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Abstract
Documents are composed of text and graphics.  There is
substantial work on automated text summarization but
almost none on the automated summarization of graphics.
Four examples of diagrams from the scientific  literature are
used to indicate the problems and possible solutions: a table
of images, a flow chart, a set of x,y data plots, and a block
diagram.  Manual summaries are first constructed.  Two
sources of information are used to guide summarization.
The first is the internal structure of the diagram itself, its
topology and geometry.  The other is the text in captions,
running text, and within diagrams.   The diagram structure
can be generated using the author's constraint-based diagram
understanding system.  Once the structure is obtained,
procedures such as table element elision or subgraph
deletion are used to produce a simpler summary form.  Then
automated layout algorithms can be used to generate the
summary diagram.  Current work on parsing and automated
layout are briefly reviewed.  Because automated diagram
summarization is a brand-new area of inquiry, only the
parsing phase of the approach has been fully implemented.
Because of the complexity of the problem, there will be no
single approach to summarization that will apply to all kinds
of diagrams.

1. Introduction

Documents are composed of text and graphics.  But
virtually all summaries and excerpts of documents
available today are in text form exclusively.  Including
graphics in summaries would address this imbalance, but
raises obvious questions as to how such graphics
summaries could be generated.  There is essentially no
literature on the summarization of graphics.  This paper is a
first foray into this unexplored territory. It focuses on
diagrams, which are line drawings such as data plots or
block diagrams.

The overall plan of this paper is to first present a set of
four examples of diagram summarization, all constructed
manually, using diagrams from the science and engineering
literature.  Since the summaries are constructed manually,
they represent, in a sense, the ideal summarization that we
would like an automated system to achieve.   We then go
on to discuss what would be involved in automating the
process of summarizing diagrams, illustrated with the same
four example diagrams.   As part of this we discuss the
computational results we have achieved so far on

extracting structural information from diagrams by
constraint-based parsing.  The four diagrams have been
chosen to represent a cross-section of the types of problems
that arise in diagram summarization.

Assuming that structural descriptions can be obtained,
either from parsing or as metadata furnished by the author
of the document, the problem then becomes one of
selecting one or a few figures from a document, or
distilling a figure (simplifying it), or merging multiple
figures.  The last two approaches require the generation of
a new figure that did not previously exist, so results in the
fields of automated layout and graph drawing are discussed
to see how those methods can be brought to bear on
distillation and merging.  The overall process then is one of
analysis to develop structural descriptions, the production
of summaries of the descriptions, and finally the
generation of the graphical form of the summary diagram.

Throughout we assume that the diagram of interest is
vector-based, as contrasted with a raster image.
Summarization of raster images involves an entirely
different set of problems including image processing and
segmentation, topics not treated here.

Our work on diagram summarization so far has been to
develop systems that can automatically discover diagram
content by visual parsing.  It is this content that must be
analyzed, along with related text, to produce summary
figures that then have to be laid out and displayed.
Because we have not yet developed automated systems to
produce reduced or summary versions of diagram content,
our discussion has to be viewed as an initial exploration of
the nascent field of diagram summarization.  It attempts to
lay out the research and implementation problems that
must be solved in order for working systems to be built.
We hope that this paper serves as both a catalyst and  a
guide for this new domain.  One inspiration for this work is
the rapidly increasing availability of electronic documents
on the World-Wide Web and elsewhere as well as the
profusion of formats, such as PDF (Adobe Systems
Incorporated, 1996) for whole documents, PGML for
vector graphics, XML (World-Wide Web Consortium,
1998) for metadata, that make it possible to access and
manipulate the contents of these documents for information
extraction and summarization.  The availability of these
documents and the needs of users to access them efficiently
motivates the current work on summarization in general,
and this paper on diagram summarization in particular.  A
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useful discussion of the structure needed to fully exploit
scientific documents appears in (Fateman, 1997), with
additional discussion and web links at
http://http.cs.berkeley.edu/~fateman/MVSD.html.  Fateman
uses mathematical notation as his example and discusses
the problems of representing visual appearance, syntax
(structure), and semantics, all issues that have to be dealt
with in diagram summarization.

Our work on diagram parsing and this discussion of
summarization focuses on the scientific and technical
literature.  The figures in such documents tend to be
strongly information-bearing, as contrasted with figures in
newspapers and magazines that are often more topical and
indicative, e.g., a picture of some unidentified people
applauding at a concert.

At first blush it might seem that the text accompanying
figures could be exploited to guide diagram summarization,
but as we explain below, this is often not the case — the
diagram itself must be analyzed.  This means that we
cannot always take advantage of lexical resources and text
statistics that are so helpful in text summarization.

2. Manually Constructed
Diagram Summarization Examples

2.1 Example #1: Distilling a table of images
The first example is drawn from a paper about OCR (Ho
and Baird, 1997) that has eleven figures in it, many multi-
part and one occupying an entire page.  The paper is about
building parameterized defect models for the appearance of
characters and training systems on very large collections of
characters generated by the models, and assessing their
performance.  Some of the figures show the degraded
characters that are synthesized, but most show statistical
results of their analyses.  An informative summary should
probably include one figure that shows examples of the
degraded characters.  The figure we have chosen is their
Fig. 7, shown in our Fig. 1a below.  The running text in the
article offers the following support for this decision,

"...The key contributors to scanning and printing noise
are the three parameters blur ..., thrs ..., and sens ....
These will be our primary concern.  Figure 7
illustrates these effects."

The choice of this figure is a selection process but we
will not dwell on that process at this point.  On examining
the figure, we can see that it is possible to reduce it to a
more compact summary form, by manipulating its graphics
content and its caption.  The graphics content, with ten
sample images in each of three rows, offers more detailed
information than is necessary in a summary.  The
summarized form, shown in Fig. 1b, elides the eight
intermediate examples, and indicates them with ellipsis.  In
summarizing the caption, the detailed numerical values can
be omitted, giving the caption in Fig. 1b.  This collapsing
of the set of graphical items is a distillation process.

Example #1 does include images in tabular positions, but
our approach to summarization for this example treats them
as anonymous items, with no internal structure.

In Fig. 1 and throughout the remainder of the paper, we
have adopted the convention that figures reproduced from
other sources are surrounded by a border; if the original
caption is included, it is contained within the same border.
This is also true of figure/caption pairs that represent
summaries such as Fig. 1b.  Additional captions of our own
are placed outside the borders.  The full text of the original
captions is included in all four example figures.

Fig. 7. Effects of blurring, thresholding, and pixel
sensitivity.  Images are created with blur varying
from 0.0 to 3.6 by 0.4  (top row); thrs varying from
0.9 to 0.0 by -0.1 (middle row); and sens varying
from 0.0 to 0.9 by 0.1 (bottom row).

Figure 1a, Example #1.  This figure shows three
monotonic sequences of degraded characters arranged
in tabular form (Ho and Baird, 1997).  The appearance
of the characters is not discussed in the original paper,
since their appearance is evident on viewing the
figure.

Fig. XX.  Effects of blurring,
thresholding, and pixel sensitivity
(parameters blur, thrs, and sens).

Figure 1b.  A manually constructed summary figure
and caption for Fig. 1a.  Each horizontal sequence in
Fig. 1a shows a monotonic progression that is
captured by the extreme values in this figure
summary.



2.2 Example #2: Distilling a Flow Chart
Flow charts are common diagrams in many fields.  They
are often candidates for distillation because  they contain
minor steps that can be omitted in a summary. The flow
chart in Fig. 2a shows the link of events leading from DNA
to the synthesis of a protein.  A normal path is shown on
the left and an abnormal one on the right.

DNA

ODN

mRNA

Ribonuclease

mRNA-directed protein
synthesis on ribosome

Mature adenosine
A1 receptor

Truncated adenosine
A1 receptor

Figure 2  Nyce and Metzger have used antisense
oligodeoxynucleotides (ODNs) to selectively inhibit
the synthesis of adenosine A1 receptors in rabbit lungs.
Transcription of messenger RNA from the gene for
the A1 receptor is followed by synthesis of the
receptor protein on ribosomes.  The ODN consists of
deoxynucleotides that are linked by phosphorothioate
linkages (which confer stability to DNA-degrading
enzymes).  The ODN hybridizes by Watson-Crick
base-pairing to the mRNA, to generate a substrate
for ribonucleases, particularly RNase H, which
degrade the RNA protion of the hybrid.  ODNs must
be long enough to hybridize only to the mRNA of
interest, they need to be stable and they must be able
to enter cells and activate ribonucleases.  As the
mRNA no longer encodes the full-size protein,
fewer receptors are synthesized, and the normal
turnover of the adenosine A1 receptor reduces the
total number of receptor molecules.

Figure 2a, Example #2.   The topology of this flow

chart (Richardson, 1997) includes two initial stages, a
binary split, and then four additional stages in each of
the two pathways.  Biologically, the key element  is
the addition of a certain substance, "ODN",  in the
right-hand pathway which leads to the synthesis of an
abnormal and non-functioning receptor protein
compared to the normal left-hand pathway.

ODN

mRNA

Truncated adenosine
A1 receptor

Figure 2b. A manually generated summary of Fig. 2a.
The essence of the process is that ODN interferes with
subsequent processing of the mRNA, leading to an
abnormal protein.  That is all that is retained in this
simple summary.

Both the caption and the running text mention "ODN"
extensively.  Apposition tells us that ODN is the
abbreviation used for "antisense oligodeoxynucleotide",
and "antisense" is another prominent term, included also in
the title of the article. This makes the right-hand branch of
the flow chart, and ODN in particular, the most salient part
of the diagram.  The summary retains the arc with the ODN
label, omits the common initial node and omits all
intermediate states between the mRNA node and the final
node.  Since the left-hand path in Fig. 2a is normal and
conventional, it is not particularly informative and is
omitted in the summary.

mRNA Truncated adenosine
A1 receptor

ODN

Figure 2c. A stylistically distinct rendering of the
summary in Fig. 2b.  This contains essentially the
same information as the Fig. 2b.  But the different
style makes it difficult for a reader to first look at the
summary and then go to the full paper where the full
figure (2a) is presented, because of the horizontal
organization versus the vertical organization of the
original, rectangular nodes instead of the horizontal
line nodes of the original, etc.  A summary in the style



of Fig. 2b would be strongly preferred on these
grounds.

2.3 Example #3: Merging for Contrast
Summarizing large collections of numerical data from
experiments or complex simulations is an intrinsically
difficult problem.  The example, in Figs. 3a and 3b shows
the merging parts of two different diagrams into a single
one.
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Figure 3    Chemotactic activity of BLC on leukocyte
subtypes.  Results are expressed as the percentage of
input cells of each subtype migrating to the lower
chamber of a transwell filter.  Panels show migration
of: a, B cells;  b, purified B cells;  c, CD4+ T cells;
d, CD8+ T cells;  e, monocytes/macrophages;
f, granulocytes, towards BLC.  Positive controls are
SDF-1α (a-e) and IL-8 (f). ....

Figure 3a, Example #3.  This contains the first six of
eight subfigures from Fig 3 in (Gunn, et al., 1998) and
the corresponding portions of the original caption.

The primary point made in the article in which the
material in Fig. 3a appears is that the researchers have

discovered a substance that specifically affects (attracts) B
cells  (a class of motile blood cells) but not T cells and
other major classes of blood cells.  This can be pointedly
summarized in a single figure that selects the portions of
two of the data plots that show the contrasting behavior,
e.g., plots a and c.  The merged graph is shown in Fig. 3b.
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Figure ZZ.  The chemoactive activity of
B cells and T cells in response to the novel
chemokine, BLC.
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Figure 3b.  This data plot contains the significant
contrasting portions of Fig. 3a, parts a and c.  We
created the caption within this summary figure in the
style normally used in biology research papers.

2.4 Example #4: Distilling a Large Block Diagram
Flow charts are typically DAGs, whereas block diagrams
can have numerous interconnections and cycles.  The
example here is a block diagram for  a video signal
compression system (Bhatt, Birks and Hermreck, 1977),
Fig. 4b.  It is interesting to note that the original figure is in
color, with eight distinct colors used for the various blocks.
The colors for the various blocks are chosen essentially at
random, with little regard to grouping them by
functionality.  This is apparent for example in a set of three
source-to-transmitter figures earlier in the original article.
In two of the figures the video camera icon is light blue and
in the third it is a mustard color, an arbitrary difference for
items with identical roles.

3. Automated Summarization of Diagrams

This section discusses the goals of automation and the
important concepts that underlie the work.  It also gives a
brief overview of the important aspects of diagram content,
from syntactic structure to semantic associations with real-
world entities.



3.1 Goals of Automation

One of the goals of any summarization system is to
generate summaries in real time or, operating in batch
mode, produce summaries at the rate at which the corpus of
interest grows.  That is, the methods should scale to
realistically useful tasks.  Our diagram parsing system
currently parses a typical diagram (100 to 200 vector
elements), in about 10 seconds.  Let us assume, for the sake
of argument, that the full summarization process would
take about 30 seconds.  Since there are 32M seconds/year,

such a system could process 1M diagrams/year.  This
would be a sizable fraction of the scientific and technical
diagrams published per year, estimated from article counts
gathered from databases such as BIOSIS and the
Engineering Index (totaling over 1M documents/year).

Another goal is to develop summarization techniques
that are relatively domain-independent.  This is possible in
text summarization, because corpus statistics are able to
reveal major terms in the discussion, and the linear
organization of the text can also be used, e.g., selecting the
first sentences of section-leading paragraphs.  It is more
difficult to do domain-independent summarization for
diagrams.  We do suggest below that in some cases, the
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MPEG-2 encoder data paths comprise the luminance and two chrominance channels.  Because of the sheer
computing power needed for high-definition television (HDTV) video rates, hardware implementations of
HDTV MPEG-2 encoders typically are realized from parallel-processing computing engines, which could
each independently compress a horizontal or vertical slice of an image.  In such a case, a rate controller
would have the added task of monitoring and maintaining the bit budget among the encoding engines.

Figure 4a, Example #4.  A large block diagram.  The summary in Fig. 4b merges all the units below the primary upper
backbone into a single composite unit.



overall topological and geometrical organization of a
diagram may be exploited for domain-independent
summarization.

3.2 Background for Automation
There is a collection of concepts and a standard
terminology for them, some of it derived from text-based
document analysis, that we will use in the discussions
which follow.  Documents can be characterized by their
genre (journal article, newspaper article, book, etc.) and
their domain (operating systems, microbiology, etc.).  Text
is essentially propositional, presenting statements in
natural language that can be mapped into formalisms such
as the predicate calculus.  Language draws from a huge
store of lexical entities that map words to meaning.  In
contrast, graphics is analogical, using spatial structures as
the information-carrying elements (Sloman, 1995).
Graphics and language are different modalities, because
they require distinct interpretation functions, whereas both
may rendered in the same medium, e.g., on the printed page
(Stenning and Inder, 1995).  Graphics can be divided into
veridical entities, such as photographs and drawings of
real-world structures, and abstract diagrams such as flow
charts or data plots, but for the most part, diagrams are
built up from relatively content-free items such as lines,
curves, and closed regions such as polygons, which are
(only roughly) analogous to the orthographic characters
making up words. In graphics, there are also conventional
classes of symbols, such as arrows, tick marks, error bars,
corporate logos, and standard traffic signs (FHWA, 1997)
that are learned elements of the visual lexicon.

It is useful to distinguish the general term, graphics,
which contrasts with text,  from specific subclasses such as

figures which are instances of graphics in documents;
diagrams which are line drawings; and images which are
raster-based.  There are distinct classes of diagrams such as
x,y data plots, pie charts, vertex/edge graphs, gene
diagrams, etc.

The text associated with figures can be in captions or in
the running text, or included within the figures.  Metadata
is normally propositional material that is available in an
index or other data structure or is generated, that gives
additional information about diagram structure and content,
but is not always made available for viewing by the reader
of an electronic document.  Tables are hybrids of text and
graphics.  Summarization of text or graphics can be
indicative or informative (Paice, 1990). The former
presents material that indicates the subject domain (such as
the audience picture we mentioned earlier), while the latter
contains information which plays a substantive role in the
document.

Additional concepts include the purpose of
summarization which can include the intended audience,
and a chosen emphasis, which can focus on methods,
results, judgments, or matters in dispute.  The choice of
these can influence the type of summarization that is
constructed.

3.3 Diagram Content
It is possible to define grammars and parsing strategies to
produce structured descriptions of the contents of
diagrams.   In this section the basic structure of diagrams
and its interpretation at the syntactic and semantic levels is
described, using the examples in Fig. 5.  Further details on
the parsing approach are given in the next major section on
diagram understanding.
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Figure 4b. A summary of Fig. 4a focusing on the horizontal "backbone" connecting the system input on the left
to the output on the right.  The choice of the text in the "black box" node at the bottom is a text summarization task.



The raw content of a diagram is the collection of vector
primitives that make it up, the lines, curves, polygons, and
text, each with their specific numerical parameters.  For
summarization to work, a description of the diagram is
needed that codifies the objects, and their functional,
geometrical, and topological relations, e.g., the fact that an
object is a node in a block diagram that contains certain
text and that is contacted on left by an oriented edge
(indicated by an arrowhead).  The edge may in addition
emanate from another node or have a free end, etc.

The syntax and semantics of diagrams has strong
overlaps with the related natural language concepts, but
there are major differences.  In language, the model of the
logical form of an utterance is normally a collection of
real-world entities existing outside language per se.  But
the basic objects in a figure can be viewed as having a
physical existence of their own, e.g., marks on paper.
More formally, the axioms of geometry and their
associated computational algorithms (for length, distance,
orthogonality, etc.) can be used to extend the meaning of
geometrical objects in the formalism, allowing arbitrary
geometrical calculations to discover or test relations among
sets of objects.  Graphical knowledge has been
characterized as vivid knowledge  (Levesque, 1987;
Levesque, 1992), first-order languages which only contain
ground atomic sentences, are universally quantified over
the domain, and have other "concrete" properties.
Entailment in such languages has been shown to be
tractable.   The limitation of this view is that though the
graphical elements themselves are so restricted, the real-
world entities to which they refer have no such constraints.

The approach above forms the basis for grammars that
describe complex graphical objects.  Fig. 5a shows a
simple data plot, whose analysis by such a grammar
identifies the scale lines with their tick marks, tick mark
labels, and axis labels.  The less orderly curve in the space
delimited by the two axes is the data.
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Figure 5a.  Basic syntax:  E.g., identification of the
basic components, the x and y scale structures, and the
data curve.

At the next level, in Fig. 5b, the world coordinates of the
data points can be extracted, i.e., in units of degrees
Fahrenheit and the time in hours.  At this level there need
be no explicit representation of the semantics of time or
temperature.
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Figure 5b.  Lowest semantic level:  Numerical values
of  world coordinates, e.g., 79° at 1800 h.

Additional computations can yield useful information
that is still domain-independent, e.g., the maximum value
achieved by the data set, Fig. 5c.  (The operations in Figs.
5b and 5c could be applied in either order.)
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Figure 5c.  Numerical analysis semantics:  "Day's
maximum of 100° reached at 1520 h"

Finally, an interpretation can be developed at a much
higher level in which the information in the plot is related
to real-world situations outside the diagram proper, in this
case a statement about the affect of such temperatures on
crop viability, Fig. 5d.  Such an interpretation goes beyond
diagram analysis per se, but could play a significant role in
deciding whether or not to include information from
particular diagrams in a document summary.
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Figure 5d.  Real-world semantics:  "Reaching this
temperature may cause some crop damage because of
the current drought conditions"

4. Diagram Understanding

This section discusses our work on diagram parsing as well
as work by others on the problem.  Parsing is the first stage



of the diagram summarization process, producing the
structural descriptions that are the input to later stages.

4.1 The Diagram Understanding System (DUS)

Parsing a diagram generates a syntactic description, a parse
tree.  The parse structures we consider here are based on
approaches to parsing that we have pursued using context-
based constraint grammars (Futrelle, 1985; Futrelle, 1990;
Futrelle, Carriero, Nikolakis and Tselman, 1992a; Futrelle
and Kakadiaris, 1991; Futrelle, et al., 1992b; Futrelle and
Nikolakis, 1995).  Our system is called the Diagram
Understanding System or DUS.  A typical production in a
DUS grammar for x,y data plots describes a collection of
x-axis tick marks and their associated horizontal scale line,
such as in our figures 3a,b and 5a-d, by the following
production,

X-Ticks -> Ticks X-Line
  (X-Line)
  (Ticks (touch X-Line ?)
      :constraints
          (> (number-of Ticks) 2))

In the X-Ticks production, the body of the production
states the order of analysis (X-Line followed by Ticks) and
states the constraints on the constituents —in this case that
the number of Ticks be greater than 2.  The term
(touch X-Line ?) specifies that the items that can be
considered in analyzing the Ticks production are restricted
to a context, the set of objects that touch the X-Line already
identified.  The context functions as an inherited attribute
in the sense of (Knuth, 1968).  X-Line is defined by
another production, as is Ticks, a set object,

Ticks -> Set ( Line )
  (:element-constraints
      (vertp Line)
      (short Line))
  (:constraint horiz-aligned))

In the Ticks production there are constraints on the
individual elements of the set given by :element-
constraints, as well as a constraint on the set as a whole,
that its members be horizontally aligned with one another.
A potential ambiguity of the Ticks rule is that the any
subset of the vertical lines touching the horizontal one
would be a legal instance.  This ambiguity is avoided by a
meta-rule that chooses the maximal (largest) set satisfying
the constraints.

A simple diagram that would be an instance of this rule
is shown in Fig. 6.

Figure 6.  This structure is an instance of the X-Ticks
grammar rule that describe it as a set of short vertical

lines that are horizontally aligned and touching a long
horizontal line.

In addition to inherited attributes, there are synthesized
attributes (Knuth, 1968) in the DUS formulation that are
passed from a production to a higher-level node in which
the constituent appears.  An example would be the
computation of the midpoint of a line, passed upwards as
the value of an explicitly named attribute.

The efficiency of our system is aided by the use of
context which restricts the search, as well as the order of
construction of the constituents as stated in the rules.
There are many computations of geometrical relations such
as near and aligned that have to be done as parsing
proceeds.  These are speeded up by a preprocessing phase
that builds an index, a spatially associative structure
(SPAS).  SPAS is a pyramid of square arrays covering the
diagram space at varying levels of resolution, down to
resolution of about one character width (Futrelle, 1990).  It
is created in a preprocessing stage before parsing proper
begins.  Each square element lists all graphical objects that
occupy or pass through the region.  Thus, to find the
objects near to a given one, only a local search in the SPAS
index is needed.  Computations of geometrical relations
between simple objects such as straight lines or complex
objects such as Bezier curves are all done in the same
uniform way when using SPAS. Memoization is also used
to enhance performance (Norvig, 1991).

Parsing in the DUS is implemented as a constraint
satisfaction problem which, among other things, makes it
straightforward to allow objects to be shared, i.e., to
participate in more than one distinct structure in the same
parse.  Sharing is quite common in graphics.  For example,
the y-axis (ordinate) tick mark numerical labels in Fig. 3a
are shared across a pair of plots, and the y-axis label on the
left is shared by all six plots.  Sharing allows us to analyze
each of the six plots as a complete plot with full tick marks
and a label without having to explicitly include sharing in
the grammar.   The parse of each of the six subplots in
Fig. 3a can be treated as a tree structure even though it is
technically a DAG because of the shared constituents.

Sharing allows another powerful type of analysis in
which a single diagram is simultaneously analyzed in two
different ways, all in terms of common objects rather than
by two distinct analyses that later have to be brought into
concordance.  This is useful for example if one part of the
analysis is stated in topological terms, e.g., the connectivity
of a flow chart or block diagram, and another simultaneous
analysis describes the spatial organization, e.g., the two
lower vertical  columns of nodes in the flow chart of
Fig. 2a.

One issue that arises in a general-purpose retargetable
system such as the DUS is how it should behave when
presented with an arbitrary unknown diagram.  We could
attempt to parse the figure with a succession of grammars,
each specialized to a different class of diagrams.  A more
efficient way to proceed would be to write a grammar that
had in it a collection of simple productions that describe
common "signatures" of certain classes of diagrams, such



as scale lines, arrows, tick-marks, back-bone structures,
labeled boxes, etc.  A preponderance of any one of these or
of some subset of them in the resulting parse would greatly
restrict the full-fledged grammars that would then be
appropriate to use for more detailed analyses.

The DUS is implemented in Common Lisp / CLOS
(Macintosh Common Lisp) and every constituent, whether
a primitive (Line) or a higher-level one (Data-Plot) is an
instance of a class of that name, with slots that include its
constituents (RHS).  The parsing proceeds top-down and
the result is one or more solution objects of the start-node,
which in turn contain constituents, etc., all CLOS
instances.  Detailed performance figures exist only for
older machines (Futrelle and Nikolakis, 1995; Nikolakis,
1996), and scaling up from these, we expect that current
machines should parse a typical diagram of 100 to 200
primitives, which is the size of a typical published data
plot, in 10 seconds or less.  The system is also being ported
to Unix.  So far, we have working grammars for x,y data
plots, linear gene diagrams, and finite-state automata
(Nikolakis, 1996).

Genesis of the DUS.  Before reviewing other approaches
to diagram parsing, it is worth explaining the strategy we
employed to develop the DUS system, which gives it a
very different character than other systems.  The reason
this discussion is relevant to the diagram summarization
problem is that we intend to apply the same philosophy to
the development of efficient and effective approaches to
automated diagram summarization.  Practically all other
systems for parsing visual languages have grown from the
extensive conceptual base and formalism developed for
string languages, e.g., natural language and programming
languages.  Our approach began by studying thousands of
published diagrams in a variety of scientific and technical
publications.  From that study we saw the great importance
of repeated elements and thus the need for sets in our
formalism.  We also realized that there is a major
distinction between background and foreground elements
in informational diagrams.  Background elements are those
that are arranged in simple low-complexity patterns, e.g.,
with aligned repeated elements, such as tick marks.  The
background is called the framework in (Kosslyn, 1994).
We then wrote algorithms that could discover and give
structure to background elements very efficiently.  Items
not in the background constitute the foreground, the high-
content or informational items, e.g., the non-uniformly
positioned data points in a data plot.  Our computational
strategy was then extended to handle the foreground
elements, ignoring the previously discovered background
elements.  Once this efficient computational system was in
place, its procedural face was systematically transformed,
using Lisp macros, to the essentially declarative form of
the current DUS.  Thus our system is the result of placing a
declarative face on a fundamentally efficient underlying
parsing engine, rather than attempting to efficiently parse
grammars using strategies that are based ultimately on
string language techniques.

4.2 Previous Work on Diagram Understanding
Now that we have described the DUS approach to diagram
structure discovery, we will briefly discuss some of the
other work in the field, generally know as visual language
parsing.    Reviews of this field can be found in Nikolakis'
thesis (Nikolakis, 1996) and in the extensive recent review
(Marriott, Meyer and Wittenburg, 1998) with 201
references. Given this amount of past work, our discussion
is necessarily quite selective.  Our approach falls under the
general rubric of attributed multiset grammars.  The
constituents in these grammars may have geometric and
semantic attributes associated with them.  Productions
contain constraints over the attributes of RHS constituents.
Other approaches to parsing include logical and algebraic
formalisms (Marriott, Meyer and Wittenburg, 1998).  The
primary statement that can be made about visual language
parsing is that the demands of the problem are so great that
the approaches needed to deal with them go beyond those
that are theoretically and computationally tractable.  This
means that the utility of the approaches is very dependent
on their design, their implementation, and the class of
graphical items that they are expected to analyze.  This is
precisely the reason that our own approach was developed
by focusing first on the efficient parsing of real diagrams,
and only later on declarative formalisms and formal
analysis (Nikolakis, 1996).  Interestingly, in the extensive
review we have already mentioned  (Marriott, Meyer and
Wittenburg, 1998), the analysis of published diagrams is
hardly touched on as an application, in spite of their great
volume and their importance in all of scientific
communication.  In the same vein, there has been little
concern over parsing diagrams with hundreds of elements
and essentially no systematic performance studies in this
domain.  The great utility of parsing systems such as the
DUS is that they can be retargeted, applied to a variety of
diagram types by simply changing the grammar. The only
systems that have been built for truly large diagrams are
hand-crafted, non-retargetable systems for problems such
as interpreting drawings of telephone central office
equipment racks ("distributing frames") (Luo, Kasturi,
Arias and Chhabra, 1997), architectural drawings (Ah-
Soon and Tombre, 1997), etc.

Comparison of a DUS and CMG example.  Though
developed from different points of view, it is interesting to
compare a portion of a DUS grammar for a state diagram
with the corresponding production in constraint multiset
grammars (CMG) (Marriott, 1994).  The DUS grammar
includes context restrictions and sets and explicitly states
the sequence of constituent processing.  The CMG
grammar is purely declarative.



DUS:

********** < TRANSITIONS > *************
Transition  ->  A-state_1  Labeled-arrow
                A-state_2
  (Labeled-arrow)
  (A-state_1
    (touch (leave-pt (arrow Labeled-arrow)) '?))
  (A-state_2
    (touch (reach-pt (arrow Labeled-arrow)) '?));

Transitions -> Set ( Transition );

CMG:

TR:transition ::= A:arrow, T:text

  where exists R:state, S:state where

  T.midpoint close_to A.midpoint

  R.radius=distance(A.startpoint,R.midpoint),

  S.radius=distance(A.endpoint,S.midpoint)

  and TR.from=R.name, TR.to=S.name.

4.3 Diagram Syntax, Semantics, and Style

Syntax and Semantics.  Stripped to its essentials, the DUS
generates a parse tree for a diagram.  But as the earlier
examples make clear, both the DUS and CMG grammars
are couched in terms of constituents whose semantic roles
are evident from their names.  Here is a list of some of the
constituents in our grammars that makes this clear.  For
state machines:  Init-state, Transitions, Final-states,
Labeled-arrow, A-state.  For gene diagrams:  Gene, Gene-
body, Gene-title, Backbone, Segment.  For data plots:  XY-
Data-Plot, X-Axis, Y-Axis Data, Data-Lines, Data-points,
etc.   Though writing grammars in this way might appear to
solve the semantics problem, extending the coverage to a
greater variety of diagram classes and domains could result
in a proliferation of grammars that each try to solve the
semantics role problem in a single step.  For example, a
graph could represent an organizational chart, a network
diagram, a chemical process flow chart, etc.   A better way
to deal with such variety would probably be to have a
grammar with more neutral terms, followed by a semantic
interpretation process tuned to the domain.   This would
parallel natural language semantic formalisms more
closely.

Style.  In Fig. 2c we demonstrated what could happen if
the details of the style and layout of the original diagram
were not followed in constructing a summary.   The reader
who then went from the summary to the full document and
its figures would find the transition disorienting.  This
situation could be even worse for a complex diagram such
as the block diagram summary of Fig. 4b.  Due to its
complexity there are a large number of different ways in
which the summary could be laid out on the page
(vertically for example!) which would have the same
topology but a radically different appearance.

In order to maintain as much style constancy as possible,
it is necessary to capture the stylistic and layout

information of the original in the diagram understanding
step and preserve it during the summarization and
generation process.  A related problem is discussed in the
automated graph drawing literature.  Graph drawing
sometimes proceeds incrementally, as the user adds new
vertices.  If the automated layout of the graph were
recomputed from scratch each time a new vertex was
added, its appearance could change radically at each step.
So some graph drawing algorithms attempt to preserve as
much of the layout as possible when redrawing after
insertion which allows the user to maintain a rather
constant "mental map" of the graph (Misue, Eades, Lai and
Sugiyama, 1995).

Most visual language parsing systems pay little or no
attention to the stylistic aspects of diagrams.  In our DUS
work, the vector-based diagram data that we parse is
derived from postprocessing Postscript files, themselves
generated from diagrams that we have created using
drawing applications such as Canvas.  These retain all style
information such as line widths, fonts, color, etc.  Our
parsing work has for the most part ignored the style
information, but clearly it is available and could be used in
the later generation phase.  The locations and therefore the
relative locations of various objects is an integral part of
diagram parsing, so that layout information is always
available.

There is a more complex problem that must be faced in
capturing layout information for later use in generation,
which is that the description of the necessary topological,
content, and layout information might be difficult to
represent simultaneously in a single parse.  It might be
necessary to build additional tools to extract the variety of
types of information needed from a single parse.  But as we
described earlier, the constraint-based approach of the
DUS, and sharing in particular, allows more than one type
of analysis to proceed simultaneously, with the various
results all using the same objects where appropriate.

5. Automated Diagram Generation

Diagram summarization often involves the generation of a
diagram, once the summarized structure for the diagram is
developed.  There are three important aspects of the
problem of generating diagrams.  The first is the art and
science of good graphics design which prescribes
guidelines for the use of graphics elements and their layout
in space in ways that make the presentation of information
clear and unambiguous (Cleveland, 1994; Kosslyn, 1994;
Tufte, 1985; Tufte, 1990; Tufte, 1997).  The second is the
collection of common systems that generate much of the
graphics produced today.  These are exemplified by
systems such as spreadsheets that have built-in data plot
generation capabilities.  In these systems, the style of the
plot is selected from a small set of examples and some
portion of the data in the spreadsheet is used to generate a
data plot containing it.  This is normally not a difficult task,
because the system designers retain total control over the



specifications of each of the supported styles.  The third
aspect is the work of the graph drawing community, which
is primarily concerned with drawing large vertex/edge
graphs under certain constraints such as minimizing the
number of crossings or minimizing the number of right-
angle bends (for drawings using only vertical and
horizontal edge segments).  There have been a number of
annual graph drawing symposia, dealing with these issues,
e.g., (DiBattista, 1997).  Beyond these approaches to the
generation of graphics, there is a good deal of research
today on scientific visualization and the presentation of
large datasets such as the collections of documents returned
by retrieval systems.  This work is less directly applicable
to the problem of summarizing already existing diagrams,
the primary concern here.

The field of automated graphics design and layout is
even more active than visual language parsing.  An
excellent recent review of just the constraint-based
approaches to such problems has more than 200 references
(Hower and Graf, 1996). The early work in this field used
algebraic (Mackinlay, 1987) and rule-based approaches
(Seligmann and Feiner, 1991), but there is now substantial
work based on constraints (Graf, 1998).  The readings
volume containing the last-mentioned reference reprints
nine other papers on the topics of automated graphics
design and layout (Maybury and Wahlster, 1998).

Constraint-solving algorithms have been developed with
special attention to the problems of interactive graphics
input including constraint hierarchies (Borning, Freeman-
Benson and Wilson, 1992), and incremental constraint
solving (Freeman-Benson, Maloney and Borning, 1990).

Generation for Summarization.  The important and
obvious point to note at this juncture is that the DUS
diagram parsing system is itself constraint-based, so the
grammars already go a long way towards specifying the
constraints on generation.  The major difference between
diagram summarization and most of the constraint-based
layout and design problems is that we focus on the
reduction of diagrams rather than additions to them,
though this is not a profound difference.  In fact, it is
reasonable, particularly with complex graphs, to reduce
them a node at a time, allowing the system to maintain the
same general layout, solving only an incremental constraint
problem at each step.  One major addition to our formalism
that would be required to move it from parsing to
generation would be to add quantitative preferences.  A
simple example of where this would be needed would be in
the generation of tick marks in a data plot.  In parsing a
data plot, any number of tick marks would be acceptable,
but in generation, some minimal spacing of a few mm and
a total number of the order of ten to twenty tick marks
would be typical design parameters.

The problem of automated layout can be
computationally quite demanding, e.g., for label placement
(Christensen, Marks and Shieber, 1995), but the diagram
summarization problem should be able to take account of
the many details embodied in the original diagram(s) to be
summarized.  From the original diagram it can obtain box

dimensions, font size, line widths, arrowheads, alignments,
etc., and reuse these as much as possible.  In the discussion
below of automated techniques that could be applied to our
example diagrams, we will make more specific
suggestions.

6. The Relations of Text and Graphics

One of the first suggestions that researchers in text
summarization make in discussions about the problem of
diagram summarization is to exploit the text associated
with diagrams, especially captions.  But this approach is
fraught with problems, as we explain and illustrate in this
section.

6.1 Figure Captions.

The style and content of figure captions varies widely
across the range of scholarly journals.  Surveying current
academic periodicals revealed the following:  The
biological literature, and to a large extent all scientific
literature that reports the results of experiments, has
substantial captions, averaging over 100 words in length.
The first portion of each caption is typically a noun phrase
that serves as a title.  A few publications, such as the
Biochemical Journal, separate the figure title from the
caption text.  Engineering and Physics tend to have only
noun phrase captions from about 3 to 15 words in length.
Mathematics is the extreme, in many cases having only
figure numbers and no captions whatsoever.  Linguistics
journals often number figures (such as parse trees) just as
all other presented items, with sequential parenthesized
numbers in the margins and no captions.  The humanities
and social sciences, business, and clinical medicine have
few figures but may include tables.  Examples of typical
brief figure captions from the information retrieval
literature include, "System Architecture", "Hierarchical
feature map", and "Average Improvement in Precision",
each quoted in its entirety.

In spite of the paucity of significance information in
many figure captions, they can represent a useful division
of the set of figures in a document, and can be useful in the
selection form of summarization, when only one or two
figures are selected to be included in the summary, either
in their original form or in summarized form.  For example,
the title portions of the four figures in the original article
corresponding to our example #3 are: "Expression pattern
of BLC mRNA in mouse tissues.", "BLC sequence and
alignment with other protein sequences.", "Chemotactic
activity of BLC on leukocyte subtypes.", and "BLR-1
mediated calcium mobilization and chemotaxins in
response to BLC."   In a system in which the reader states
some particular aspect that he or she would like to see
emphasized in a summary, titles such as this could be
useful guides for an automated selection process.

It might seem that lengthy figure captions, where they
are available, would be excellent indicators of figure
content and significance.  Surprisingly, this is rarely the



case.  Virtually all lengthy captions that we have studied in
the scientific literature are associated with the presentation
of experimental data in the accompanying figures.  These
captions focus on the detailed conditions under which the
data was gathered, or label the specific data subsets shown.
They rarely contain any language that evaluates or explains
the significance of the figure content.

Publications intended for wide audiences, such as
National Geographic, are the only ones that appear to put
significant content in figure captions.  This is presumably
done to present information in smaller "chunks" by
allowing individual figures and their captions to be
understood by the casual reader without their having to
read the accompanying article in detail.  Many popular
publications do not even use figure numbers, making it
difficult to refer to specific figures from the running text.
Many popular magazines such as Time or Scientific
American, and most newspapers, have "stand-alone"
figure-caption pairs and never specifically refer to the
figures in the running text at all.

The conclusion of the preceding analysis is that for most
of the scientific and technical literature we can look for
certain details in captions, but all comments as to the
substance and significance of figure content will have to be
found in the running text.  As we have already emphasized,
there will be important aspects of figure content that are
not explained anywhere in the text of a document, since
their content is obvious when looking at  the figure.

6.2 Examples of Figure Captions

Example #1. In Fig. 1a, the "Effects" in the original
caption are self-evident when viewing the figure.  It is far
more appropriate to simply look at them than to read a
textual description of them.

Example #2.  Fig. 2a appeared in an article in the news and
views section of the journal Nature.  These short pieces
appear in the early pages of each issue and discuss the
significance and interesting points of full technical papers
that appear later in the same issue.  As such, each news and
views piece is written in an accessible and somewhat
pedagogical style.  The original 200 word caption in
Fig. 2a explains the overall process of protein synthesis and
how it was blocked by the addition of ODN in the
experiments reported.  Natural language analysis of this
caption could markedly aid the summarization processing
of the figure.

Example #3.  The original 100 word caption in Fig. 3a has
a somewhat informative initial title phrase, "Chemotactic
activity of BLC on leukocyte subtypes."  Most of the
remainder of the caption deals with the experimental
procedures and specifies the particular cell types used.  The
only particularly informative phrases in the caption refer to
the control experiments whose results are contained in
subfigures g and h, which we have not reproduced.  The
most significant results, which are presented in subfigures
a-f of Fig. 3a and summarized in our Fig. 3b, are not
explicated in the caption at all.  In this regard, this caption

is quite typical of figure captions throughout the biological
literature.

Example #4. IEEE Spectrum is that organization's most
widely distributed publication, covering topics of interest
to all members in carefully edited form with extensive
color illustrations.  It is a popular technical magazine.
Consistent with this role, the captions are normally rather
informative.  The caption in Fig. 4a begins abruptly with a
sentence that serves as a less than optimal figure title.  It
begins, "MPEG-2 encoder data paths comprise the
luminance and two chrominance channels."  It does not
state that the figure is in fact a block diagram, though this
is immediately obvious from the figure.  The caption does
not discuss the contents of the diagram per se but mentions
the hardware implementation of it as well as changes that
would need to be made to accommodate specialized
hardware.  We have to conclude that this caption would not
be particularly helpful in the diagram summarization
process.

6.3 What Running Text Says About Diagrams

When figure content is explicated in text, we have seen that
little of it is to be found in figure captions; it is in the
running text (if anywhere!).  So we turn to a discussion of
the running text of our four examples where we will find
more useful information referring to figure content.  The
utility of this information is tempered by the complexity of
the text, the same complexity met in attempting to do text
summarization.  Often there is only one or a few explicit
references in the running text to a specific figure.  But the
discussion of the topics related to the figure may be still be
extensive and distributed throughout the document.

Example #1.  We have already quoted a significant item
drawn from the running text in our first discussion of this
example, Fig. 1a, viz.,

"...The key contributors to scanning and printing noise
are the three parameters blur ..., thrs ..., and sens ....
These will be our primary concern.  Figure 7
illustrates these effects."

  There are two marker phrases in the running text excerpt
that emphasize the importance of the material in their
Fig. 7 (our Fig. 1a):  "The key contributors .. are ...", and,
"... our primary concern."  This is followed by the
definitively worded figure reference sentence, "Figure 7
illustrates these effects."  If this text is to be used to
evaluate the importance of the figure, the referent of "these
effects" would have to be identified.  This is not a trivial
problem because there is no obvious "effect-like" term in
the preceding sentences, only "contributors", "parameters"
and a prior use of "These", which itself needs to have its
referents identified.

Example #2 .   Since this figure (2a) has an extensive and
useful caption, the content of the running text is less
critical.  The article has two figures, of which Fig. 2a is the
second. The first mention of it in the running text is in the
initial sentence of the third paragraph, about 1/3 of the way



through the 900 word article.  The sentence is, "ODNs act
by sequence-specific hybridization to messenger RNA
(Fig. 2)."  The sentence which follows it parallels the
content of our manually generated summary, Fig. 2b.  The
sentence is, "They then selectively prevent the translation
of the RNA message into protein, and promote degradation
of the message by ribonucleases."  Some of the details
presented in the original figure, Fig. 2a, are omitted in this
summary sentence, suggesting that they can be omitted in a
summary figure.  Though this informal analysis is
reasonable on the surface, it has inherent dangers – for
example there may be important material in a figure that
should be included in a summary figure but is so visually
obvious that it is not discussed in the text.

Example #3.   This figure (3a) has a weakly informative
caption, as we have discussed, so the running text needs to
be looked at closely.  The article is a letter to nature, so it
is short and packed with information, with figures covering
micrography, gels results, DNA and amino acid sequences
and comparisons, the eight-part figure we are discussing,
and a final seven-part figure.  The first two sentences that
mention our figure (their Fig. 3) contain exactly the
contrast displayed in our summary figure, 3b, viz.,

"BLC induced a strong chemotactic response in B
cells in experiments using either total spleen
lymphocytes (Fig. 2a) or purified B cells (Fig. 2b)."

and

"In contrast, BLC showed limited activity towards T
cells carrying CD4 or CD8 antigens (Fig. 2c, d)."

In our summary, we chose to display the first item of each
pair, a and c, but any pairing would have sufficed (one
from a or b and the other from c-f).  This is evident from
the plots we have shown in Fig. 3a.  So in this case at least,
the running text has elements in it with significant marker
items, "strong .... response", "In contrast", and "limited
activity".   These could guide an automated diagram
summary system in achieving the summary diagram we
produced manually in Fig. 3b.

Example #4.   Our Fig. 4a appears in a two-page spread, a
sidebar (distinguished by a light blue background), in the
middle of a full article.  The article figures are numbered,
but the four in the sidebar have no figure numbers.  Some
are referred to in the running text positionally, e.g., "[see
top left diagram, opposite]", but the figure we have chosen
is not referred to explicitly in the running text at all.
Without explicitly stating that the figure is being discussed,
about one-third of the way through, it mentions the
"digitizer", the left-most item in the block diagram.  The
discussion next mentions the DCT block, then the
quantizer.  The discussion then moves to the form of the
signals within the encoder, with occasional mentions of
other blocks in the diagram, e.g., the motion estimator and
the two "inverse" blocks. Eventually, most of the blocks
are described.  There is no obvious emphasis on particular
blocks or links in the running text, either by frequency of
occurrence or by emphasis terms, so there is little to guide

automated summarization of the block diagram.

6.4 Text Included within Diagrams
Text within diagrams is common, ranging from data plot
axis labels to text overlaid on images. It is distinct from
captions and running text in that it is normally positioned
within the diagram to indicate its role.  Included text can
play a number of distinct roles.   Our example #1 has no
included text so it is omitted from this part of the
discussion.

Example #2.  The various text items within Fig. 2a play
four distinct roles.  The top two text items label vertices
(nodes) in the flow chart, the two horizontal lines,
indicated by their adjacency and horizontal alignment with
the lines.  The next text item, "ODN", which labels an edge
of the graph, indicates that a certain substance is introduced
at the point in the process between the mRNA and the
topmost right node below "ODN".  The text
"Ribonuclease" is aligned with and between the two
arrows, indicating that it is associated with the transition
between the vertices on each side (shared), rather than
vertices proper.  The same analysis applies to "mRNA-
directed protein synthesis on the ribosome" below it.
Finally, the two text items at the very bottom of the figure
constitute vertices in themselves and both identify and
describe the vertices (protein products as the end result of
processing).  In our summary diagram, Fig. 2b, the three
text items play three distinct roles, the same roles they play
in the original, Fig. 2a.

Example #3.  In this set of data plots, Fig. 3a, the text
items play five distinct roles. The six characters, a-f, label
the six separate plots to allow efficient reference in the
caption and running text.  Their position is a customary
one, lying slightly outside and above each plot.  This
prevents them from being confused with the shared
ordinate label for the six plots, "Input cells migrated (%)".
Another customary position for such letter labels is in the
position occupied by the cell descriptor text, e.g., "B cells".
The text within the key box identifies the three different
types of data points, "patches" in  (Kosslyn, 1994). The
abscissa labels, "Chemokine (nM)", are duplicated, each
being shared by the three plots above them.  The numerical
text labeling the ordinate tick marks, 0-50, is shared across
two horizontally aligned plots, but the abscissa tick labels
are repeated for all six plots (and differ for graph b).  Our
summary plot, Fig. 3b, is a single item requiring no sharing
of text and has text in three roles.  The role of the cell
descriptor text has changed from one associated with an
entire (sub)plot to one in which the two data sets are
separately labeled. (A key could also have been used.)

Example #4. A block diagram, like a flow chart, is often
replete with text, labeling every block.  Of course, we have
seen a flow chart, example #2, in which some nodes are
purely graphical.   In the block diagram of Fig. 4b, text
labels either the blocks (vertices) or the links between them
(directed edges).  In one case, in the upper left, the text
"Difference Image" labels a call-out, used because there is



no space in which to insert the text appropriately.
Call-outs are frequently used to solve these layout "real
estate" problems.  Our summary diagram, Fig. 4b, uses text
in the identical roles, including using the same call-out.
Unlike the prior flow chart example, #2, the function of the
link labels is to denote the data flowing between the
processing or buffer nodes.  In the flow chart, the link
labels play a complementary role, indicating the processing
occurring between the nodes that leads from one substance
or configuration to the next.

   7. Diagram Summarization Procedures

In this section we will discuss the structures (parses)
generated for each original diagram of the four examples,
the transformations done to produce summary structures,
and the process of generating the resulting summarized
diagram.  Each diagram presents us with a new set of
problems.  The algorithms and other automation
procedures used below have not yet been implemented in
running code.  Rather, the procedures are spelled out
explicitly and the manipulations are done by hand.   Of
course the DUS has been used to produce full parses of
similar diagrams in the past.

We have chosen to ignore the problem of text
summarization required to synthesize new captions for
diagram summaries.  This is a topic unto itself, discussed in
all the other papers in this volume.  Text summarization in
the context of diagram summarization is not simple,
because the text summaries have to be concordant with the
material that is presented in the summary diagrams, which
may be a subset of the old or contain newly synthesized
items, e.g., the new composite vertex at the bottom of the
block diagram summary, Fig. 4b.  The referent problem
also arises whenever any summarization of the running text
refers to figures that no longer are included or refers to
material within a figure that has been altered or deleted.

7.1 Distilling Figures

Numerically parameterized sequences, Example #1.
Fig. 1a contains three parallel sequences of items (ten
simple images) each parameterized by a monotonic
sequence of numerical parameter values.
  In order for our diagram parsing approach to produce a
useful structure for Fig. 1a, we will assume that the figure
is made up of 30 small images.  A grammar rule would be
written describing a regular rectangular array using the
horizontally and vertically aligned constraints. At this point
the knowledge from the caption would need to be used, the
fact that each row contains results for changes in a single
degradation parameter.  Combining the structure and
caption information would allow the system to perform a
sequence elision procedure, retaining only the extreme
instances (and possibly the fifth or sixth instance to
represent the intermediate appearances).  The elided
structure would be built using the same parse
representation as the original.  Using quantitative

parameters from the original figure, the summary figure
could be constructed, Fig. 1b.  An alternate approach
would be to specify the summary as the original minus a
sequence of deletions of the intermediate items in each
row.  Then an incremental constraint solver would "slide"
the outer items toward the middle, producing a reduced
form through a series of minimal changes.

The manual summary elides the eight intermediate
images in each row, yielding Fig. 1b.  This procedure could
fail to produce correct results in many instances.  It is often
the case for such parameterized sequences that the most
important items appear at intermediate values of the
parameter, rather than at the extremes (minimum or
maximum) values.  For example, for living systems,
optimal viability and growth is achieved at intermediate
values of temperature, salinity, pH, etc.  Ordinary data
plots such as in example #3, Fig. 3a, commonly show such
behavior, so an algorithm that produced a summary by only
reporting values of the dependent data items at extreme
values of the independent parameter value would often fail.

The article in which Fig. 1a appeared is concerned with
synthesizing defective character images and then
evaluating the performance of OCR systems trained on the
images.   Conceptually, it is clear to a manual summarist
that increasing values of the image defect parameters
induce a monotonic change in the quality of the images.
Thus the extreme values, the "best" and "worst" items, are
quite adequate as a summary.  On reading the text it
appears that it would be difficult to extract this type of
information from it to guide an automated summarization
process.  The conservative approach would be to include
the extreme parameter value items as well as one item
corresponding to an intermediate parameter value.
Choosing the value appropriately in an automated way,
rather than just choosing the mean or median, may be
problematic.

7.2 Graph Reduction

When graphs such as flow-charts or block diagrams are
represented as standard directed vertex-edge structures,
there are topological reduction procedures that can be
applied to distill them to simpler form.  Because they are
based entirely on topology, these methods are domain
independent.  We define one such reduction procedure,
link-subgraph-deletion (LSD), and apply it to two of our
diagrams.  In LSD we identify certain subgraphs of a larger
graph as shown in Fig. 7a.  Each such subgraph is a
meganode, a set of vertices which is allowed to have only a
single entering edge and a single exit edge. Otherwise it
may have arbitrary internal connectivity.  The vertices that
precede and follow the subgraph, a and b, can have
arbitrary additional connectivity, indicated schematically in
Fig. 7a.  The graph is reduced by deleting the entire
subgraph, resulting in Fig. 7b.  The new edge between a
and b now receives an ordered pair of labels, e and f.  The
LSD procedure uses the maximal 2-connected subgraphs
between nodes since, for example, a simple linked list
would contain many 2-connected subgraphs.
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f

subgraph

Fig. 7a.  A subgraph of restricted connectivity that is
deleted by the link subgraph deletion procedure
(LSD), resulting in the graph shown in Fig. 7b.

a

b

e

f

Figure 7b.  The graph resulting from the deletion of
the subgraph in Fig.  7a.  The a-to-b edge is now
labeled with the ordered pair of labels from the
original.

Application of LSD to Example #2.   The application of
the link subgraph deletion procedure to the molecular flow
chart of example #2 results in the distilled version of
Fig. 8a.   Parsing the original graph requires a grammar
describing a graph, one that allows a vertex to be a text
item (the two vertices at the bottom of the original graph).
This would require a slight extension of the grammars
previously used in the DUS for parsing state-machine
diagrams.  Another portion of the parse would be needed to

capture the vertical geometric arrangement of the diagram.
The parse result would be walked to discover its topology,
which could then be reduced by LSD.  The resultant
structure would be used to generate the summary diagram
using the geometrical arrangement and numerical
parameters of the original.  Note that the object-based
formulation in the DUS makes it relatively easy to
reposition items and sets of items in space, so that for
example, the first vertex and its "DNA" label could be
repositioned as a unit to its final position in the summary
diagram, as could the mRNA vertex and label, the
branching edge and its ODN label, etc.

DNA

ODN

mRNA

Mature adenosine
A1 receptor

Truncated adenosine
A1 receptor

Figure 8a.  Summary of Fig. 2a (example #2)
produced by application of the link subgraph deletion
(LSD) procedure, a domain-independent algorithm
based entirely on graph topology.  Compare with the
simpler manual summary in Fig. 2b.

The original figure, 2a, contained 10 vertices and 9
edges.  The algorithm-based summary in Fig. 8a contains 4
vertices and 3 edges, whereas the "optimal" manual
summary of Fig. 2b contains only 2 vertices and 1 edge.
The material in Fig. 8a that does not appear in the manual
summary are the vertices for DNA at the top and the
"Mature ... " item on the lower left, as well as their two
connecting edges.  The caption and running text in the
original article contain 10 references to ODN as well as 5
to RNA, but only 1 reference to DNA.  This could be taken
as grounds for further automated pruning of Fig. 8a to
delete the DNA node and its link as was done in the
manual summary.  It is also the case that in biology, the
synthesis (transcription) of RNA from a DNA template is
so commonplace that it hardly bears mention.  The text
describing the normal versus the abnormal (truncated)
receptors is more complex and does not yield useful word-
count data for, e.g., "mature" versus "truncated".  This
suggests that the best that an automated summarization
procedure might be able to accomplish is the diagram
shown in Fig. 8b, with 3 vertices and 2 edges.



ODN

mRNA

Mature adenosine
A1 receptor

Truncated adenosine
A1 receptor

Figure 8b.  A automated summary that might be
produced using text analysis to discover salient
concepts (terms) in the caption and running text for
the original figure.  Starting with the automated
summary in Fig. 8a, the lack of evidence for the
importance of the DNA-labeled vertex has been used
to delete it and its accompanying edge.

7.3 Merging Figures

Compare and Contrast — Data in Example #3.  The
datasets in example #3, Fig. 3a are significant because they
demonstrate a contrast between two types of behavior that
is evident when certain subsets of the data are compared.
The running text of the article places great emphasis on the
compound, "BLC", mentioning it explicitly more than 50
times in the 3000 word article.  It is introduced in the
abstract in the sentence, "Here we describe a novel
chemokine, B-lymphocyte chemoattractant (BLC), that is
strongly expressed in the follicles of Peyer's patches, the
spleen and lymph nodes."  This simple statistic by itself
could lead an automated system to focus on the BLC-
related data sets within Fig. 3a (the black squares).  Even
the simplest statistical analysis of the BLC-related data sets
would reveal that the data behavior in plots a and b, related
to B cells, is significantly different from the corresponding
behavior in plots c, d, e, and f.   This would allow an
automated procedure to select a pair of strongly contrasting
data sets such as the two shown in the manually
constructed summary of Fig. 3b, taken from Fig. 3a, plots a
and c.

Though the preceding argument is attractive, it will be
difficult to test the utility of such approaches without
extensive application of automation algorithms to a variety
of examples.  Many published datasets are more equivocal
than those in Fig. 3a, making it difficult to find clear-cut
contrasts.  But scientists continually strive to design
experiments and data presentation procedures that make
the significance of data strikingly clear.

The automated procedure for building the summarization
in this example would start with a parse of the six plots.
The parse distinguishes the background scale lines and
their annotations from the data points and lines proper.
We'll assume that analysis of the text and data has resulted
in the choice of the appropriate datasets in a and c.
Constructing the resultant summary plot could then be

done by bringing together and aligning a few large
constituents:  the x and y scale lines from plot a or c, the
BLC dataset from plot a, the BLC dataset from plot c, the y
scale label from the left, the x scale label from the bottom
below plot e, the "B cells" label from plot a, and the "CD4
T cells" label from plot c.

7.4 Role of Layout in Summarization Decisions

Example #4, a Large Block Diagram.   This block
diagram, Fig. 4b, is difficult to deal with because as a
graph it has a high level of connectivity (only one small
link subgraph).  This makes it difficult to argue that some
particular portion of it should be favored for retention or
for reduction/deletion.  As we stated earlier, the running
text accompanying the figure discusses most of the blocks
with equal emphasis.

What can be used to drive the decision-making process
for an automated summarization algorithm for this figure is
its geometrical layout.   Viewing the diagram as a complex
flow chart, a signal processor, it has signal input on the
upper left, the video stream entering the digitizer, and
signal output, the compressed signal, on the upper right,
after the buffer.   There are six horizontally aligned blocks
spanning the space between signal input and output  (we
must count the "+" item as a legitimate vertex).   The edges
between them are all directed to the right, making the set a
linear chain, with numerous "side" connections.  All blocks
above and below the horizontal sequence are involved with
feedback and feedforward controls related to image motion
and rate throttling.

Initially the automated analysis would proceed much as
in the previous graph example, in this case allowing
vertices to be rectangles with internal text labels.  Walking
the parse structure would again construct a representation
of the graph topology.   Using the geometrically identified
horizontal backbone, a dual analysis of the geometry and
topology would indicate that there are four edges leaving
the backbone from below and two from above.  This would
identify the subgraphs to be collapsed.  The summary
redrawing could use all the elements from the backbone,
unchanged as well as the block above the backbone, all in
unmodified form.  The only actual synthesis required
would be that of the new lower block.  Even in this case,
the identical contact points of the four lower edges with the
backbone elements could be used.  That is, the algorithm
would attempt to maintain the "mental map" of the original
as much as it could in the summary.  Incremental constraint
solving could aid in the process.

8. Discussion and Summary

Clearly, the problem of summarizing diagrams in
documents is a complex and multi-faceted one.  The
variety and complexity of diagrams and their multifarious
relations to text will require a variety of summarization
strategies — there will be no single approach that will



apply across the board.  Reviewing the problems of
automated summarization for our four examples, we see
that example #1 required the collapsing of a tabular set of
images that was numerically parameterized.  Example #2
allowed us to delete an internal "meganode" in a graph.
Example #3 dealt with the selection and merging of
numerical data from a collection of x,y data plots.
Example #4 was a complex block diagram in which the
summary was guided by the geometrical structure (layout)
of the original.  The role of text in guiding the automation
for these examples was itself complex, and we did not
attempt to investigate that aspect in much detail.

Essentially nothing has been done in this new field of
diagram summarization, save some interesting work on
multimedia, e.g.,  (Maybury and Merlino, 1997).  Our own
work has progressed to the point that we can parse a wide
variety of diagrams efficiently, producing structured
descriptions that are the input required by any automated
diagram summarizer.  This paper has used four examples,
explored in depth, to describe how the summarization
process might work, including the description of simple
topological and elision algorithms. We felt that a thorough-
going discussion of examples was needed because diagram
summarization is such a new idea that most readers would
not be able to fall back on any prior knowledge of the topic
— this paper is in many ways, a "first" in its field.  We
hope that it has laid out a practical agenda for exploring the
problem in greater breadth and depth and building practical
systems.

The world is hardly ready for the application of
automated diagram summarization because too few
documents contain graphics in vector form that could serve
as input to the first parsing stage. That is, most diagrams
available today in PDF and HTML formatted documents
are in raster form, as images, even though many were
originally created as vector diagrams!  But in 1998 there
has been a surge in proposals to the World-Wide Web
Consortium for various vector graphics standards (World-
Wide Web Consortium, 1998), so that documents could
contain more structured graphics, including metadata
which describes the internal content of graphics items,
using, for example, XML (World Wide Web Consortium,
1997).

Indeed, once we consider the possibility of including
extensive metadata about diagrams within electronic
documents, we can question how much of the complex
analysis strategies we have discussed would be necessary.
It should be possible to build intelligent authoring systems
(IAS), applications that would allow the author to develop
documents that include metadata about diagrams, and text
for that matter.  For a discussion of IAS strategies for text,
see (Futrelle and Fridman, 1995).   There is nothing new
about metadata.  Virtually anything beyond normal
sequential natural language text can properly be called
metadata.  Web hyperlinks are an obvious example, but so
are bibliographic citations, references to specific figures,
etc.  Authors already include such metadata in the papers
they write.  The only question is, what other types of

metadata might they agree to include in the future?
Diagram metadata could include information that would
indicate which diagram would be the one to retain in a
summary, if only one were to be included, or at a more
detailed level, which parts of a diagram would be suitable
for a summary.  The goal of a good IAS would be to make
the inclusion of this type of additional information as
effortless as possible for the already overworked author.

More and more major publications in science and
various technical fields are moving online. Because of this,
the desire to have the graphics in them treated as first-class
content will spur the development of better formats, more
metadata, and graphics manipulation systems such as
diagram summarizers.
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