
DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

Principles and Tools for Authoring
Knowledge-Rich Documents

Robert P. Futrelle and Natalya Fridman

Biological Knowledge Laboratory, College of Computer Science
161 Cullinane Hall, Northeastern University, Boston, MA 02115,

{futrelle,natasha}@ccs.neu.edu
617-373-2076, FAX: 617-373-5121

Abstract. Digital libraries can take advantage of documents that have their
content (semantics) explicitly represented as knowledge structures. These
knowledge-rich documents can be created by using natural language
processing techniques or by acquiring knowledge from the author during the
authoring process. We discuss the latter approach, and introduce the notion of
Knowledge-Based Authoring Tools (KBATs). It turns out that the primary task
for a KBAT is to reduce (apparent) ambiguities in the text to zero, obtaining a
unique analysis or, barring that, reduce the ambiguity of a particular piece of
text to the point that only one or two simple queries to the author will resolve
the issue.

1. Introduction
Digital Libraries of the future will be able to exploit the knowledge contained in
documents in a variety of ways, to enhance retrieval, browsing, and summarization of
information. The simple 'flat text' of documents does not, by itself, support such
activities. The structure and content (meaning) of documents must be discovered by
computer analysis or inserted by the author. A lot of work has been done on corpus
analysis by computer to support computer analysis [1] . This paper explores what
might be done for the author by the development of Knowledge-Based Authoring Tools
(KBATs) that will allow authors to contribute their unique knowledge of their
document to create a structured, knowledge-rich form of it for use in a Digital Library.
There are a number of tools already in existence that are used by authors when they
create documents, but they are generally knowledge-poor.

 Examples of existing tools include spell-checkers and bibliography systems.
Both depend on databases. Bibliography systems take care of cross-referencing and the
customized formatting of the bibliography. Spell-checkers have an additional learning
capability, because once a user has confirmed that a newly encountered word is to be
added to the spelling database (or "custom dictionary"), no correct spelling of that word
in the future will raise a flag. We use a broad definition of "structure", so that spelling
corrections are said to add structure because they remove erroneous terms, making
searches and analyses more accurate. Some structure is required by publisher's
standards, and some structure is generated by the author through his or her awareness of
the standards and preferences of the readership.

The KBAT we envision operates in the following way. Its goal is to build as
much knowledge structure into a document-in-progress as it can. This means
determining, as much as possible, the meanings of the terms used and the meanings of
sentences and larger structures. Based on this, some type of a limited knowledge

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

representation can be built for the document. The KBAT draws on large, domain-
specific resources maintained in the author's machine and in knowledge servers on the
net. When the KBAT cannot determine the nature or structure of an item, it can query
the author. This has to be done carefully, as we'll explain below. One of the primary
purposes of the KBAT is to gather important information from the author during the
authoring process that would be very hard to reconstruct from the document later on,
without the author's help.

There are two essential topics that we will expound on at some length. The first,
ambiguity, is critical for understanding the problems faced by the KBAT. The second,
ontologies, is critical for understanding how the KBAT comes to understand the text
contents and build a knowledge representation, or short of that, how it goes about
framing questions for the author.

2. Tools — Their Costs and Benefits
We describe some structuring principles and tools that currently exist and compare them
with knowledge-based approaches. All these tools add structure or conciseness beyond
flat text. Adding structure to a document is not "free", so a cost-benefit analysis must
be made.

• Costs of using an authoring tool:
- Mental load on the author in learning and using
- Time (interruption) for tool use
- Cost may decrease over time because of familiarity or because the system

builds databases

• Benefits of using an authoring tool:
- Authoring may be made easier by tool
- Reading is more accurate, efficient, because of added structure
- Automated systems can exploit structure

Document structures — These structures are essentially syntactic with little
knowledge content. The tools for generating them are almost wholly dependent on the
author for structuring information. Fonts, spacing, centering, and lists, focus the
reader's attention and require little effort on the author's part. Titles, abstracts, and
standard sections are components required by tradition and style rules. Figures, tables
and captions present information that would be difficult or impossible with text. There
are numerous cross references within text to bibliographic items; tables of contents
show the organization at a different level; indexes can be tedious to construct but very
helpful to the reader. Markup and hypertext can burden the author even more but can
produce a document suitable for computer-supported navigation.

Databases that assist authoring — Spell-checking databases offer extensive,
but not complete help (they will miss errors such as their/there or ton/tin). Authors
can customize them to their specialized vocabulary. Authors are willing to use them.
Dictionary definitions and thesauri are useful adjuncts. Bibliographic databases are
critical for scholarly writing. Style and macro libraries support a consistency of style
and formatting according to various standards. The databases can be large and obtained
from outside sources, adding a good deal of content with little author input.

Writing style — The controlled vocabulary, nomenclature, and stock phrases
of a specific domain makes the job of expression and comprehension much easier. A

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

technical rhetorical style adds to conciseness (reduces ambiguity). This is a natural part
of the writing process, but it does not necessarily yield text that is easy for a KBAT to
analyze.

KBATs — There are number of challenges that a KBAT must deal with in its
goal to produce a knowledge-based description of the contents of a document, or simply
put, a knowledge representation. The primary problem is one of ambiguity. Though a
well-written text is not ambiguous to a reader that knows the subject domain, there are
many parts of the text that are ambiguous to a computer system. This is because of
our limited understanding of how to build truly intelligent natural language and
knowledge analysis systems. So in parallel with the development of interactive
KBATs, it is crucial that we continue to improve our understanding of natural language
processing techniques so we can raise the efficiency and accuracy of machine analysis of
documents. In the meantime the KBAT will need to rely in part on authors for
information, while attempting to do extensive disambiguation!on its own.

3. Ambiguity
A computer will have difficulties with the meaning of individual words, e.g., "stock"
can be a broth, cattle, or a security. It will also have difficulty with most sentences
because it will find analyses that we normally reject without a moment's thought.
There are a variety of different types of ambiguities. Thus, "an aluminum wire bin"
could be a bin made of aluminum that holds wire or a bin that holds aluminum wire.
"They walked around the lab" can mean walking within or outside of the lab. "She put
the manual on the shelf in the machine room" could mean that the manual on the shelf
was moved to the machine room or the manual was put on the shelf that was in the
machine room.

If a natural language processing system (NLP) relies only on syntactic analysis and
uses a lexicon (in which each word often has more than one meaning), then even the
following simple sentence has serious ambiguity problems:

Sentence: "The net went dead apparently for no reason."
Ambiguity: Does "net" mean a fishing net or communication network?
Ambiguity: Does "went" mean a change of state or "moved"?
Ambiguity: Does "reason" mean a cause or cogitation?
Ambiguity: Does "apparently" say that the going dead was only apparent, and not

actual, or does it say the reason was (not) apparent?
The first three ambiguity problems listed are examples of lexical ambiguity —

words having more than one meaning. The last problem is an example of structural
ambiguity — it is not clear what constituent "apparently" attaches to.

What is the difference between a human and a simple machine analysis that makes
the human so much better at solving the ambiguity problem? Primarily, it is a matter
of knowledge, knowledge of language and knowledge of the world. If the example
sentence above were uttered in a computer context, "net" would be assumed to refer to a
communications network. People also know that "net went" is unlikely to be a
description of a network moving to another place. Also, the word "dead" is a state, not
a place. "Apparently" would be expected before "went" if it described an apparent event;
since is appears after "went dead" and adjacent to the prepositional phrase, "for no
reason", it is attached to the latter. Since an event is being described, the use of

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

"reason" as a cause is the preferred interpretation. The challenge for a KBAT is to try
to reproduce this reasoning using its own resources that describe word meanings and
language structure. To the extent it succeeds, it can build a knowledge representation
that accurately reflects the structure of the sentence. This in turn can be stored along
with the document text in a Digital Library depository. Having such a rich
representation will markedly enhance the operation of the Library.

4. Resolving Lexical Ambiguity
There are three types of lexical ambiguity [2]. Polysemy is when several senses of a
word are related to one another. Thus, "enter" can refer to typing text into a word
processor, or entering a room. Homonymy is when a word can have a number of
unrelated senses. Thus, "times" can refer to multiplication or to temporal events.
Categorial ambiguity refers to words whose syntactic category may vary, and is
orthogonal to the two other classifications, e.g., "crash" can be a verb or a noun.

We will describe one approach to disambiguation, one that can be mechanized and
used in a KBAT. We in no way imply that this is easy to do, or that it will be
uniformly successful. We are simply describing an approach that has had some
success. Disambiguation works by exploiting the semantics of context. In contexts
such as the following, two polysemous senses of "entered" are being used:

1. "He entered 1 the quote into his word processor."
2. "She entered 2 the room just after the group meeting started."

For this discussion we will assume that the parts of speech of the other items in
the sentences and their relations as arguments or modifiers are known. We further
assume that all other words in the sentence except "entered" have been disambiguated.

Disambiguation proceeds by inserting entered 1 and entered 2 into both sentences and
ranking the results for semantic consistency. The consistency is high if the meaning
being tested is highly compatible with the controlling constituents in the context. An
easy way to see this is to translate entered 1 to "typed" and entered 2 to "walked" or
"walked into",

"He typed the quote into his word processor." (1a)
* "He walked the quote into his word processor." (1b)

"She walked into the room just after the group meeting started." (2a)
* "She typed the room just after the group meeting started." (2b)

The starred items are the incorrect ones. The problems with 1b are that "quotes"
are text or spoken language, not animate and capable of being walked, and that one does
not walk "into" a word processor; it is not a building or a room. The problem with 2b
is similar. Sentences 1a and 2a are highly consistent so disambiguation is achieved. If
the KBAT is not successful in locating the relevant context and identifying its salient
properties, it could present the author with the two alternate sentences, e.g., 1a and 1b,
and let the author indicate what was intended.

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

5. Resolving Structural Ambiguity
The structure of a sentence plays an obvious role in determining its meaning.
Ambiguities arise when a sentence can be interpreted as having two or more distinct
structures. We will start with a common phenomenon in English, noun-noun
modifiers. In the phrase, "chocolate cookie lover", the first noun, "chocolate" is most
likely a modifier of the adjacent word "cookie". But in the phrase, "chocolate Easter
egg", it modifies the third constituent "egg". We will describe an ambiguity
resolution strategy that a KBAT could pursue, for the following noun phrase,

"total user minutes"
The two possible structures have "total" modifying "user" or modifying "minutes".

The parse trees for the two cases are given in Figure!1,

total

user minutestotal user

minutes

C

D

A

B

1b: "total" modifies "minutes"1a: "total" modifies "user"

Fig. 1. Parse trees for two analyses of the ambiguous noun phrase, "total
user minutes". The correct analysis on the right succeeds because the
properties of "minutes", as propagated to node D and then C, are consistent
with those required by the modifier "total".

The ambiguity is resolved by computing the consistency of the semantic attributes
of the modifier "total" with its two possible arguments. This can be done using
techniques closely related to those of contemporary unification-based grammars [3,4].
In those approaches, the syntactic consistency of two constituents is computed by
unification of the feature structures (the collections of attributes and values) of the
children of a node. (For semantics, a more complex computation than unification may
be required.) In Fig.!1a, this computation is done at node B, resulting in a low
consistency value. This is because in order for "user" to be an argument of "total",
"user" would have to be a plural noun which it is not. The computation of consistency
in Fig.!1b is more complex. It requires a computation at node C, which in turn
requires the determination of the feature structure at node D. The features at node D are
dominated by those of "minutes", because "minutes" is the head of the noun phrase
"user minutes"; the features of "user" at D disappear once the computation at D is done.
Consistency is achieved at C. The semantic content of the required feature structures is
determined by ontologies, as described in the next section.

Another major type of ambiguity is the prepositional phrase attachment problem
(PP-attachment). An example of the standard (left) attachment is "...the book on the
table in the room on the second floor of the house". In each case, the prepositional

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

phrase attaches to the noun immediately to its left. But in the sentence, "Our VPE
supports the creation of programs by visual means", the prepositional phrase "by visual
means" modifies the noun "creation" rather than the noun "programs" immediately to
its left. Parse trees for the two candidate structures can be generated as before and their
semantic consistencies computed. The result is that both "by" and "means" are highly
consistent with the noun "creation", but not with the noun "programs".

Other important ambiguities include structuring conjunctions and resolving
references, e.g., pronominal reference. Virtually all structural disambiguation problems
can be investigated by the techniques described above. The semantic consistency
analysis can be done in parallel with syntactic analysis or afterwards. None of these
computations are particularly easy or efficient — they present a serious challenge for
NLP methods.

6. Ontologies and Ambiguity
The knowledge needed to resolve ambiguities based on semantics is contained in
ontologies [5]. An ontology is a collection of interrelated knowledge-description
objects and axioms describing how the objects can be meaningfully used in relation to
each other. These structures contain the knowledge of a specific domain at the
conceptual level and are used by the KBATs to analyze the text. Once the semantics of
the sentence is determined, one can represent this knowledge in the ontology by
creating instances of the general conceptual structures [5]. This knowledge is
subsequently used for the intelligent Information Retrieval in Digital Libraries.

Objects in the ontology are grouped into classes. Classes can be defined by frames
(or any other compatible formalism) and their properties are represented as slots in the
frame. Slots, in turn, have their own properties, like their domain, cardinality, etc. A
frame can be designed to represent a disk drive and have a slot for capacity which in turn
holds a bytes object representing some number of bytes. A specific disk is represented
by an instance of the disk frame and its capacity by an instance of a bytes slot with an
actual value such as 2!GBytes.

Classes are organized in a hierarchy by inheritance. Thus, a particular disk drive
class may have the following inheritance chain,

peripheral -> storage-unit -> disk -> Acme-90
The properties of the superclass, such as slots and their properties, and axioms

associated with the class, are inherited by the subclass. For example, the storage-unit
class will introduce capacity which will be inherited by disk. Multiple inheritance is
also possible so that the Acme-900 class could also inherit from a SCSI class. The
line between classes and instances is not sharp. We may want Acme-900 to be an
instance of disk or we may want to use instances to represent particular Acme-900
disks, with particular serial numbers. Which of the options is adopted depends on the
purpose for which the particular ontology is created. There are ontologies created for
various clusters of knowledge, such as Time, Space, Quantities, etc. [7]. There is also a
large-scale attempt to create the ontology to represent all of the commonsense
knowledge: the CYC project [8]. In our case we design ontologies specifically suited
for text.

The use of ontologies in disambiguation can be seen for the "total user minutes"
example discussed earlier. There are two alternatives. Either "total" modifies "user", or
it modifies "minutes" in "user minutes". The total class inherits from sum which in

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

turn inherits from both math and aggregate. But the most important attribute of total
for our purposes is the subcategorization slot which defines the restrictions on the
arguments acceptable to the word "total", their class and their properties, Fig.!2.

Total
Superclasses:
 Sum
Slots:
 Subcategorization:
! Domain:Collection
 Value:
! Domain:Number

If ?x is Total
! and (?x.Subcategorization) =
! and ?z is in ?y
then ?z is Scalar-Quantity

If ?x is Total
! and (?x.Subcategorization) =
then slot-value (?y.Collection-Type) =
! ! ! homogeneous

Fig. 2. This shows that total is a sum and that any argument modified by
"total" must be a homogeneous collection of objects that have a scalar
quantity associated with them (which can be summed). minutes is just such an
object, so that total minutes is consistent. If we try to apply "total" to the
argument "user", an analysis of the user object shows that it lacks the
collection property required by total, so that "total user" is inconsistent.

7. Knowledge-Based Authoring Tools (KBATs)
It should be clear by now that text is rife with potential ambiguities. We will first

discuss how interactive disambiguation could be done and then discuss practical
difficulties and suggest some solutions.

Word sense ambiguities are the simplest, and not difficult to deal with. Consider
two senses of "class", one for a class of students and the other an abstract collection.
Rather than present dictionary definitions to the user, it is more efficient for a KBAT to
present a constellation of terms (not necessarily synonyms) that has been found by
corpus analysis to be highly related. For "class", the user would choose from two sets
of terms,

collection, set, type, kind, superclass, subclass

students, teach, classroom, course
class ??

Structural ambiguities such as the noun-noun modifier example could be handled
by the system's bringing up a dialogue box such as in Fig. 3a. The "OK" button
would confirm the machine's decision, or it could be ignored or changed. A similar
dialogue could be used to deal with reference ambiguities, as shown in Fig. 3b.

We have to be especially sensitive to the author's need for a free and unobstructed
authoring environment. Techniques for capturing knowledge must not interfere with
the flow of ideas and the tasks of organizing information that form the basis of the
authoring process. But the techniques just described would be very intrusive if not
implemented carefully. Imagine having to read, understand and confirm a half-dozen

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

system queries for every sentence you typed. If some of the machine suggestions were
wrong, that would be even more time-consuming.

OKIgnore Change

total ... minutes

... total user minutes ...

The convex polygon boundary
=? the convex hull

OKIgnore Change

The convex polygon boundary that encloses a set
of control points is called the convex hull.

Fig. 3a. Disambiguation dialogue
for noun-noun modifier. The system
is suggesting that "total" modifies
"minutes, not "user".

Fig. 3b. Disambiguation dialogue for a
definite noun phrase reference. The system
is suggesting that the hull refers to the
earlier mention of a boundary.

There are two ways to escape this problem of extreme user disruption. The first is
machine learning, especially generalization, and the second is the pooling of knowledge
from many authors. Machine learning in a KBAT is similar in spirit, though more
complex, to building a custom dictionary in a spell-checker. If you introduce a new
term not in your spell-checker's dictionary, e.g., "nontemplate", then once you have
confirmed the spelling, the item will be added to your dictionary and the system will
never again complain about a (properly spelled) occurrence of "nontemplate". At the
semantic level, when the author tells the system that "total" is an appropriate modifier
for "minutes", not only will the system remember this (and not ask again) but it could
generalize through the ontology to deduce the same rule for "seconds", "hours" and
more.

Even if the system did learn perfectly on each occasion, it is still beyond the
patience and energy of a single author to make the thousand disambiguation decisions
needed for a single paper. This can be dealt with by having an author only answer a
few queries for each paper they write and having the system transmit these decisions to
specialized servers that would pool the decisions by tens of thousands or more authors.
After the decisions are checked for consistency, they could be codified and sent back to
the authors' systems on the network to augment their local semantic knowledge base.
The numbers are substantial. In one year, biology authors produce over half-a-million
papers. Ten answers from authors for each paper, a modest number, would result in
over 5 million items of semantic information. The networked system could be
particularly efficient by arranging for a query about a particular word or construct to be
presented to no more than a few authors.

8. Conclusion
We have described the basic principles underlying Knowledge-Based Authoring Tools
that could be used to build knowledge structures representing the contents of
documents. Some of the knowledge is built automatically by the KBAT itself and
other knowledge is obtained from the author while the paper is being composed. Other
work can be done off-line or after the paper is completed. The primary problem in

DEXA 95 (Database and Expert System Applications)
Workshop on Digital Libraries, London, UK pp. 357-362

natural language analysis is disambiguation, and we have discussed the specifics of
disambiguation of a variety of constructs.

We are making progress on the implementation of such systems. The problem of
capturing knowledge is somewhat easier when graphics is being generated for figures in
a paper. Our prototype system, GeneDraw, does this for a class of gene diagrams for
biology papers. We have investigated automatic semantic clustering of words [9], and
are developing a new technique based on a Balanced Entropy Principle for a variety of
NLP knowledge-building tasks [10].

Acknowledgments
Work supported in part by grants from the National Science Foundation,

IRI-9117030, and the Department of Energy, DE-FG02-93ER61718.

References

1. Church, K.W. and Mercer, R.L.: Introduction to the Special Issue on Computational
Linguistics Using large Corpora. Computational Linguistics. 19 (1993) 1-24.

2. Hirst, G.: Semantic interpretation and the resolution of ambiguity. Cambridge
University Press (1987).

3. Shieber, S.M.: An Introduction to Unification-Based Approaches to Grammar. Vol.
4. Center for the Study of Language and Information (1986).

4. Pollard, C. and Sag, I.A.: Information-based Syntax and Semantics. Vol. 1. Center
for the Study of Language and Information (1987).

5. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Knowledge Systems Laboratory, Stanford University, KSL 93-04 (1993).

6. Hafner, C., et al.: Creating a Knowledge Base of Biological Research Papers. In 2nd
Inter'l Conf. on Intelligent Systems for Molecular Biology, Stanford, CA. AAAI
Press (1994) 147-155.

7. Davis, E.: Representations of Commonsense Knowledge. Morgan Kaufman
Publishers (1990).

8. Lenat, D.B.: Cyc: Toward programs with common sense. Communications of
ACM. 33 (1990) 30-49.

9. Futrelle, R.P. and Gauch, S.: Experiments in syntactic and semantic classification
and disambiguation using bootstrapping. In Acquisition of Lexical Knowledge from
Text, Columbus, OH. Assoc. Computational Linguistics (1993) 117-127.

10. Futrelle, R.P., Zhang, X., and Sekiya, Y.: Corpus Linguistics for Establishing the
Natural Language Content of Digital Library Documents. In Digital Libraries.
Current Issues. Adam, N.R., et al., editors. Springer-Verlag (1994) 165-180.

