
Ambiguity in Visual Language Theory and its Role in Diagram Parsing

Robert P. Futrelle
Biological Knowledge Laboratory, College of Computer Science 161CN

Northeastern University, 360 Huntington Ave., Boston, MA 02115
futrelle@ccs.neu.edu http://www.ccs.neu.edu/home/futrelle

Abstract
To take advantage of the ever-increasing volume of
diagrams in electronic form, it is crucial that we have
methods for parsing diagrams. Once a structured,
content-based description is built for a diagram, it can be
indexed for search, retrieval, and use. Whenever broad-
coverage grammars are built to parse a wide range of
objects, whether natural language or diagrams, the
grammars will overgenerate, giving multiple parses. This
is the ambiguity problem. This paper discusses the types
of ambiguities that can arise in diagram parsing, as well
as techniques to avoid or resolve them. One class of
ambiguity is attachment, e.g., the determination of what
graphic object is labeled by a text item. Two classes of
ambiguities are unique to diagrams: segmentation and
occlusion. Examples of segmentation ambiguities include
the use of a portion of a single line as an entity itself.
Occlusion ambiguities can be difficult to analyze if
occlusion is deliberately used to create a novel object
from its components. The paper uses our context-based
constraint grammars to describe the origin and resolution
of ambiguities. It assumes that diagrams are available as
vector graphics, not bitmaps.

1. Introduction

Diagrams are used to illustrate complex relations, to
present data, to document designs, and to otherwise
provide schematic views of information. In the future,
virtually every document of importance, and all the
diagrams they contain, will be available in digital form.
In order to index, search, and manipulate digital diagrams,
it is important that we develop automated procedures for
parsing and analyzing them. As techniques for analyzing
diagrams are scaled up to deal with a greater volume and
variety of diagrams, there will be many challenges. One
of these is ambiguity, the subject of this paper. Our own
work has focused on diagrams drawn directly from the
published research literature, e.g., biology journals. Our
emphasis, and that of this paper, has been on diagrams
that are highly schematic, such as data graphs, rather than
drawings.

All communication is potentially ambiguous, whether
it uses natural language or graphics. Most speakers and
viewers resolve potential ambiguity problems quickly and
almost unconsciously, selecting the "preferred reading"
by using a broad collection of strategies based on context,
conventions of communication, and domain-specific
knowledge. Broad coverage grammars inevitably

overgenerate, producing many alternate analyses in cases that
are otherwise clear and unambiguous to a human.

The resolution of ambiguities in natural language parsing
is a difficult and unsolved problem [4]. As this paper will
demonstrate, diagrams are replete with a variety of
ambiguities, many of them as subtle and difficult to resolve
as those in natural language. Visual language parsing
systems on the whole have not tried to deal with the
ambiguity issue. Even a recent authoritative review of visual
language analysis contains no discussion of ambiguity [6].
Though there can be no single strategy that will solve the
diagram ambiguity problem, we do discuss techniques that
can help to resolve specific classes of ambiguities. The
techniques include choosing grammar rules to apply in
context-specific ways, using preferences based on norms,
choosing minimally complex descriptions, designing
grammars to reflect graphics conventions, and examining
surrounding text, e.g., captions. (In this paper we will not
discuss any details of ambiguity resolution that requires the
analysis of text.)

2. An example diagram

Figure 1. This x,y data graph illustrates a number of
ambiguities that are discussed in the text. One of the
most obvious ones is the analytic ambiguity raised by the
fact that the data key at the top, labeled "treated" and
"control" looks very much like actual data, but is not.
Others include the occlusion of data lines and the y-axis
by data points, and the problem of associating various
labels with the items or structures that they label.

T
e

m
p

er
at

u
re

, º
C

Time, min

34

38

42
treated

0 5 10 15

control

t1

A

3. Plan of this paper

We first discuss the general nature of parsing as a
grammar-driven constraint satisfaction problem. Then,
the various types of ambiguities that can arise in diagrams
are enumerated. Some of these ambiguities can be
resolved by the local context, others require information
from a broader context. We discuss the two major classes:
lexical and structural ambiguity. A primary type of
structural ambiguity is attachment, e.g., the association of
a label with its correct referent. The other major class of
structural ambiguity discussed is analytic ambiguity. In
these, the categorization of a structure is itself in doubt,
e.g., is a short vertical line at the x-axis of a data graph an
error bar or a tick mark? The composition of elements,
including splitting, joining, and occlusion also can create
structural ambiguities. The final Discussion section
covers issues such as knowledge-based disambiguation,
future graphics standards, metadata for diagrams, and
intelligent authoring systems that should reduce the need
for complex diagram analysis systems.

4. Formulation of the parsing problem

• A diagram is vector-based, made up of two-
dimensional primitives such as lines and curves that
are open or closed (e.g., polygons), and positioned,
oriented text.

• All constituents have attributes whose values
describe their geometrical and logical properties. For
primitives, attributes include such properties as line
widths, region color, or fill pattern, and layer order
which can lead to occlusion.

• The allowable interpretations of a diagram are
specified by a grammar in which each production
describes a constituent, its members, and constraints
over the member attributes. Some of the constraints
are geometric, e.g., near, or horizontally aligned.
Other constraints may be higher-order, e.g., that all
members of a set-valued constituent are short vertical
lines.

• In general, the result of the analysis is a graph of
constituents, not a tree.

• If the constraint system has more than one solution
for a given diagram, then the diagram is ambiguous
with respect to the grammar. Proper design of the
grammars or subsequent analysis of the multiple
solutions are used to reduce or eliminate ambiguities.

The formulation we have used in our diagram parsing
work is the Context-based Constraint Grammar [1, 2].
One production drawn from a working grammar for x,y
data graphs is shown below [1]. It defines an Axis in the
conventional way as made up of two perpendicular lines
such that the left endpoint of the X-Line touches the
Y-Line . l e f t -endpoint is an attribute of a line.
X-Line and Y-Line are defined in turn by their own
rules (not shown). Our parser examines the constraints in
the body of the rule sequentially, so if the t o u c h
constraint is satisfied for a set of Y-Lines, the parser

then enforces the more demanding coincide constraint to
further narrow the set of legal Y-Line candidates.

(Axis -> X-Line Y-Line
 (X-Line)
 (Y-Line
 (touch
 (left-endpoint X-Line) '?)
 :constraints
 (coincide
 (left-endpoint X-Line)
 (bottom-endpoint Y-Line))))

Other rules may be set-based, e.g., ones involving highly
repeated elements such as data points or gene segments.

The diagram grammars that we and most others have
developed are often formulated in domain-specific terms,
e.g., using objects such as Axis and Data -Points for data
graph grammars. This is in contrast with the more abstract
syntactic formulations used for natural language. The reason
for such domain-specific grammars is that the totality of
diagrams breaks down naturally into a collection of classes,
e.g., the classes we have studied: x,y data graphs, linear gene
diagrams, and finite-state diagrams. We will argue below
that more abstract approaches are possible for diagram
parsing.

5. The classification of ambiguities

Figure 2. The relations between the classes of diagram
parsing ambiguities that are discussed below. These
closely parallel the ambiguities found in natural language
[4]. Lexical ambiguities involve alternate senses for
simple items. Structural ambiguities involve generating
alternative parse structures for a given collection of
elements.

6. Lexical ambiguity

The lowest level constituent normally considered in
natural language analysis is the lexeme (roughly, the word).
In diagrams, there is nothing that is strictly analogous to a
lexeme, but it is useful to consider certain classes of items,
which we will call graphemes, from this point of view. A
grapheme may be ambiguous, just as a word may.

Ambiguities

Lexical Structural

GapsAttachmentAnalytic

CompositionRole

As an example, consider the arrow or directed line as
an ambiguous grapheme (a homonym or homograph). An
arrow has (debatably) three distinct senses:

• Vector (with position, orientation, and magnitude)
• Transition (as in a finite-state diagram)
• Designator (pointing to an object)

One method for resolving ambiguity is to design the
grammar so that it only expects a single sense within a
restricted context. In Fig. 1, the arrow below the x-axis is
a designator for a time, t1. The grammar fragment below
that focuses on the appropriate context is a production,
X-Axis, that includes an X-Annotation constituent
that in turn includes a labeled arrow [1]. At the point at
which the X-Annotation constituent is introduced in the
X-Axis production, it is constrained to be drawn from a
set of elements that lie within 700 units of the
X-Axis-Line , but with all items comprising X-Ticks
and X-Labels excluded by a set difference operator:

(X-Annotation
 (difference*
 (near X-Axis-Line 700)
 (union* X-Ticks X-Labels)))

(The "700 units" referred to above are the normalized
units used in our Diagram Understanding System [2].)

Another way to resolve arrow ambiguities is to look at
the objects near the ends of the arrow and adjacent to the
shaft. For example, if the object at the tail is text, and the
object near the head is not, the arrow is most likely a
designator. If the objects near the two ends are of the
same type, e.g., both are labeled rectangles, then the
arrow sense could be a transition or it could be a vector
indicating flow, such as packet flow in a network. The
resolution of this type of ambiguity would require
examining the broad topical context or specific text
describing the diagram.

7. Attachment ambiguity

There are fourteen text labels in Fig. 1, which despite
their apparently obvious referents could cause difficulties
for a parser. For example, "Time, min" might apply only
to the 5 to 10 region of the x-axis, analogous to the role of
"t1", which applies only to the arrow above it. Adjacency
and alignment properties of labels are sufficient to resolve
most ambiguous attachments for conventional diagrams.
The "A" label in Fig. 1 might label the region of the data
maximum or the diagram as a whole (contrasting with
other diagrams: B, C,). This ambiguity would have to
be resolved at a high level in the parse graph or by
reference to text descriptions.

An interesting example of an attachment ambiguity
arises for repeated patterns, as shown in Fig. 3. One
solution to the ambiguity problem in Fig. 3 is to prefer
assignments that lead to a solution of minimal complexity
[5], one in which each of the five items in the label sets is
paired with exactly one item in the tick set, leaving no
item unpaired. Minimal complexity is a powerful
principle that is useful in all aspects of diagram parsing

[2]. It is a well-known technique in pattern recognition.
Preference approaches are also used extensively in natural
language disambiguation strategies.

Figure 3. In this figure the intent is that each character
labels one tick mark. It is obvious to a human that in a,
the characters label the ticks to their right, and in b, the
ticks to their left. This is in spite of the fact that the
characters are placed midway between the ticks, so that
nearness alone is not a decisive criterion.

8. Gaps

In natural language, when an element is omitted, creating
a gap, the presumption is that the reader will choose the
correct filler. Gaps are common in diagrams, e.g., the labels
that are omitted for three of the y ticks in Fig. 1. Fortunately,
there appear to be few if any ambiguous gaps in common
diagrams.

9. Analytic ambiguities

9.1. Role determination

In natural language analysis, the role of a constituent may
be ambiguous, e.g., in "I went to the store in her car.", "in her
car" can attach to the verb "went" (correct) or to "store"
(most probably incorrect!). An example of this for diagrams
appears in Fig. 1 for the data key at the top of the figure,
which has the appearance of data, but which is in fact a key.
Virtually without exception, such data keys involve minimal
graphics showing data point shapes or data line styles, each
labeled with text and arranged in a tabular layout. These
constraints are not easy to specify in a grammar and may best
be handled in a separate disambiguation step.

9.2. Composition

9.2.1. Segmentation. In Fig. 1, the x and y axes appear to
extend in the lower left corner to form y and x tick marks
respectively. A good deal depends on exactly how the
diagram was actually constructed: All tick marks might be
short lines, or the tick marks at the lower left might be
formed from the ends of the long axis lines, a potentially
ambiguous construction. The former case presents no
problems for parsing. For the latter, one approach would be
to define the ticks in terms of the alignment of their outer
termini which is not difficult in our approach, because line
termini are instantiated as distinct objects before parsing
begins. Another would be to allow the parser to hypothesize
segments of long lines as short lines. This would lead to
serious overgeneration, since two adjacent parallel lines

A B C D E

EA B C D

a

b

could then have any number of aligned equal length
segments.

Since any figure that appears visually simple could be
constructed from an arbitrary number of subparts, the
parsing problem might seem insuperable. At this point
we have to assume that diagrams obey certain well-
formedness constraints, following Grice's Cooperative
Principle for communication [3].

9.2.2. Occlusion. In Fig. 1, the data point markers (the
small filled and unfilled squares) occlude the data lines in
certain places, and even part of the y axis. In most
diagrams, line objects such as the y axis are not altered by
the presence of items that exist in a distinct overlying
layer, so no ambiguity exists.

A difficult class of occlusion problems arises when the
author of a diagram actively employs occlusion to create a
complex object, a process we call synthetic occlusion.
This is often done for author's convenience or to
overcome some limitation of the diagram creation
application. In Fig. 4 the title box at the top of the object
could be created as a small rectangle that is then carefully
aligned to abut the top of the larger rectangle. A simpler
and quicker way to do this would be to create two
rectangles, one overlaying the other as shown in the
figure.

Figure 4. In synthetic occlusion, occlusion is used to
create a visually distinct object. Most of the
underlying small square is meant to be ignored in the
analysis. Only the small visible rectangular portion of
it that contains the label is relevant.

One problem with synthetic occlusion is that it may
produce complex objects that are outside the range of the
grammar, e.g., an object whose boundary is a mix of
straight and curved segments.

The phenomenon of occlusion has also been discussed
in studies of the logic of diagrammatic reasoning [7].

10. Discussion

This brief paper has attempted to catalogue the major
ambiguities met in diagrams, as well as methods such as
context restrictions and minimal complexity to resolve
them.

The more difficult ambiguity problems must be solved
using knowledge-based methods. These will involve
more knowledge of the domain and its conventions as
well as an analysis of the text within the diagrams, in
captions, and in discussions of the diagrams in the body
of the document.

For diagram parsing to succeed on a large scale, the
representations chosen for diagrams must be matched by
the design of the grammars used for their analysis. This is
not just a matter of graphics file formats, but involves

issues such as how lines are segmented, how rectangles are
represented, etc. (Sec. 9.2.1). The pressure to achieve a
uniform format will be intense, because all providers of
diagrams will want their diagram contents indexed and
available for search and use.

Though the Web is dominated by pixmap formats today
(GIF and JPEG) there is a major effort to develop a vector
standard for the web, SVG [8]. We predict that such vector
representations will dominate in the future.

The analysis of a diagram ultimately leads to the
production of metadata describing diagram content. In our
view, the proper way to proceed in the future is not to
develop more sophisticated analysis procedures, but to
develop better authoring tools, intelligent authoring systems,
that allow the human or machine creator of a diagram to
embed the appropriate metadata in the diagram at its
inception.

One revelation of the work here can be found in our
assertion that even objects apparently as general as an arrow
have a limited number of senses. We assert that the same is
true of even simpler entities such as lines and rectangles --
they have a limited number of senses. Many think that an
isolated rectangle is entirely without meaning; we do not now
think that this is true. This insight will allow us to build
more purely syntactic theories of diagram parsing. It will
allow us to develop more concise characterizations of
ambiguity in diagram parsing and open the way to more
systematic methods for resolving ambiguities.

Acknowledgements. The anonymous reviews of the
original draft were quite helpful. Thanks to the ERC for a
productive working environment and to my wife, Carolyn
Scott Futrelle, for her skilled editorial assistance.

References

[1] R. P. Futrelle, “The Diagram Understanding System
Demonstration Site,” http://www.ccs.neu.edu/home/futrelle/
diagrams/demo-10-98/, 1998.
[2] R. P. Futrelle and N. Nikolakis, “Efficient Analysis of
Complex Diagrams using Constraint-Based Parsing,” presented at
ICDAR-95 (Intl. Conf. on Document Analysis & Recognition),
Montreal, Canada, 1995.
[3] H. P. Grice, “Logic and conversation,” in Syntax and
Semantics 3: Speech Acts, P. Cole and J. Morgan, Eds. New York:
Academic Press, 1975, pp. 41-58.
[4] G. Hirst, Semantic interpretation and the resolution of
ambiguity. Cambridge: Cambridge University Press, 1987.
[5] M. Li and P. Vitanyi, An Introduction to Kolmogorov
Complexity and Its Applications. New York: Springer-Verlag, 1993.
[6] K. Marriott, B. Meyer, and K. Wittenburg, “A Survey of
Visual Language Specification and Recognition,” in Visual
Language Theory, K. Marriott and B. Meyer, Eds.: Springer Verlag,
1998, pp. 5-85.
[7] D. Wang, J. Lee, and H. Zeevat, “Reasoning with
Diagrammatic Representations,” in Diagrammatic Reasoning.
Cognitive and Computational Perspectives, B. Chandrasekaran, J.
Glasgow, and N. H. Narayanan, Eds. Menlo Park, CA, Cambridge,
MA: AAAI Press, MIT Press, 1995, pp. 339-393.
[8] WWW-Consortium, “SVG -- Scalable Vector Graphics,”
http://www.w3.org/Graphics/SVG/, 1999.

title title

