximate)
equivalence relation. (Near is not a strict equivalence
relation because it is not transitive as the stricter
coincident relation is.) Other GERs include aligned,
parallel, same-shape, equal-length, same-type a n d
more specialized relations such as strictly-near,
vertically-aligned and horizontally-aligned.

Figure 1 abounds with examples of GERs. The "50"
and "100" are vertically-aligned; they are also of the
same-type, integer. The tick marks at 50 and 100 are
vertically-aligned also and the 50 and 100 are each
horizontally-aligned with and near their respective
tick marks.

The basic near relation is of the form,

Near(ob1, how-near, ob-set)

such that given a geometrical object obl, all objects in
the set ob-set have a minimal separation from ob l
that is less than or equal to how-near. If the procedure
is given ob1 and how-near, it returns a data object, a
static near object, containing the three items, o b l ,
how-near, ob-set.

Many GERs are related to near. These GERs apply to
all four classes of geometric objects shown in Figure 2.
(The points do not appear explicitly in Figure 1 but are
generated as terminators of the lines.) In Figure 2, the
top tick mark L1 is strictly-near the long vertical line

L2, but the converse is not true. To find what items are
horizontally-aligned with the top tick mark L1, a
horizontal line is constructed (not shown) through the
tick mark and all items that are strictly-near to the
constructed line are considered horizontally-aligned
with L1. This means for example that L2, which is not
str ic t ly-near L1, will not be counted as
horizontally-aligned with L1.

\

4, I A IL31 P
I /

0 30 Time (min)

Figure 2. The diagram of Figure 1 is shown
exploded with labels for the geometric
objects -- L for lines, T for text, P for points,
and B for blobs. The terminators of lines are
so important that they are introduced as
separate geometric objects (points).

3. The GOSSAMER data structure

We will give the motivation for the design of
GOSSAMER and then describe its implementation.
Since the near GER is basic, a data structure that allows
it to be computed quickly is good choice. If we look at
the long vertical line in Figurel, it is easy to notice
items that are near the line. We simply scan the line
with our eyes and the tick marks and numbers are seen
close to the line in our visual field. We would like a
data structure that has this same simple property: if we
use a point in space as the index into the structure then
the value returned is the set of objects that have parts
near the point. This simple idea is the basis of
GOSSAMER. The GOSSAMER data structure is a
square array of square cells in which each cell that has
any part of a geometric object in it has a reference to
the object. GOSSAMER is actually a multiresolution
collection of such arrays with additional structure to be
described.

There are a few immediate objections to this approach
that need to be addressed. First, the data structure
would appear to be enormous, because we might use a
resolution of 1024 x 1024 so that each line or text object
mighthave to be referenced in thousands of cells. The
answer is that the data structure is designed to organize

404

geometrical objects; it does not need resolution at the
pixel level. A 128 x 128 (16K) array gives resolution to
the single character level in a typical diagram.
Currently, 8MB Macintoshes easily support 128 x 128
arrays with hundreds of thousands of pointers to
objects even without virtual memory. Another
problem is that when there are multiple references to
objects they will have to be processed repeatedly. This
objection has some validity but we use tagging and
recursive algorithms that limit the complexity of
calculations to linear or logarithmic in the object size
(number of cells occupied) or the number of objects in
a region. Some computations take only constant time,
e.g., to find all objects near a point requires looking
only at the point's cell and its eight neighbor cells.

81
L1.2.3
P1.2.3.4.5
T 1.2.3.4.5

P1.2.3

L2.3.4
P4.5.6.7.8
T2.3.4.5.6

82.3
L3.4
P6.7.8
T5.6

LI.2
P1.2.3
11.2

B I $
L2.3 2
T2.3.4.5 $ j;,,
P4.5 2

3
..-.- - -.-,.,-.-

B 3

,*:

BZ

P6.7.8
,.::+, L3.4

T5.6

Figure 3. Representation of Figure 1 in
level 1 of the GOSSAMER pyramidal data
structure. (The greyed objects are to orient
the reader.) Each square cell contains
pointers to all geometric objects that touch it,
where the pointer labels were given in
Figure 2. The x and y projection arrays are
shown at the bottom and left, respectively.
The full GOSSAMER structure is a pyramid
extending to n=7, typically. This is a spatially
associative structure, because querying any
small region of space immediately returns
the set of all objects touching that region.

3.1 Implementation of GOSSAMER

GOSSAMER is implemented as a pyramid, a multi-
resolution collection of arrays with 2n x 2n cells in
each layer, n=O, ..., nmax, where typically, nmax=7.
Each layer of the pyramid represents the total x,y space,
at one resolution. The pyramid uses 4/3 the memory
space that the bottom (highest resolution) level uses.

Each element of the array has a single cell object as its
value. The most important slot in a cell is content, the
list of geometrical objects it contains. Each cell is
linked to its four children and to its parent, forming a
complete quadtree. The GOSSAMER structure
combines the M-pyramid (matrix-based) and
T-pyramid (tree structure) [3]. To rapidly analyze
horizontal and vertical alignment, two one-
dimensional arrays exist at each level whose cells
contain the union of all cell contents in the
corresponding row or column.

Figure 3 shows level 1 of the pyramid corresponding to
the items in Figure 2. Each geometrical object is
installed in the GOSSAMER structure by adding it to
the contents of the appropriate cells at the lowest,
nmax, level of the pyramid and propagating the
contents up the tree by set union. There are specialized
methods for the installation of each class of
geometrical object. All geometrical objects and cells
have a tag slot that allows operations such as set union
to run in linear time. For example, when a parent cell
has its content slot filled from its children, a unique
tag is generated for the parent, each object added is
tagged, and no tagged object is added to that parent
again. Tagging is especially efficient near the top of the
pyramid because otherwise, lists of hundreds or
thousands of objects would have to be searched to
avoid or remove duplicates.

3.2 How GOSSAMER is used to compute GERs

When a geometrical object is installed in the pyramid
the cells it occupies at each level are recorded within
the object. In order that near and similar relations can
be computed correctly, avoiding near misses, the set of
8-neighbors of the occupied cells is also recorded.
These sets of cells become the primary means of
characterizing geometrical objects and computing the
various GERs. This makes it possible for example, to
treat lines, curves, and text on an equal footing -- all
are represented by sets of cells. This means that near
and the other GERs are each computed by a single
algorithm for all classes of geometrical objects.

Referring to Figure 4, the operation of the near
algorithm is as follows: Near is called with the
arguments L and how-near . The value of the
how-near distance is used to select a level in the
pyramid so that the objects found are, on average, no
more than how-near from L. In Figure 4, the level
n=3 is shown. At this level there are 9 cells occupied
by L and 24 additional 8-neighbor cells. These 33 cells
are examined and all geometrical objects within them,
other than L itself, are collected into a set (using
tagging to avoid the 2nd, 3rd and 4th occurences of line
A). The result is that the circle in cell 16 and line A are
returned as the set of items near L. The 8-neighbors
are used to avoid "near misses" such as the circle.

405

B A

L
\

Figure 4. The operation of near, a GER
(Generalized Equivalence Relation) at
pyramid level 3. The line L passes through 9
cells and has 24 8-neighbors. Objects (A and
the circle) touching these 33 cells are
considered near to L at this resolution. In
animate vision (AV), the cells are scanned in
the order shown. The scan may interrupt and
return when the circle is found and then be
restarted later to find A.

The algorithm for computing near is linear in the
length of the line, its first argument. The pyramid of
cells allows us to implement a recursive descent
algorithm which is linear in the depth of the tree,
which is logarithmic in the resolution. The algorithm
can be described by focusing on the discovery of the top
tick mark in Figure 1 as an object that is very near to
the long vertical line, see Figure 5. The algorithm
works as follows:

1. Begin at the top of the pyramid and put the
root cell into cell-list.

2. Retain from cell-list only those cells that
contain both the object and possible neighbor
objects.

how-near is reached, return the current other
objects.

cell in cell-list and go to 2.

3. If the level of the pyramid corresponding to

4. Else, replace cell-list with the children of each

Figure 5 shows the cells retained at step 2 for pyramid
levels 2 through 7. Referring to Figure 1, we see that
this algorithm would converge on two objects, the top
tick mark and the long horizontal line. This requires
the examination of about 9 cells per level for each of

the two neighbor objects, about 100 cells in total. The
linear algorithm that looks at all %neighbors of the
line at the n=7 level has to examine about 300 cells to
do the same computation. The main reason the
recursive algorithm is not much faster is the modest
depth of the tree.

1100

Figure 5. Schematic of the recursive descent
procedure to find the tick mark very near to
the top of the vertical line in Figure 1. At
each pyramid level only the subset of
neighbors that contains both the line and any
possible neighbors is retained. The cells
retained from levels 2 through 7 are shown.

3.3 Representation of regions

It is important to be able to represent large regions
efficiently in GOSSAMER. They cannot be represented
easily by the methods outlined so far because a single
region might be referenced in 10,000 cells. Instead,
regions are treated as special geometric objects and
represented as quadtrees made up of square cells drawn
from different levels of the pyramid and integrated
into the GOSSAMER structure.

Efficient algorithms to compute functions on quadtrees
such as point containment, union and intersection are
exhaustively discussed by Samet [4]. Some of these
methods can be further speeded up by tagging. Since
the 8-neighborhood of a quadtree is itself a quadtree,
near misses can be avoided. Quadtrees are intrinsically
multi-level, so additional installation processing has to
be done to represent them at different levels of
resolution.

3.4 "Aspects" of a diagram

We have described the use of constructed lines in
computing GERs such as horizontally-aligned. These
constructed lines must not be confounded with the
original source diagram. For this reason we have

406

made it possible to define an arbitrary set of geometric
objects as an aspect. The two primary aspects we use
are *source* and *constructed*. It can be useful to
divide the *source* further into the*fo-do* a n d
done aspects. Initially all of the source is in *to-do*
aspect, and then as each collection of objects is analyzed
and accounted for the objects are moved into *done*.
In keeping with our introductory discussion, it can also
be useful to have *foreground* and *background*
aspects. All GER methods take an aspect as an
(optional) argument so the filtering of the ob-set is
done within the procedure, not afterwards.

4. Animate Vision (AV)

Human vision has a focal region of high acuity a few
degrees wide in the center of the field where the gaze is
directed. Outside of this, peripheral vision gives a low-
resolution image. To gather information about a
complex diagram, a person scans the diagram in a
series of successive fixations of the gaze. The gaze is
often moved along prominent lines, or if there is a gap
in the figure, the gaze is moved discontinuously to
some new region where there are objects to
examine [5]. The decisions for gaze movement are
made on the basis of analysis goals, information
gathered so far, and information from peripheral
vision. Ballard has called these aspects of vision,
animate vision 161.

4.1 Peripheral vision in GOSSAMER

One of the motivations behind the design of
GOSSAMER was to make it possible to efficiently
implement animate vision. Peripheral vision is
modeled by developing statistical summaries of large
regions at low resolution, information collected in the
large cells near the top of the pyramid. Various
statistics are computed at the highest level of
resolution and then propagated up the pyramid by
summation or averaging [3,71. For example, the total
number of objects in a region can be summed, or the
estimated "blackness" can be averaged (based on line
length times line width within each cell).

4.2 Scanning algorithms

The near relation directly implements a form of
peripheral vision in which other objects are "visible" if
they are near the object in question. A scanning
version of near has been implemented in which a
scan-state object is defined and given to a scanning
procedure. The procedure inspects cells sequentially
and can interrupt and return an updated scan-state.
The situations for which an interrupt can be requested
can be the discovery of a particular type of object, e.g., a
short vertical line, or a reaction to any unusual object
not on an "expected" list. Scanning gives the system a
multitasking capability because one scan can be
suspended while another is initiated to follow a

promising lead. To avoid conflicts, object tagging for
scanning is done on a per-process basis. An example of
scanning is given in Figure 4.

5. Strategies for analysis

It is not the pupose of this paper to go into actual
diagram analysis methods, which are still under
development. But a few remarks are in order. Since
the GERs return static relational objects, it is possible to
do various types of pattern matching at higher levels.
We hope to avoid matching to detailed and specific
models because we think that generalized equivalence
should be able to capture many of the regularities of
diagrams independently of detailed models. There is
also a lot to be gained by studying the successful but
distinct approaches to the analysis of graphics by
Srihari's and Kasturi's groups [8,91

One of the attractive control paradigms is the
blackboard architecture, because through the
constructed aspect and other aspects we can
delineate regions to explore and maintain multiple
hypotheses as needed -- in a sense the
two-dimensional space can act as its own blackboard.
Another area we are exploring is the use of numerical
or fuzzy measures for GERs, e.g., if two lines are not
the same length, how close in length are they?

6. Discussion

About 30% of the space of scientific papers is not text,
but diagrams, photos, and tables [ll. So we work on
encoding both the text and graphics in documents.
This is the emphasis of our Biological Knowledge
Laboratory at Northeastern [10,11].

One of our goals is to produce a computational analog
of human gestalt vision, or Pragnanz [121. In vision a
great deal of organization is discovered preattentively
[131. These rapidly discoverable items are the ones
that can be rapidly grouped into equivalence classes
(our GERs), such as Xs on a background of 0's.

GERs are closely related to optimization and
regularization techniques [141. For example,
vertically-aligned represents a minimal cost solution
to a constrained geometric problem. Our methods can
implement the notion of "fuzzy equality", similar to
GERs, discussed by Witkin and Tenenbaum [15].

Arguments for animate vision have been given in [61,
but they are focused on moving objects or cameras. But
scanning static images is an integral part of human
vision. Yarbus [161 has shown that the particular task
given to a subject influences the patterns of scanning.
Scanning is also related to Ullman's "visual routines"
[171, though he hardly discusses decision strategies.

407

He does discuss topological issues such as openlclosed,
interiorlexterior, and c o n n e c t e d l n o t -con n ec t ed .
GOSSAMER is well suited for topological
computations because it can do them above the pixel
level to get results rapidly.

We have already discussed issues of occlusion, when
one diagram element partially overlays another [MI.
Another important problem is inherent in our
technique, the problem of choosing scale lengths for
GERs such as Near. We are looking at clustering
techniques to do this. Approximate geometrical
relations has been developed in Davis's thesis [19].

In the future, electronic documents will be stored in a
standard form such as SGML [20] and the diagrams in
another standard such as Postscript [21]. Data will be
stored in a spreadsheet format which would allow the
reader to choose the display format. Even then, the
approaches we've described will be useful. There are
millions of articles that exist only as hardcopy and
need to be converted to electronic form. We are doing
this for a subset of the biological literature [10,11]. Also,
it will be a long time before all of the major sources of
technical literature will be produced and distributed in
electronic form. Many diagrams will only be available
in a low-level form and will still require syntactic and
semantic analysis. Even spreadsheet data will require
semantic analysis before a knowledge base can be built.

Acknowledgements

Thanks to all the students who have worked on the
Diagram Understanding project to date: David R.
Reed, Bob Sapienza, Michelle Guardabascio, David
Taylor, Georgios Evangelidis, Paul Steckler and
Sougata Mukherjea. A dicussion with J. Shah on
theoretical issues was useful. Thanks to M. Pescitelli,
E. Nicholson, Y. Kakadiaris and D. S . Ellis for editing
help.

References

[l] Futrelle, R. P. (in press) The Skyline of Graphical
Information. I n : AI: Expert Systems and Other
Applications; Selected Papers. Smith, L. C. (Editor)
Greenwood Press, Westport, Connecticut.
[2] Tufte, E. R. (1983) The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Connecticut.
[31 Tanimoto, S. and Klinger, A., (Editors) (1980) Stuctured
Computer Vision. Academic Press, NY.

141 Samet, H. (1990) The Design and Analysis of Spatial
Data Structures. Addison-Wesley, Reading, MA.

[5] Intraub, H. (1981) Identification and Processing of
Briefly Glimpsed Visual Scenes. In: Eye Movements:
Cognition and Visual Perception. Fisher, D. F., Monty, R. A.,
and Senders, J. W. (Editors) Lawrence Erlbaum, Hillsdale,

[6] Ballard, D. H. (1989) Reference Frames for Animate
Vision. IJCAI-89, 1635-1641.
[i'l Shneier, M. (1984) Multiresolution Feature Encodings. In:
Multiresolution lmage Processing and Analysis. Rosenfeld,
A. (Editor) Springer-Verlag, Berlin, 190-199.

[SI Kasturi, R., Bow, S., Gattiker, J., Shah, J., El-Masri, W.,
Mokate, U., and Honnenahalli, S. (1988) A System for
Recognition and Description of Graphics. Proceedings of the
9th International Conference on Pattern Recognition. IEEE
Computer Society, 255-259.

[91 Wang, C., and Srihari, S. N. (1988) A Framework for
Object Recognition in a Visually Complex Environment and
its Application to Locating Address Blocks on Mail Pieces.
International Iournal of Computer Vision, 2, 125-151.

[lo] Futrelle, R. P. (1989) An Introduction to the Biological
Knowledge Laboratory. Technical Report of the College of
Computer Science, Northeastern University. NU-CCS-89-
15.

[l l] Futrelle, R. P. and Pescitelli, M. J., Jr., (in press) The
Scientist's Assistant: Building Biological Knowledge Bases.
Computer Applications in the Biosciences.
[E] Pomerantz, J. R. and Kubovy, M. (1983) Perceptual
Organization: An Overview. In: Perceptual Organization.
Kubovy, M. and Pomerantz, J. R (Editors) Lawrence Erlbaum,
Hillsdale, N. J., 423456.

[13] Treisman, A. (1983) Preattentive Processing in Vision.
hi: Human and Machine Vision 11. Rosenfeld, A. (Editor)
Academic Press, New York. 313-334.

[14] Poggio, T., Torre, V., and Koch, C. (1985)
Computational Vision and Regularization Theory. Nature,

[15] Witkin, A. P., and Tenenbaum, J. M. (1983) On the Role
of Structure in Vision. In: Human and Machine Vision.
Beck, J., Hope, B., and Rosenfeld, A. (Editors) Academic
Press, New York. 481-545.

1161 Yarbus, A. L. (1967) Eye Movements and Vision. Plenum
Press, New York.

[171 Ullman, S. (1988) Visual Routines. In: V i sua l
Cognition. Pinker, S. (Editor) The MIT Press, Cambridge,
Massachusetts. 97-159.

[18] Futrelle, R. P. (1985) A Framework For Understanding
Graphics In Technical Documents. In: Expert Systems in
Government Symposium, IEEE Computer, Washington, DC

[19] Davis, E. (1986) Representing and Acquiring Geographic
Knowledge. Pitman Publishing Limited, Pitman, London.

[20] Bryan, Martin (1988) SGML: An Author's Guide to the
Standard Generalized Markup Language. Addison-Wesley,
Reading, MA.

[211 Adobe Systems (1985) Postscript Language Reference
Manual. Addison-Wesley, Reading, MA.

NJ. 181-190.

317,314-319.

386-390.

408

