
Extraction, layout analysis and classification of

diagrams in PDF documents

Robert P. Futrelle, Mingyan Shao, Chris Cieslik and Andrea Elaina Grimes

College of Computer and Information Science

Northeastern University

Boston, MA 02115
{futrelle,myshao,ccieslik,agrimes}@ccs.neu.edu

Abstract

Diagrams are a critical part of virtually all scientific
and technical documents. Analyzing diagrams will be

important for building comprehensive document retrieval

systems. This paper focuses on the extraction and
classification of diagrams from PDF documents. We

study diagrams available in vector (not raster) format in

online research papers.
PDF files are parsed and their vector graphics

components installed in a spatial index. Subdiagrams are

found by analyzing white space gaps. A set of statistics is
generated for each diagram, e.g., the number of

horizontal lines and vertical lines. The statistics form a

feature vector description of the diagram. The vectors
are used in a kernel-based machine learning system

(Support Vector Machine). Separating a set of bar

graphs from non-bar-graphs gathered from 20,000
biology research papers gave a classification accuracy of

91.7%. The approach is directly applicable to diagrams

vectorized from images.

1. Introduction

Documents in Portable Document Format, PDF [1]

allow sophisticated formatting but can have complex

internal structure. Analysis of their components and

layout can be daunting. Though there is a great deal of

work on the analysis, indexing and retrieval of the text

content of documents in many formats, including PDF,

much less attention has been paid to the graphics content

of documents. In particular, it would be quite useful to

analyze the internal structure of diagrams to extract their

content. This would allow them to be classified for

indexing and retrieval purposes. The overwhelming

majority of work on document analysis today is focused

on document image analysis. Many millions of

documents now have their text available in electronic

form, obviating the need for OCR. But the figures in

these documents still require analysis if we are to be able

to index and retrieve them in comprehensive document

systems. The diagrams (line drawings) are available in

vector format in some documents, e.g., PDF files, or more

commonly, in raster format, e.g., GIF and JPEG. This

paper focuses on the classification of vector-based

diagrams. We have chosen all of the diagrams contained

in a collection of 20,000 biology research papers in PDF

format.

For some time, our group has been involved with the

analysis of diagrams in technical documents to a level of

detail that includes parsing diagrams to produce syntactic

descriptions for them [2-5]. This paper reports on

extensions of our work to PDF documents, including

using supervised machine learning (kernel methods) to

classify diagrams.

The stages of analysis are:

1. PDF documents are downloaded from a large

collection, American Soc. Microbiology (ASM)

2. The PDF command sequences comprising each

document are parsed, producing a corresponding

object sequence.

3. Using an interpreter, the command sequence is

analyzed to discover visible objects.

4. The resulting objects are rendered into coarse 1D

and 2D spatial indexes (SPAS).

5. Multiple diagrams and subdiagrams on each page

are recursively extracted by looking for horizontal

and vertical separating white space bands.

6. Statistics on the diagrams are compiled (number

of lines, curves, text items, etc.)

7. The statistics are used to train a Support Vector

Machine to classify bar graphs versus non-bar-

graphs.

The strategy above has been successful, yielding

91.7% overall classification accuracy (leave-one-out

measure) in these initial studies. It is important to

emphasize that the PDF documents discussed here that

contain vector graphics are in the distinct minority, since

most PDFs we have examined contain figures in raster

format. In our separate Strategic Vectorization Project,

we are developing a new approach to converting raster

images of diagrams to vector format (vectorization)

(Crispell and Futrelle, in preparation). The raster images

are obtained in JPEG or GIF format from the HTML

versions of papers. In our corpus of 50,000 ASM HTML

papers there are approximately 500,000 such raster-

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

format diagrams (counting the multiple diagrams that

frequently occur together in a single figure). In the 20,000

PDF documents in the collection, totaling about 120,000

pages, we found only 52 pages that had vector-based

diagrams. Though this is a tiny percentage, it offered us

the opportunity to experiment with classification methods

which we will later apply to the much more numerous

vectorized diagrams. Full syntactic analysis of vector

diagrams has been discussed in our previous papers [2, 3,

5] and is not covered here.

2. Extracting vector objects

The PDF documents were downloaded from the

American Society for Microbiology site, asmusa.org,

using a web-bot built on the Java HTTPClient package

[6]. (Northeastern University has a license agreement with

the ASM to download and analyze six years worth of their

publications.) The PDF commands are parsed using

Etymon PJ written in Java [7]. This produces a vector of

graphics objects (GOs), Java class instances, that are in

one-to-one correspondence with the sequence of PDF

commands in the document. The objects are then

converted to our own GO representation to make them

independent of the PJ classes. An excerpt from such a

PDF sequence describing a path is,

 172.443 482.809 m

 172.443 483.756 l

 172.885 483.775 173.187 483.805 173.365 483.844 c

 173.646 483.906 173.871 484.027 174.049 484.215 c

which produces four GOs, corresponding to a move of the

drawing position (m), drawing a line from there to the

position given (l) and then drawing two curved lines in

succession (c). PDF also provides a rectangle object, as a

primitive. The most complex object that we have to deal

with is the PDF Graphics State. It encapsulates rendering

parameters such as line widths, fill color, font face, font

size, and the affine transformation that is applied during

rendering, e.g., to reposition the page coordinate system

or to rotate text, typically by 90 .

The initial identification of pages that contain graphics

has been done by counting the number of GOs on a page.

If a page has > 20 GOs, it is likely to be a diagram and

was analyzed further.

3. The complexities of PDF rendering

PDF commands involve more than simply building

paths and stroking or filling them. Changes to the

Graphics State are also made, applied to the current

Graphics State. The identity of the current Graphics State

can be changed by pushing and popping it from a stack

built into PDF. We discovered that PDF rectangles are

used for two distinct purposes. One is the normal use to

create visible outlined and/or filled rectangular regions.

The other is to define clipping regions that restrict what

portions of stroked or filled paths are visible. Some

clipping regions are defined by more complex paths such

as the one in Sec. 2. The clipping paths don't directly

produce graphics that is visible to the human reader of an

article and are not counted in characterizing the visible

diagram. We discovered that in the diagrams we

collected that the clipping regions could be safely ignored

in analyzing the visible portions of the diagrams because

they have little or no effect on its appearance.

When the GOs are isolated, they, plus their attendant

clipping regions and Graphics State commands are used,

via the Etymon PJ tools, to create a PDF page that

contains only the graphics. The running text, footnotes,

etc., are not included. This graphics-only page can be

examined and printed using the Adobe Acrobat Reader.

In order to discover what objects were visible, we had

to track the Graphics State stack. We constructed a

specialized PDF interpreter, acting on GOs, that collected

paths, including lines, curves and rectangles and

processed them in two ways. If they were subsequently

found to define a clipping region, or if they were stroked

and filled with white, the paths were discarded. If they

were stroked and/or filled with any non-white color, they

were added to a list of visible objects. Only these visible

objects were output by the interpreter and used for the

diagram analyses that followed.

4. Installing objects in a spatial index

In order to analyze the spatial layout structure of the

graphics in a page, a spatial index is used. The one used

is SPAS (Spatially Associative Substrate) that we

developed for diagram parsing [2-4].

A 64 cell wide by 128 cell tall array was used, a coarse

representation of the x,y page space. Each array element

contains a Cell object, a Java instance. The GOs in a page

are rendered at the appropriate resolution and for each

Cell through which the object passes, a reference to the

GO is added to a list in the corresponding Cell as shown

in Fig. 1. A pair of one-dimensional projection indexes

are built as shown in the figure. The contents of these

ProjectionCells in the 1D arrays are the merged contents

of all Cells in the 2D array at that position. For example, a

ProjectionCell at a specific x index contains information

from the Cells in the 2D array at that x index and at all y

indexes. A ProjectionCell in the 1D array contains the set

of all GOs at that 1D position, and in addition, the total

number of straight lines, rectangles, curves and text

objects at that position.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

��

��� ��� ��� ��� � �

�

���

���

�

�

Figure 1. An 8x8 SPAS structure for spatial
indexing. The paths for each object are installed in
(rendered into) the SPAS and the cell sets for each
path are collected. The three objects shown here
are "A" (1), a straight line (2) and a curve (3).
References to each object are installed in the cells
they occupy in the 2D array (ref. numbers not
shown here in the 2D array) as well as in the two
1D projection arrays. Additional information and
statistics are collected in the ProjectionCells in the
1D arrays.

5. Slice & Dice for subdiagram discovery

For reasons of space economy and coherence of

presentation, diagrams in papers often composite,

containing a number of subdiagrams. We attempt to

separate out each subdiagram and then do further analysis

on each separately. The separation is done by recursively

constructing and examining the 1D SPAS arrays for white

space gaps. The SPAS for the entire page is pushed on a

stack, popped and examined for any large gaps on the y-

axis, typically gaps of 20 points or more (about two font

heights). If any are found, new SPAS containing the GOs

in the separate y regions are created and pushed on the

stack. Each is then examined for white space gaps along

the x-axis. The process continues using the stack to

handle the inherent recursion. All SPAS discovered along

the way that cannot be split are saved for the further

processing stages. We call this analysis process "Slice &

Dice". An example is shown in Fig. 2. The version of

Slice & Dice described above is based on the number of

GOs in each 1D SPAS array ProjectionCell. A white

space is indicated by a zero count in a ProjectionCell.

Extensions to this approach are obvious and will be

necessary to achieve the most accurate identification of

subdiagrams. For example rows or columns of text or

numerical labels are positioned along the edges of

diagrams with some white space separating them from the

diagram graphics (lines, etc.). It would be an error to

identify such a row or column of text as a complete

subfigure on its own. So a more refined Slice & Dice

algorithm will need to keep such text bound to the

adjacent graphics items. Ambiguities can arise when text

is positioned between two collections of graphics and a

decision needs to be made as to which graphics items will

be chosen as the ones bound to the text. We have

previously discussed ambiguity in diagram organization

in another paper [8], where we suggest ambiguity

resolution methods such as context restrictions, semantic

restrictions and minimal complexity measures. See also

[9]. As one example of a disambiguation strategy, note

that the diagram in Fig. 2 has two subfigure labels, "a"

and "b", which could aid the Slice and Dice decisions.

Our own Fig. 1 has significant white space within it and

could require careful analysis.

6. Machine learning for classification

There are many compelling reasons to separate

diagrams into various classes. The primary one is to aid

in the indexing of diagrams contained in documents

which in turn can lead to more powerful and useful

retrieval systems. In our work, classification can be used

as an aid in deciding which specific grammars are most

applicable for parsing a diagram. Classification is a

complex topic but is basically divided into two types of

methods, supervised and unsupervised. A typical

unsupervised technique is clustering in which the

algorithm attempts to find a partition of a set of items into

classes which contain items that are similar to one another

but not as similar to items in other classes [11]. This

approach has proved useful in word-meaning

classification [12] and will be pursued for diagrams also.

In this paper we describe the techniques we have used for

supervised learning. For supervised learning, our system

was trained by presenting it with instances whose classes

were labeled manually. For our initial study we used the

complete set of 129 subdiagrams, 65 of which were bar

graphs and 64 of which were other, primarily ordinary

data graphs, but a few gene diagrams were included. We

used a binary classifier, a kernel-based Support Vector
Machine (SVM), SVMlight [13, 14]. Support vector

methods tend to generalize well when classifying new

items that were not used in the training; they avoid the

over-training problem. The strategy used was "one-

against-all", in our case bar graphs versus all non-bar-

graphs.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

Figure 2. Slice and Dice: Object-count-based signature for a vector format diagram. The signature function
below the diagram plots the number of graphic objects directly above the x-cells shown. The horizontal gap
between the two subdiagrams shows up clearly as an empty cell, count = 0. Note that this analysis is entirely
different from pixel density counts for a raster image. The approach is extended in the machine learning
study later in this paper, in which heterogeneous signatures are computed using statistics such as the number
of horizontal lines, the number of text objects near small vertical lines, etc. (A "crisp" vector-based PDF file of
the diagram image above is available at http://www.ccs.neu.edu/home/futrelle/papers/104-7-3.pdf and the full
paper is [10].)

7. Results

As with virtually all machine learning methods, the

items to be classified are represented by a vector. We

used a vector with the following six integer components

which counted various classes of items in each

subdiagram:

1. # of rectangles

2. # of datapoints

3. # of lines or curves

4. # of categorial labels (non-numeric)

5. # of short horizontal lines near a long vertical

6. # of short vertical lines near a long horizontal

For the SVM computations, we defined a simple

inner-product kernel, K(xi,xj), for each pair of 6-

dimensional vectors xi and xj as the inner product xi xj.

We also defined a radial basis function kernel [13-15] of

the form exp(- ||xi-xj.||
2). Both kernels performed

adequately. The results from the inner-product kernel are

reported here. The binary classifier was trained to

distinguish bar graphs primarily from ordinary data

graphs (which use points and data lines). The bar graphs

were labeled as the positive examples.

The overall accuracy was 91.7% = (number of

correctly classified diagrams / (total number, 129)). The

recall was 98.5% = (number of correct positives / (total

positives, 65)). The precision was 85.3% = (number of

correct positives / (number classified as positive, 75)).

8. Discussion

8.1. Document image analysis

There is a large amount of work on document image

analysis, analysis of raster format page images [16, 17].

Many of the approaches to document image analysis are

quite applicable to the analysis of vector-based documents

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

and their included graphics. Among the more closely

related papers, we mention one on document zone content

classification [18]. In that work 25 parameters are

extracted for each rectangular zone on a page, including

run length statistics, text glyph features, etc. The

approach is tested on the UWCDROM-III document

image database [19]. Since the study, as do all studies of

document images, deals with pixels in a raster image, no

statistics involving classes of graphic objects such as lines

or curves can be computed. There can be no later stage of

parsing either, as there are no objects to input to a parser.

Another study in which a large collection of document

metrics was developed is [20], which focused on metrics

for images in documents.

Other recent work on comprehensive approaches to

document image structure analysis includes [21] and [22].

8.2. PDF document analysis

There are a few studies of PDF document structure.

One used the PDFEdit facilities in the Adobe SDK, but it

did not appear to produce consistent bounding boxes for

the identical documents converted in various ways [23].

Another approach, the AIDAS system[24], used a bottom-

up iterative chunking procedure to discover the document

logical structure (sections, paragraphs, etc.) based on cues

such as font size and style, e.g., large and bold text. The

initial conversion of PDF in AIDIS is built on top of the

Xpdf tools. Our interpreter, implemented in Java, is

focused on extracting the visible components relevant to

compiling statistics for machine learning. Being written

in Java, it runs on a wide variety of systems and needs no

special porting. The same applies to out download and

initial parsing using the Etomyn PJ tools, also written

entirely in Java. In AIDIS, no detailed analysis of diagram

internals was done. Our approach, using a spatial index,

makes it possible for us to discover the correct spatial

extent of any graphic object including the cubic Bézier

curves in PDF. Our SPAS structure includes the detailed

location of the graphic elements, at a coarse resolution,

rather than just the bounding boxes [23].

8.3. Vectorization of diagrams

The majority of the PDF versions of electronic journal

papers we have examined do not contain diagrams in

vector form, but in raster form. But the development of

techniques to deal classify and otherwise analyze vector

diagrams is very important, because it is possible to

convert the millions of published diagrams in raster

format to vector format using vectorization algorithms

[25, 26]. Vectorization uses a specialized collection of

image processing tools to discover and characterize

elements such as lines and curves and generate compact

vector representations for them. Our lab has a major

research project devoted to vectorization, mentioned

earlier.

8.4. Slice and Dice

We have already discussed the problem of ambiguity

that can make it difficult to accurately identify

subdiagrams. Even an accurate separation can lead to later

problems. For example, it is not unusual to have a pair of

side-by-side data graphs in which the y-axis label is only

given for the graph on the left and assumed to be the same

for the graph on the right [27]. Sometimes even the

numerical scale values are given only on the left of a pair.

So separating them could lead to a loss of information.

The grammars we have developed for diagram parsing

can deal with such cases [27]. There is a tension between

the two extremes -- simply relying on white space for

separation versus a detailed parsing-based analysis of

each figure taken as a whole. The conclusion is that the

process of separation into subdiagrams and detailed

diagram analysis and may need to be coordinated in some

way and not assumed to be made up of a pair of

independent steps.

8.5. Signatures for slicing and classifying

Our Slice and Dice techniques for separating out

subfigures use signatures built from simple object counts,

Fig. 2. One complication that was not mentioned earlier is

the following. In some PDF documents, text characters

are themselves rendered by a succession of vector

commands, sometimes requiring as many as twenty

commands (lines and curves) to render a single character.

Blindly counting such commands could badly skew a

representation of the diagram content. In fact, in the

diagram of Fig. 2 this was the case. Since we have not

yet developed techniques for collapsing these command

sequences into single character representations, the

contribution of text items to the signature in Fig. 2 was

computed manually.

The object-based formulation allows us to create more

complex structures that can aid in future work on

subfigure separation. For example, a feature could be

constructed that consists of all short lines adjacent and

perpendicular to a long line, and in addition, sets of labels

adjacent to the short lines. This could identify a scale

structure that could be retained as a unit in the Slice and

Dice work.

One of the more powerful aspects of our approach is

that if some particular object, O1, is identified in an X

projection index array, the identical object can be located

in the Y array and a correlated analysis can be done. This

is impossible when pixels alone are projected (unless each

pixel is given its own location or object status in the

projections!).

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

8.6. Machine learning for classification

The kernel methods used in SVM-based machine

learning [13, 15, 28-30] are free of the "curse of

dimensionality' inherent in other methods. That is because

the dimensionality is related to the number of training

example pairs and not to the intrinsic dimensionality of

each training example. So it is possible to use large

feature sets for SVM learning. In future work, this might

obviate the need for detailed parsing-level analysis.

There are two other important advantages of SVM

techniques. The theory behind SVMs, computational

learning theory [30], was designed to avoid overfitting to

achieve the highest quality of generalization to as yet

unseen examples. In addition, kernel methods allow

complex nonlinear mappings of the feature space, in some

cases equivalent to infinite-dimensional representations,

while retaining a low order of complexity in the actual

computations. We have primarily used the simplest inner-

product kernels in this work; radial basis function kernels

gave similar results.

A major problem that arises in all machine learning

systems, and in document understanding in particular

[31], is attempting to decide on the class of the document

for training purposes. A more detailed analysis has to

determine whether or not the structural elements

discovered are correct, or even that there is a genuine

ambiguity [8] which can confound manual training

decisions. At a deeper level work has to be done to

understand the class structure and ontology of diagrams.

For example, some of the diagrams in our collection are

hybrids, in which a single data graph contains both bar

data and point and line data.

A major application of machine learning to document

analysis is the WISDOM++ system [32]. In that paper,

document structure knowledge is represented by means of

decision trees and first order rules automatically

generated from a set of training documents. Decision trees

require careful construction to avoid overfitting, a

problem that is largely avoided by support vector

machines.

The full characterization of a diagram, its class and its

role in the document must also involve the text in the

diagram, in the figure caption and in the body of the

document where the diagram is discussed. Diagrams and

text can be strongly interwoven so that the full content

can only be understood by an integrated analysis of the

two [33, 34]. Machine learning techniques, and SVMs in

particular [13], have been used for text classification and

could readily be used to classify diagrams using their

graphics content and associated text simultaneously.

Acknowledgements

The work of Dan Crispell, Mike Preshman and Jing

Shan was helpful in this project. Supported in part by

NSF DBI-0211047, IIS-9978004 and the Northeastern

University Institute for Complex Scientific Software,

http://www.icss.neu.edu/

References

[1] Adobe Systems Incorporated, PDF Reference:

Version 1.4, 3rd ed: Addison-Wesley Pub Co, 2001.

[2] R. P. Futrelle, "Strategies for Diagram Understanding:

Object/Spatial Data Structures, Animate Vision and

Generalized Equivalence," in 10th ICPR: IEEE Press,

1990, pp. 403-408.

[3] R. P. Futrelle and N. Nikolakis, "Efficient Analysis of

Complex Diagrams using Constraint-Based Parsing," in

ICDAR-95 (Intl. Conf. on Document Analysis &

Recognition). Montreal, Canada, 1995, pp. 782-790.

[4] R. P. Futrelle, "The Diagram Understanding System

Demonstration Site

(http://www.ccs.neu.edu/home/futrelle/diagrams/demo-

10-98/)," 1998.

[5] N. Nikolakis, "Diagram Analysis using Equivalence

and Constraints," in College of Computer Science.

Boston, MA: Northeastern University, 1996, pp. 198.

[6] R. Tschalär, "HTTP Client 0.3-3

(http://www.innovation.ch/java/HTTPClient/)," vol. 2002,

2002.

[7] Etymon Systems, " PJ Classic

(http://www.etymon.com/pjc/)," Etymon Systems, 2002.

[8] R. P. Futrelle, "Ambiguity in Visual Language Theory

and its Role in Diagram Parsing," in IEEE Symposium on

Visual Languages, VL99. Tokyo: IEEE Computer Soc.,

1999, pp. 172-175.

[9] M. Shilman, H. Pasula, S. Russell, and R. Newton,

"Statistical Visual Language Models for Ink Parsing," in

Proc. AAAI Spring Symposium on Sketch Understanding:

AAAI, 2002.

[10] P. S. Rydman and D. H. Bamford, "The Lytic

Enzyme of Bacteriophage PRD1 is Associated with the

Viral Membrane," J. Bacteriology, vol. 184, pp. 104–110.

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern

Classification. New York: Wiley, 2001.

[12] S. Gauch and R. P. Futrelle, "Experiments in

Automatic Word Class and Word Sense Identification for

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

Information Retrieval," in Third Annual Symposium on

Document Analysis and Information Retrieval, 1993, pp.

425-434.

[13] T. Joachims, Learning to Classify Text Using

Support Vector Machines: Kluwer Academic Publishers,

2002.

[14] T. Joachims, "SVMlight Support Vector Machine

(http://svmlight.joachims.org/)," 2002.

[15] N. Cristianini and J. Shawe-Taylor, An Introduction

to Support Vector Machines and Other Kernel-based

Learning Methods. Cambridge, UK: Cambridge

University Press, 2000.

[16] G. Nagy, "Twenty Years of Document Image

Analysis in PAMI," IEEE Transactions on Pattern

Analysis and Machine Intelligence, pp. 38-62, 2000.

[17] L. O'Gorman and R. Kasturi, "Document Image

Analysis," IEEE Computer Soc. Press, 1997.

[18] Y. Wang, I. T. Phillips, and R. M. Haralick, "A

Study on the Document Zone Content Classification

Problem," in Document Analysis Systems (DAS 2002),

vol. LNCS 2423, D. Lopresti, J. Hu, and R. Kashi, Eds.

Berlin: Springer-Verlag, 2002, pp. 212–223.

[19] I. Phillips, "Users' reference manual. CD-ROM, UW-

III Document Image Database-III," 1995.

[20] V. Athitsos, M. J. Swain, and C. Frankel,

"Distinguishing Photographs and Graphics on the World

Wide Web," in IEEE Workshop on Content-Based Access

of Image and Video Libraries, 1997, pp. 10-17.

[21] M. Aiello, C. Monz, L. Todoran, and M. Worring,

"Document Understanding for a Broad Class of

Documents," Intl J. Document Analysis and Recognition,

vol. 5, pp. 1-16, 2002.

[22] S. Klink, A. Dengel, and T. Kieninger, "Document

Structure Analysis Based on Layout and Textual

Features," in DAS - International Conference of

Document Analysis Systems. Rio de Janeiro, Brazil, 2000,

pp. 99-111.

[23] H. Chao, G. Beretta, and H. Sang, "PDF Document

Layout Study with Page Elements and Bounding Boxes,"

in Workshop on Document Layout Interpretation and its

Applications (DLIA2001), 2001.

[24] A. Anjewierden, "AIDAS: Incremental Logical

Structure Discovery in PDF Documents," presented at 6th

International Conference on Document Analysis and

Recognition (ICDAR 2001), Seattle, WA, 2001.

[25] D. Blostein and Y.-B. Kwon, "Graphics Recognition

Algorithms and Applications 4th International

Workshop, GREC 2001, Kingston, Ontario, Canada,

September 7-8, 2001. Selected Papers," Springer Verlag,

2002, pp. 367.

[26] S. Ablameyko and T. Pridmore, Machine

Interpretation of Line Drawings: Technical Drawings,

Maps and Diagrams. London: Springer-Verlag, 2000.

[27] R. P. Futrelle, "Objects in the image can be members

of multiple parsed structures

[http://www.ccs.neu.edu/home/futrelle/diagrams/demo-

10-98/sharing.html]," 1998.

[28] C. J. C. Burges, "A Tutorial on Support Vector

Machines for Pattern Recognition," Data Mining and

Knowledge Discovery, vol. 2, pp. 121-167, 1998.

[29] H. Byun and S.-W. Lee, "Applications of Support

Vector Machines for Pattern Recognition: A Survey," in

SVM 2002, vol. LNCS 2388, S.-W. Lee and A. Verri, Eds.

Berlin: Springer, 2002, pp. 213-236.

[30] V. N. Vapnik, Statistical Learning Theory. New

York: Wiley-Interscience, 1998.

[31] D. Lopresti and G. Nagy, "Issues in Ground-Truthing

Graphic Documents," in Graphics Recognition

Algorithms and Applications 4th International Workshop,

GREC 2001, Kingston, Ontario, Canada, September 7-8,

2001. Selected Papers, D. Blostein and Y.-B. Kwon, Eds.

Berlin: Springer, 2002, pp. 46-67.

[32] F. Esposito, D. Malerba, and F. A. Lisi, "Machine

Learning for Intelligent Processing of Printed

Documents," J. Intelligent Information Systems, vol. 14,

pp. 175–198, 2000.

[33] R. P. Futrelle and A. Rumshisky, "Discourse

Structure of Text-Graphics Documents," in 1st

International Symposium on Smart Graphics. Hawthorne,

NY: ACM, 2001.

[34] Y. Watanabe and M. Nagao, "Diagram

Understanding Using Integration of Layout Information

and Textual Information," in COLING-ACL, 1998, pp.

1374-1380.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

