
- 1 -

 Moment-derived object models for vectorization
Mingyan Shao and Robert P. Futrelle

Biological Knowledge Lab
College of Computer & Information Science
Northeastern University, Boston, MA 02115

{myshao,futrelle}@ccs.neu.edu

Abstract
Various methods for the vectorization of line
drawings have been developed in the past. The
predominant ones are based on skeletonization/
thinning, edge detection and sparse pixel techniques.
This paper describes a new approach to vectorization
based on using spatial moment analysis of gray
levels in k x k regions around each pixel to generate
parameters for object models. The line model, in
particular, consists of a core and two wing regions
which are initially determined by a principal
component analysis of the moments. The model is
refi ned by fi tting to the pixel gray levels, minimizing
the sum of the core and wing errors. This study
uses two evaluation procedures: In the fi rst, vector
parameters from a ground truth model are compared
to the fi tted models; in the second, pixel statistics
for the difference between the images of the ground
truth model and the fi tted model are evaluated. The
results show that our approach can produce excellent
results for the vector-derived diagrams common in
scientifi c papers, the class of diagrams our group
works on.

the resulting objects, producing a syntactic analysis
(Futrelle, 1998; Futrelle & Nikolakis, 1995) and
fi nally, produce a semantic analysis that will allow
the diagram content to be stored and indexed for
conceptual retrieval and related tasks.

This paper introduces a vectorization technique
which goes beyond previous approaches. There are
a number of factors that lead to our new approach,
including: Moore s̓ Law - Going beyond the 1 bit
per pixel approaches that originated in a time when
systems were much smaller and slower. Open
Source - We plan to make our Java-based system
available to all. The Scientifi c Literature - Unlike
most vectorization research, our work focuses on
the Biomedical literature which produces about 5
million distinct fi gures each year. New Algorithms
- The desire to explore new algorithms and compare
them with existing techniques.

We evaluate the vectorization (lines only)
of a typical diagram from the Biology literature
demonstrating that our method performs well, in
some cases with sub-pixel accuracy. We discuss
the challenges of Biology diagrams that lie beyond
our successful approach to line vectorization, e.g.,
separating occluding elements. The system is built
using Java, Java Swing, and Java 2D and runs
without recompilation on Sun Solaris, Linux (Intel)
and Mac OS X.

2. The Vectorization Process
Sections 2.1-2.4 fi rst describe the class of images
we analyze. Then the moment analysis of local
pixel distributions and how it leads to line models
are discussed. The line models are then fi tted to
the full gray-level image through optimization and
extension procedures. The line models have natural
ways of dealing with line intersections.

2.1 Images in scientifi c papers
When the author of a scientifi c paper creates a
diagram, she/he creates it in a vector-based drawing
application (Xfi g, MATLAB, Adobe Illustrator).
Then the fi gure is saved in a vector-derived raster
format for transmission to the publisher, or the format for transmission to the publisher, or the format
conversion is done by the publisher. Such raster

1. Introduction
The problem of vectorization is the reduction of
raster images to object representations, e.g., turning
an image of a line segment into a few parameters --
the endpoints and width (Ablameyko & Pridmore,
2000). The raster images can arise from scanning
hardcopy or from electronic fi les generated by
various applications. The primary domains of
application have been legacy engineering drawings
and maps. Over the years, a variety of techniques for
vectorization have been introduced, each attempting
to extend the applicability of the methods and to
increase the speed and accuracy of vectorization
systems.

Much of the work on vectorization is focused
on the development of effi cient and accurate
vectorization systems, with less attention paid to
the use of the vectors produced. Our group has
a different focus: Extracting knowledge from
scientifi c diagrams, particularly those in the Biology
research literature. The pipeline for such work is
to fi rst vectorize diagrams (this paper), then parse

- 2 -

images typically contain precisely vertical and horizontal
lines, lines whose width is precisely constant, etc., limited
only by the raster conversion/compression algorithm. We
mimic this protocol in our work, but maintain realism by
“tracing” over published diagrams using Adobe Illustrator.
The SVG vector version of the diagram is used to extract
the vector coordinates. Our images are quite different
from images generated from scanned hardcopies, the ones
studied in much of the vectorization fi eld.

2.2 Principal Component Analysis
Each pixel in the image is examined in turn. A k x k
region, e.g., 16x16, centered on each pixel is used for
principal component analysis (PCA) (Duda, Hart, &
Stork, 2001) of the gray level distribution using the fi rst
three moments, M0, M1 and M2 to produce a quadric fi t.
Quadrics that may correspond to a line are discovered
using three tests in sequence:
1. Is the value of M0 not too large (all background) and

not too small (all foreground)?
2. Are the M1 components, xav and yav approximately

equal to the pixel position? (True if the pixel is near
the center of the line or other symmetric object.)

3. Based on the M2 components, is the aspect ratio of the
quadric appropriate to a line, “long and narrow”?
The data for each acceptable fi t is encapsulated

in a QuadricFit object that contains the center point, QuadricFit object that contains the center point, QuadricFit
orientation angle, height and width of the principal
components. It also contains an integer group_id, used
later when QuadricFit objects are clustered by similarity.
A 2D quadrics array the size of the image is used to hold
the QuadricFit objects. This is an example of using
image-sized object arrays, something not normally done

in earlier 1-bit or integer-based approaches, but easily
accommodated in RAM today.

2.3 Clustering Quadric objects
The pixels making up a single line in the image can lead
to the generation of many QuadricFit objects, all near the
lineʼs centerline. Clusters of these objects are built that
correspond to uninterrupted straight segments, using the
following agglomerative technique (Duda et al., 2001):
1. Initially, a small set of adjacent QuadricFit objects are

forced into a cluster and the mean and variance of the
width and orientation are computed for the cluster.

2. An iterative algorithm builds a queue of additional
adjacent QuadricFit objects for consideration. Single
objects are added to the cluster if their width and
orientation are within a certain factor of the standard
deviations of the width and orientation. This addition
must not increase the standard deviations in the
cluster beyond chosen limits.

3. When all acceptable QuadricFit objects have
been added, the cluster is complete and additional
unclustered QuadricFit objects are examined to create
additional clusters.

2.4 Line model fi tting and refi nement
The collection of objects in each quadric cluster is used
to defi ne the termini and width of a line model. The line
model is an idealized one that consists of a core with
foreground gray level and two wings with background
gray levels, Figure 1. It is important to note that our
method uses a full and explicit model of the gray level
distribution of an idealized line and compares this with the
full gray levels of the image, without the information loss
inherent in binarization (thresholding) of the image.

Quadric fi ts stop short of non-line regions, e.g., near
line crossings, T intersections and line termini. The
line models generated by quadrics are extended in such
situations until they fail, e.g., when a core attempts to
extend past the corner on the right in Figure 1A. The set
of centerline endpoints of all of the maximally extended
line models is clustered based on the distance between
the endpoints, typically resulting in clusters containing
one to four nearby endpoints. All pairs of endpoints in
a cluster which terminate collinear lines are “sealed”
by an additional core-only extension if the gap region
has foreground values. This allows lines to be merged
across intersections. Figure 2 shows the result of fi tting,
refi nement and sealing for a typical data graph.

3. Evaluation
Quantitative evaluation of vectorization systems is
important. The actual coordinates of the vectors that are
being sought must be known -- the ground truth. The
detected vectors are compared to the ground truth. There
are useful descriptions of how to conduct evaluations; but
our approach is somewhat different. For example, in line
object evaluation in (Phillips, Liang, Chhabra, & Haralick,

FIG. 1. The line model shown in A is initialized by
the quadric fi t (PCAs) of the gray level distribution.
Then the positions of the two core/wing boundaries in
the cross-section B are adjusted independently to mini-
mize the sum of the foreground and background errors
(differences between the gray levels and the model).

���� �����

���� �����

���� ���� ����

����������
������

����������
������

����������
�����

����������
�����

�

�

����

����

����
������ ����� �����

- 3 -

1998), the relative positions of the endpoints of the ground
truth and detected lines are not taken into account, a
measure we use and feel is important. In (Liu & Dori,
1997), the wide variety of comparisons done leads to less
than optimal specialized comparisons. In the evaluation
here, besides comparing vectors, we conduct pixel-level
comparisons by comparing anti-aliased rendering of the
detected vectors with source pixel distributions to identify
missed pixels and false alarms. In the discussion below,
the ground truth vectors or raster image are labeled source,
and the vectors generated by our system or the raster
image rendered from them is labeled detected.

The fi rst task in the vector comparisons is to match
the detected lines with those in the ground truth. This is
done by requiring that the endpoints of the two correspond
within a few pixels and that the slopes of the lines are
similar, e.g., within π/125 radians. Our current system
produces small artifacts, short segments near the ends of
some of the polylines, cf. Figure 2. These are called minor
components, contrasting with the major ones include in major ones include in major
the evaluations. There are 38 source vectors underlying
Figure 2. Our system detects 39 major components,
splitting one of the source lines into two. The Euclidean
distance separation is computed between corresponding
endpoints, taking into account the one split line. The
perpendicular distance from the endpoint of the detected
line to the centerline of the corresponding source is
computed. These are averaged over the 76 endpoints. In
addition, the difference in the lengths of the corresponding
major source and detected components is computed. The
results corresponding to Figure 1 are:

Average separation = 1.85 pixels
Average perpendicular distance = 0.07 pixels
Average length difference = 2.57 pixels

The average perpendicular distance, less than a tenth of
a pixel, emphasizes how accurately our vectorization
method can be when operating on vector-derived raster
images.

Another evaluation metric we used is the comparison
of the pixel distributions of the source and detected lines.
This was done by thresholding both images at 128 (of 255
gray levels) to separate out black foreground pixels and
counting matched pixels (in both), matched pixels (in both), matched missed pixels (in source missed pixels (in source missed
only) and false alarms (in detected only). The errors of
interest are the missed and false alarms. To bound the
error between 0 and 100 percent, the missed pixels were
normalized to the source image foreground pixel count
and the false alarms to the detected image foreground pixel
count. The results are:

Missed pixel errors = 4.9%
False alarm pixel errors = 5.4%

The results of the evaluation show that our method is
more than adequate at recovering source parameters from
vector-derived images.

4. Previous Work
A common approach to vectorization is thinning to produce
line skeletons (Lam, Lee, & Suen, 1992). This works
well for portions of lines “in the clear”. Skeletons also
retain connectivity when passing through intersections.
However, there are diffi culties in reconstructing
intersections correctly (Hilaire & Tombre, 2002). Our
approach in which cores are projected into and through
intersections is more straightforward than the various
“correction” methods needed for the artifacts produced by
thinning.

In the interest of effi ciency, the Sparse Pixel
Vectorization method has been developed (Dori & Liu,
1999). It examines fewer pixels than most methods. But
the method requires a collection of Junction Recovery
Procedures to deal with its artifacts. It is presumably more
sensitive to noise because it ignores many pixels; our
method uses the gray levels of every pixel to create and
refi ne models.

The techniques closest to ours are described in an
excellent paper (Song, Su, Tai, & Cai, 2002); a skeleton is
created and then perpendicular runs are made to discover
the line boundaries. This technique is “sparser” than ours
and does not take into account full gray level distributions.
The method relies on deleting objects once found, which
destroys information from crossing lines, for example.
Our method can fi nd a pair of intersecting lines without
doing any deletions, e.g., the two pairs of crossing data
lines in the upper portion of Figure 2.

Many numerical parameters are used in evaluation
systems. Often, the parameters that are optimal for one
diagram or even for a portion of a single diagram are not
optimal for another. In one paper (Chang, Lu, & Pavlidis,
1999), sweeps that cross contours can quickly fi nd sets of
parallel edges which could help in choosing parameters.
The choice of parameters affects run times. Our prototype

FIG. 2. The SVP Viewer, showing the segments the
system discovered (in pseudocolor). The two major
line crossing were successfully “sealed” by the algo-
rithm. There are small artifacts at some of the poly-
line junctions which we are working to eliminate. The
original black and white diagram was derived from a
JPEG in a Biology paper, with the data point mark-
ers and text omitted in this study. This fi gure can be
viewed in color at high resolution in Acrobat Reader.

- 4 -

system has undergone no optimization for speed, because
that would detract from our explorations of a variety of
strategies. The prototype system uses about 1 minute
of CPU time on a SunBlade 2000 to analyze a typical
1000x1000 pixel diagram.

5. Future Work
The next stage, following vectorization, is parsing. We
have developed a successful diagram parsing system
(Futrelle, 1998; Futrelle & Nikolakis, 1995) and are
currently redeveloping it in Java. Parsing produces
a syntactic analysis of a diagram that can be input to
a knowledge-based interpretation system, ultimately
resulting in a representation for a diagram that allows
conceptual analysis, indexing and retrieval.

One need only glance through a recent issue of Science
or Nature or an Open Access journal from BioMed Central
to see the almost bewildering variety of diagrams being
published. A large fraction of the diagrams in Biology
present challenges for vectorization, e.g., Figure 3. Major
additions are being made to our vectorization system to
deal with the challenges. One such addition will deal with
occlusion by “delayering” which can be understood by
considering a square black data point icon lying on a data
line, as in Figure 3. The unoccluded portions of the line are
found fi rst. What remains is the square, with the occluded
line “within it”. The pixels in the square are not deleted
(set to background) but marked as being in the square. The
line can then be extended across the gap, sharing pixels
with the square. Strategies of this type are what led us to
call our work the Strategic Vectorization Project or SVP.Strategic Vectorization Project or SVP.Strategic Vectorization Project

6. Conclusion
We have demonstrated that the new vectorization tech-
nique using moment-derived object models is capable of
producing excellent results when applied to lines in vec-
tor-derived raster images of Biology diagrams. There are
millions of such diagrams published each year. Vectorized
versions of them will allow parsing and semantic analysis

which will make them available for conceptual analysis,
indexing and retrieval. We are currently extending our
vectorization techniques to model and analyze other object
classes and multiple object occlusion.

Acknowledgement. We thank Dan Crispell for the
development of the initial SVP. This material is based
upon work supported by the National Science Foundation
under Grant No. IIS-9978004 and the Northeastern
University Institute for Complex Scientifi c Software, http:
//www.icss.neu.edu/.

References

Ablameyko, S., & Pridmore, T. (2000). Machine Interpretation
of Line Drawings: Technical Drawings, Maps and
Diagrams. London: Springer-Verlag.

Chang, F., Lu, Y. C., & Pavlidis, T. (1999). Feature analysis
using line sweep thinning algorithm. IEEE PAMI, 21, 145-
158.

Dori, D., & Liu, W. (1999). Sparse Pixel Vectorization: An
Algorithm and Its Performance Evaluation. IEEE PAMI,
21(3), 202-215.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern
Classifi cation. New York: Wiley.

Futrelle, R. P. (1998). The Diagram Understanding System
Demonstration Site. http://www.ccs.neu.edu/home/futrelle/
diagrams/demo-10-98/

Futrelle, R. P., & Nikolakis, N. (1995). Effi cient Analysis
of Complex Diagrams using Constraint-Based Parsing.
In ICDAR-95 (Intl. Conf. on Document Analysis &
Recognition) (pp. 782-790). Montreal, Canada.

Hilaire, X., & Tombre, K. (2002). Improving the Accuracy
of Skeleton-Based Vectorization. In D. Blostein & Y.-B.
Kwon (Eds.), Graphics Recognition - Algorithms and
Applications (Vol. LNCS 2390, pp. 273-288): Springer
Verlag.

Lam, L., Lee, S. W., & Suen, C. Y. (1992). Thinning
Methodologies-A Comprehensive Survey. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 14(9), 869-885.

Liu, W., & Dori, D. (1997). A protocol for performance
evaluation of line detection algorithms. Machine Vision
and Applications, 9(5-6), 240-250.

Phillips, I. T., Liang, J., Chhabra, A. K., & Haralick, R.
M. (1998). A Performance Evaluation Protocol for
Graphics Recognition Systems. In GREC 98: Graphics
Recognition, Algorithms and Systems (pp. 372--389):
Springer-Verlag.

Song, J., Su, F., Tai, C., & Cai, S. (2002). An object-oriented
progressive-simplifi cation-based vectorization system for
engineering drawings: model, algorithm, and performance.
IEEE PAMI, 24(8), 1048-1060.

FIG. 3. One of the classes of challenges of sci-
entifi c diagrams is occlusion, such as the data line
and data point occlusion examples shown here.
Data to be reported does not arrange itself neatly
as a designer of an engineering drawing can do.

