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Abstract

Structural (or social) balance is regarded as a fundamental social process. It has been used to
explain how the feelings, attitudes and beliefs, which the social actors have towards each other,
promotes the formation of stable (but not necessarily conflict free) social groups. While balance
theory has a rich and long history, it has lost favor in recent times. The empirical work has taken
one of two forms. Most empirical work on social balance has focused on dyads and triples, and
findings have been inconsistent. The remaining studies focus on the structure of the group as a
whole. Results here have been inconsistent also. One major problem is that the first line of work
is based only on the source ideas of Heider while the second has been based only on the ideas of
Cartwright and Harary. Some of the inconsistencies may be due to this empirical split where the two
streams of ideas do not inform each other. We propose a new theoretical model for social balance
in the form of an agent-based simulation model. The results we present account for several of the
inconsistencies found in the literature. The model simulates distinct but interdependent social actors
making positive and negative selections of each other in efforts to reach balanced cognitive states.
The design variables for the simulations are group size, degree of contentiousness of a group and
the mode of communicating choices regarding the existence and sign of social ties. The group level
balance mechanism used by the dynamic model is based on the idea of partition balance, as proposed
by Doreian and Mrvar [Soc. Netw. 18 (1996) 149]. Actor selections, over time, generate networks
that partition group members into stable, balanced subsets at equilibrium or near equilibrium. The
design variables have complicated impacts on the number of actor choices made to reach balance,
the level of group imbalance, the number of actors with balanced images and the number of plus-sets
formed.
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1. Introduction

Structural balance has been posited as a fundamental social process and used to ac-
count for the structure of affective relations of social actors towards one another. ‘Balance
theory’ is both a general theory and a framework for conducting empirical work. Empiri-
cally, progress has been made through the use of experiments designed to reveal balance
theoretical mechanisms as well as empirical field studies seeking to detect the operation
of these mechanisms. At best, the results have been mixed (see below) where the results
of some studies support balance theory, while others do not. As balance theory is both a
theory and a framework for research, we examine the dynamics of social balance processes
by using an agent-based computer simulation model to explore how, ideally, social actors
use balance criteria to make affective social choices. More importantly, we examine the
social structural consequences of these separate but coupled attempts to reach states of
balance. Collectively, these choices create emergent group structures that most often are
stable in the sense that structural equilibrium is reached or is approached closely. The sim-
ulation provides considerable insight into the dynamics of structural balance as a theory
and provides guidance for empirically assessing whether balance theoretic processes are
operating. Agent-based simulation provides a useful way for connecting micro-balancing
processes with macro-structural processes and outcomes. It permits also the specifica-
tion of how macro-structural processes constrain the operation of the micro-balancing
processes.

2. Balance theory

We use balance theory here to study the basic sociological problem of group and subgroup
formation for a social relation that has both positive and negative signs. Structural balance
theory (Heider, 1958; Cartwright and Harary, 1956; Newcomb, 1961) is viewed as a set of
generative mechanisms for changes in dyadic ties that create trajectories of signed networks
in a coherent fashion. Further, the macro-structures (in terms of subgroup memberships)
place constraints on the actors as they make their affective choices. The joint dynamics of tie
formation (and dissolution) and evolution of group structures are the focus of our attention
here.

2.1. Foundations

Balance theory has a rich and long history. While it is not our intent to recount that
history here, we note the following.Heider (1946, 1958), Lewin (1951)and Newcomb
(1961)developed the basic components of balance theory as a framework for studying the
structural arrangements between social actors for affective ties. If these arrangements create
imbalance (in the form of ‘tension’ or ‘strain’), a general social process by which social
actors change their social arrangements to reduce imbalance is thought to operate.

Heider (1946)is explicit about locating the process mechanisms in the minds of social
actors. He introduced the concept of a pox triple wherep is a focal person,oan another actor
andx an object (which may be a third person).Fig. 1shows the pox triples introduced by
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Fig. 1. Balanced and imbalanced triadic configurations.

Heider. Those in the top row were taken as balanced while the triples in the bottom row were
defined as imbalanced. Balanced triples are assumed to be stable. Thus, the triple (top-left)
wherep’s attitudes towardso andx are positive, witho having a positive attitude towardsx,
is not a source of strain forp. In contrast, imbalanced triples generate tension for the actors
involved. Suppose, in this example, thatp has (or develops) a negative attitude towardsx
(as shown in the bottom-left triple ofFig. 1). This is thought to create strain or tension forp
(becausepdislikesx thato likes, whilep likeso). The options forpare to dislikeoand create
balance by disliking botho andx, or deciding to likex and create the all-positive triple in
Fig. 1. If o develops a dislike forx, andp is aware of this, it creates tension forp becausep
likes something disliked by a personp likes (see the second triple from the left in the bottom
row in Fig. 1). Heider’s pox model specifies that to reduce tension,p must either change the
relationship towardsx or o. That is,p’s triple will be balanced ifp chooses to dislikex or
o (with o continuing to dislikex). Heider’s pox model provides the basic components of a
dynamic model by specifying of the structural arrangements that create imbalance and the
types of changes that create or restore balance. For all triples in the lower panel ofFig. 1,
there are simple sign changes of links in the triples that describe movement to a triple in
the upper panel ofFig. 1. Imbalanced triples are thought to be inherently unstable while
balanced triples are thought to be stable.

Newcomb (1961)extended the development of balance theory to social groups. This
and the generalization byCartwright and Harary (1956)were significant steps. The mech-
anisms for change for Heider were located in the minds of actors. The structural balance
idea, especially for the Cartwright and Harary generalization, was specified as the outcome
of a process operating at the group level (without denying the presence of cognitive images
held by group members) as well as the operation of that process. This very important step
changed the idea of balance as a process that is internal to the actor in a subtle and profound
way: attention was focused primarily—and often exclusively—on the group structure. The
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balance theoretic literature diverged into two streams. One remained faithful to Heider’s
emphasis on affective processes in the minds of actors while the other was based on the
Cartwright and Harary generalization of Heider’s approach (Doreian, 2002). By focusing
exclusively on the structure of the group this line of research banished Heider’s insights
from empirical studies of balance in human groups. This distinction need not imply an
‘either–or’ contrast and the creation of separate streams of research seems an unfortunate
development for structural balance as a theory and as an approach for empirical studies.
We argue that it is far more appropriate to incorporate both micro- and macro-balance pro-
cesses in a conceptualization of coupled processes operating at both the individual actor
and group levels. In such a conception, the ‘internal’ actor dynamics operate in ways that,
when communicated in some fashion to other actors, help generate social structures at the
group level. There is also a group level process that operates to generate macro structures
that both inform and constrain the operation of the micro-level processes. In short,incor-
porating intra-actor dynamics into a group level processcreates an appropriate model of
structural balance as a multiple level process where micro- and macro-mechanisms are
coupled.

2.2. Formalization of balance theory

In 1956, Cartwright and Harary used graph theory to formalize Heider’s ideas on bal-
ance. Specifically, they proposed using graphs as a representation of the social structural
arrangements that are the focus of balance theory. Representing social structure as a graph
lead to significant theoretical development of both balance theory and other forms of what
is now labeled network analysis. Cartwright and Harary noted that Heider’s use of the signs
of the pox triples is equivalent to considering the signs of semicycle in a graph.1 Further, the
concept of a semicycle was generalized to any signed social network. Thus, Heider’s notion
of social balance was formally defined for any social structural arrangement of likes and
dislikes among a group of people.Norman and Roberts (1972)proposed a set of functional
measures based on counts of semicycles that described the degree of balance for any signed
graph.Hummon and Fararo (1995)proposed a generalized algorithm for computing the
balance at a point in a signed graph.

One remarkable result of the formalization provided by Cartwright and Harary is their
“structure theorem”. A graph is balanced if all of its semicycles are positive and, if a
graph is balanced, the nodes can be partitioned into two subsets (called plus-sets) such that
ties between nodes within a plus-set are all positive, and ties between nodes in different
plus-sets are all negative. All of the triples in the top row ofFig. 1can be partitioned in this
fashion.2 If we can label the Cartwright and Harary result as thefirst structure theorem,
Davis (1967)generalized it to thesecond structure theoremby reconsidering the all-negative
triple (bottom-right inFig. 1). He defined it as ‘balanced’ so that five of the triples inFig. 1
were regarded as balanced. He proved that if a signed graph was balanced in this modified

1 In defining positive and negative ties in these graphs, the distinction between the affect tie and the ‘unit
formation’ idea of Heider was discarded. In principle, the model proposed below can handle both kinds of ties.
However, we do not pursue this idea here.

2 For the all-positive triple (top-left inFig. 1), one of the plus-sets is empty.
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sense3 the nodes can be partitioned into two or more plus-sets, where plus-sets contain only
positive ties, and negative ties connect nodes in different plus-sets. This result is appealing
intuitively because empirical signed social networks having more than two subgroups that
are mutually hostile are common.

The structure theorems describe the (macro) structure of signed relations and it seems
reasonable to have a method for locating the plus-sets and the corresponding partitioned
structures. If most empirically observed signed networks are not balanced, the desired
method has to locate those partitions that areclosestto the ideal form specified in the
structure theorems.Doreian and Mrvar (1996)proposed a general method for doing this.
Instead of using a measure of imbalance based on semicycles, they used the line index4 of
Harary et al. (1965). The line index of imbalance is the minimum number of ties whose
reversal of sign creates a balanced graph. Inconsistencies with perfect balance occur in
two forms: negative ties between vertices in the same plus-set and positive ties between
vertices in different plus-sets. The algorithm developed by Doreian and Mrvar finds the set
of partitions that minimize the number of inconsistencies with perfect balance in a graph. Of
course, balanced networks are detected as such and have zero inconsistencies with balance.

Fig. 2presents a simple network that is not exactly balanced together with four partitions
of this network into two and three clusters. These partitions, each with a single inconsistency
with perfect balance, were located by using theDoreian and Mrvar (1996)method. Consider
the two cluster partitions. For the partition{{1, 2, 4, 5, 6, 7}, {3}} in the bottom-left panel
in Fig. 2, the tie from actor 1 to actor 2 is inconsistent with balance because it is a negative
tie within a plus-set. For the partition{{1, 4, 5, 6, 7}, {2, 3}} in the bottom-right panel of
Fig. 2, the tie from actor 2 to actor 4 is identified as inconsistent with balance because it
is a positive tie between plus-sets. We note that the tie identified in this fashion depends
on which (optimal) partition is considered. When we turn our attention to three cluster
partitions there are another two partitions with the same number of inconsistencies with
balance. For{{1, 5, 7}, {2, 4, 6}, {3}} partition in the top-left panel ofFig. 2, yet another
tie is identified as being inconsistent with balance. It is the positive tie from actor 1 to actor
4 that goes between plus-sets. For the partition{{1, 4, 5, 6, 7}, {2}, {3}} in the top-right
panel ofFig. 2, the positive tie from actor 2 to actor 4 is identified again as inconsistent
with balance.

To focus our discussion, consider actor 1 and the bottom-left partition ofFig. 2as actor
1’s perception of the structure. Actor 1 has one option for generating a balanced structure
in its image of the network: change the negative tie to actor 2 into a positive tie. If actor 1’s
perception is the lower-right partition inFig. 2, the actor has one option: change the positive
tie to actor 4 into a negative tie. Actor 1 cannot do anything about the positive tie from actor
2 to actor 4, except recognize it (or not). If actor 2 perceives either the top- or bottom-right
partition ofFig. 2as the group structure, that actor’s option is to change its positive tie to
actor 4 to a negative tie in an effort to reach balance. Each of these changes,even though
they are instances of the same generative process, they lead to distinct collective outcomes
when expressed in terms of partitioned structures.

3 No cycles or semicycles have a single negative line.
4 The line deletion index is the number of lines that have to be removed to reach balance.Harary et al. (1965)

prove that the line deletion and the line reversal indexes are identical.
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Fig. 2. An imbalanced network with four three- and two-cluster partitions.

An additional complication for the actors—and analysts trying to model their action—
comes from actors using a fixed image of a changing structure. If, for the bottom-left
partition, actor 1 changes its negative tie to actor 2 into a positive tie then there is no need
for further action by actor 2 if it perceives this change in time. But if actor 1 changes its
link to actor 2 at the same time as actor 2 turns its positive tie to actor 4 into a negative tie,
an imbalanced structure is reached (seeFig. 3). Even though both actors acted to reduce
balance, the aggregate outcome was a structure with the same amount of imbalance.

We can take this one step further. Suppose actor 1 starts with the image as shown in the
bottom-left panel ofFig. 2, changes the sign of its tie to actor 2 and updates the image with
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Fig. 3. An imbalanced network after two changes.

just its own change. The perceived structure for actor 1 is on the left ofFig. 4. Suppose
further, that actor 2 starts with the image in the bottom-right panel ofFig. 2 and changes
the sign of its tie to actor 4 and notes only this change. Actor 2’s image is on the right of
Fig. 4. The aggregate structure (seeFig. 3) remains imbalanced while the two actor images
are balanced. This becomes a plausible account for having balance as a general process
not leading to perfect balance in the aggregate structure (at least in the short run). The
critical difference between the two images of the overall structure is the difference in the
information known by each actor. We will return to this idea.

2.3. Structural balance as foundations for process models

The two structure theorems are central to the simulation model described below because
they drive the construction of the cognitive images held by actors as well as the form
of the group level structure. For Heider, the ‘discomfort’ experienced by actors because
of the ‘tension’ generated through imbalanced triples suggests that there will be movement
towards balancing the imbalanced triples. Put differently, rational actors are motivated
to reduce the imbalance they experience through their location in perceived imbalanced
triples. This expected change in triples—the dynamics of which are very complicated when
actors are embedded in multiple triples—has been extended to the fundamental empirical

Fig. 4. Two balanced actor images of an imbalanced network.
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Fig. 5. Core balance dynamics.

structural balance hypothesis (FSBH) claiming that signed human relations tend towards
balance through time (Doreian and Krackhardt, 2001). However, this hypothesis is not a
part of the substantive foundation of the simulation model. What is in the foundations of
the model (seeFigs. 2 and 5) is the notion of what a signed social network looks like when
it is balanced or approximates balance.

We assume that if a signed structure is balanced, there are no forces for change that
can be located in the group structure. We assume that if structures in the actor images are
imbalanced, with respect to the distribution of affective social choices, this creates tension
for those social actors. Actors then make choices to change their structural arrangements in
an effort to reduce tension. These choices only invoke balance criteria in the model developed
below.5 While specific choices, or sets of choices, are intended to reduce tension, they may
not be successful in the short run, as illustrated inSection 2.2. However, if the balance
hypothesis is correct, over the long run, these changes lead to a reduction in tension, both
for individual social actors and for the group as a whole. If these tension reduction choices
continue for a sufficient time, each actor is likely to reach an image of the group structure
that is balanced (although the time involved could be very long). The group may or may not
reach an equilibrium state that is balanced.Figs. 3 and 4show a configuration where the

5 Doreian and Krackhardt (2001)suggest potential rival mechanisms and processes that could be operative.
While future simulations can incorporate them our central concern here is the operation of balance theoretic
processes.
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group structure is not balanced but actor images of it are balanced. If the remaining actors
also have balanced images, there will be no forces operating to achieve balance at the group
level because each actor’s image is balanced. The terminal state for the whole group may
be perfect equilibrium with zero imbalance. However, we do not require this in the model
specified below. Equilibrium (or dynamic equilibrium) with some minimal imbalance for
the structure of a group is possible. In our narrative to this point, we have remained silent
about the information available to each actor. The nature of this information is critical and
mechanisms for generating different information states for the actors are formulated in the
experimental core of the simulation model described below.

We stress that the FSBH has been formulated at the group level, consistent with the
Cartwright and Harary generalization of balance theory. The hypothesis is both simple and
näıve. (This is made clear in some of the simulation outcomes described below.) While we
do not assume that this hypothesis is universally true, we do assume that individual actors
do seek to minimize imbalance through their affective choices.

2.4. Other relevant literature

Locating the relevant literature is a difficult task because there have been many conflict-
ing results—especially with regard to reciprocity.Newcomb (1961)found that reciprocity
was important in the development of friendship choices. This result was replicated by
Doreian et al. (1996)even though they used a different method of measuring reciprocity.
However,Newcomb (1979)in another (earlier) re-analysis of these data did not confirm
the hypothesis that with continuing acquaintance, dyads within a group will converge in
levels of interpersonal attraction. Furthermore,Baker (1983)re-analyzed Newcomb’s fra-
ternity data—documented inNordlie (1958)—to test a hypothesis of dyadic mutuality. The
hypothesis was not supported. Baker also collected new data in a college dormitory and,
with some qualifications, the dyadic mutuality hypothesis was supported by the new data.
Doreian et al. (1996)also studied transitivity and structural balance with Newcomb’s data
and showed that the three processes, while coupled, haddifferent time scales. If the time
scales are different for these processes, greater care is needed in specifying the conditions
under which any one of these processes are studied.

The differing time scales may help account for some of the inconsistent findings con-
cerning reciprocity. Given the differing time scales, the relevant literature may be restricted
to those studies focusing on structural balance per se—providing the observation periods
are consistent with the time scale.Epstein (1979), in an analysis of longitudinal survey data
of friendship choices among secondary school students, found that friendship selections
were not explained by “a single theory of balance”.Mower-White (1977, 1979)conducted
experiments to test triadic balance hypotheses and found that balance is only one of the
biases that affect subjects’ responses. The other biases include agreement and observer
positivity. She also argues that social context influences balance outcomes.Truzzi (1973)
conducted an experimental study of balance structures more complex than dyads and triples
and found that the structural balance model predicted successfully when subjects had a pos-
itive orientation to others, but did not hold for the corresponding negative orientations. This
result is consistent with one ofNewcomb’s (1968)findings as well as one ofDoreian and
Krackhardt’s (2001)findings that structural balance processes do not appear to operate
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when the tie fromp to o is negative. (This does suggest that specific patterns of signed
triples differentiated in terms of the sign of thep → o tie merit further attention beyond
the triples being balanced or not.)

There have been many studies of balance—sufficient to support a historical meta-analysis.
Manhart (1995)concluded that the theory has been evolutionary in its mathematical devel-
opment in the sense that new developments build on prior work, but less so in the empirical
areas.6 Opp (1984)has a much more damaging assessment of structural balance theory and
viewed it as an empirical failure.

We can identify other issues that are not considered—or are considered only lightly—in
the balance theoretic literature. First, there is little empirically based work on analyzing
structures beyond dyads, triples and partitioned structures. (We consider partitioned struc-
tures later.) Extending measures of imbalance beyond triples runs into the problem of
calculating measures of imbalance using semicycles in a general directed graph (digraph).
This is not a simple computational problem and only recently has an algorithm been pro-
posed to compute semicycle-based measures of balance on a general digraph (Hummon
and Fararo, 1995). A second issue concerns the hypothesized movement towards balance
with an implicit assumption that balance is achieved. However, for ‘real world’ balance
processes, tension is reduced only to a certain point and balance at the group level is not
reached often. It is not clear if this is embarrassing for balance theorists or that the oper-
ation of the underlying processes are incomplete in the sense that the dynamics have not
been studied for a sufficiently long period.7 At a minimum, the idea of continual movement
towards balance needs to be made far more conditional on the social contexts of signed
structures. There are conditions under which imbalance will be reduced and there are con-
ditions under which it will be increased. The FSBH does not recognize such differences.
Third, the location of “change” in the balance status of individuals in a group is unclear. It
can be located in the group structure (the usual object studied when attention is confined to
the group level) or in the cognitive representations of individuals of that group structure or
in both. Fourth, predictions regarding change in balance are limited or imprecise. Change
can be viewed as the ties changing (in magnitude and sign), the semicycles changing (from
imbalance to balance, or the reverse) or changes in the partition structure. Beyond this, it
is very difficult to predict which ties change and which semicycles change in a context of
many interdependent ties and semicycles. Finally, semicycle-based measures of balance in
a graph impose limitations on modeling and analysis. These measures are computationally
complex, practically limiting the size of groups that can be studied. All five of these issues
are addressed in the structural balance theoretically based simulation model proposed here.

The issue of whether to focus on ties or semicycles leads to a further question. If bal-
anced outcomes are the result of choices made by actors, it is unlikely that there is a clear
correspondence between semicycle counts and how people assess their balance status. Com-
plicated counts of differentially weighted cycles seem beyond the capacity of human actors

6 Moore (1979)applied balance theory to international relations. He was particularly interested in whether
balance could be attained with more than two subgroups. He concluded the structure balance theory was valid for
international relations.

7 Arguments that other processes, like a desire for some level of imbalance, may be at work are not very
convincing.
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and are unlikely to form the basis on which actors make decisions. It seems more promising
to think that people assess balance in terms of group and subgroup membership. It is here
that the partitioned structures described in the structure theorems are important. They spec-
ify memberships in plus-sets. This is something that is easy to understand. The structural
implications of a mutual positive tie between Romeo and Juliet were immediately obvious
to all members of their respective (mutually hostile) families as well to outsiders and allies.
It is important to realize also that descriptions of ‘actors making choices’ implicitly assume
that these choices are made on the basis of information. We make this explicit by specifying
ways in which actors come to have information about the signed ties among pairs of actors
but also some of the structural implications of the distribution of those choices. Member-
ship in plus-sets is easy to understand and can be invoked in expressions like ‘if you are not
with us you are against us’. An approach based only on Heider’s ideas misses the structural
implications of the distribution of signed choices because it ignores the wider structure
generated by them. In contrast, an approach that is based only on the ideas of Cartwright
and Harary ignores the affective mechanisms in the minds of actors. To understand balance
theoretic processes it is necessary to combine the ideas from the two perspectives. This is
made more complicated when there is imperfect information and actors differ in the amounts
and accuracy of their ‘social knowledge’. The agent-based simulation model described in
Section 3implements these ideas.

2.5. The cognitive basis of social choice

Our proposed model is agent-based with the agent located in a larger signed structure. We
think of the aggregate structure as the network formed by combining the information from
each actor about its own links to other actors in the group. It is the signed sociogram in the
conventional sense. The actor images of the network are distinct and we directly model them.
However, even though we distinguish the individual actor images and an aggregate structure
there are two important features worth noting: (1) the separate actions of the actors, when
combined, generate the aggregate structure; and (2) the actions of each actor are guided
by the aggregate structure as they perceive it (or have it thrust upon them by the group).
Of course, if each actor’s perception is completely accurate (or they are identical in some
other way) then the aggregate structure is identical with the actor images of the structure.
In general, the group structure and perceptions of it differ through time. We assume the
following that individual actors (1) have some knowledge—that need not be accurate—of
other actors and their ties in the network; (2) have some awareness of the wider group
structure; and (3) have the ability to make tension reducing social choices concerning their
own ties.

There is a sound cognitive basis for an agent-based social choice assumption.Freeman
et al. (1988)found that the ability of actors to discern subgroups and boundaries between
the subgroups evolves over time as people gain experience within the group. This is exactly
this kind of social knowledge that is included in our simulation model.Krackhardt’s (1987)
discussion of the perception of networks by actors of a network is instructive also as different
actors can view relations elsewhere in a social network in different ways. In a series of
studies (Freeman and Romney, 1987; Freeman et al., 1987, 1988), Freeman has shown
that the accuracy of people’s recollections of social networks varies systematically with
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their location in the network and their involvement in the social group whose network is
studied.

In short, based on the literature on cognitive structures, we assume the following of
social actors in the simulation model proposed inSection 3. They have knowledge of the
distribution of positive and negative ties in the networks in which they are located but
this knowledge need not be accurate. As a part of this, they know which members belong
to which subgroups (plus-sets) defined in terms of structural balance without assuming a
balanced group structure. Again, this knowledge need not be accurate. We place great stress
on the idea that choices made by actors for achieving balance are based on what they know
at the time when they make a choice. Their social knowledge changes as they learn and react
to their social environment. The cognitive structures of any given actor may be different
from those of other actors, and different from the aggregate (emergent) group structure.
This is also a caution to those social network analysts (including us) who might construct a
group matrix/network from the choices of all actors. It is worth noting that this formulation
is consistent with three of the six principles outlined byStokman and Doreian (1997).
They are: (1) actors have goals (in this case, to minimize the imbalance in their cognitive
image of the signed network); (2) actors act (in part) on the basis of local information;
and (3) there is parallelism (where each actor independently8 processes the information it
has).

3. Simulation methodology

We couple two simulation approaches—a multi-thread model and a discrete event simula-
tion (DES) model—in this study. The multi-thread model serves two purposes: (1) verifying
exactly how the simulated actors behave by generating detailed scripts of each actor’s so-
cial knowledge and the decisions associated with that knowledge; and (2) showing how
social balance works through dynamic graphical displays of the behavior of the simulated
actors. DES is better suited to running Monte Carlo experiments that explore the entire
parameter space of the model and generating the distribution of behaviors of the simulated
process.

The core simulation model implements two social processes: the group process deter-
mines clusters of actors that minimize total group imbalance; and the simulated actors use
social knowledge about cluster membership to make social choices that minimize their indi-
vidual social imbalances. Thus, while actors are interdependent within the aggregate group
structure, they behave as independent agents in making choices about the relational ties
they have with other actors. Both simulation approaches implement the same two-process
core model. While there are differences between the two models in their management and
the design of the interfaces of the models, these are secondary to our purposes here.9

8 This may not be the best term. We mean that each actor processes that information it has separately and without
regard for the actions of the action of others (either real or anticipated). The results of these parallel processing
schemes are coupled to form the group level signed network which represents some of the real interdependence
of the actors in the network.

9 The simulation models are written in Java, an object oriented language. Simulated actors and the group are
implemented as objects and the two approaches use the same actor object in the “behavioral” parts of the models.
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Fig. 6. Balance choices for actor 1.

3.1. Core components of dynamic balance model

Fig. 5describes the two processes of the simulation model. Actors cycle through dormant
and active phases, with the length of the dormant phase set randomly.10 During the active
phase, the actor performs three tasks. First, each actor processes messages received during
the preceding dormant phase. This involves updating the knowledge about how the group
is currently partitioned using data sent by the group process. It also involves updating the
actor’s image of the “group network” using the tie/choice messages received from other
actors (according to a communication mode as described below). We note that actors need
not receive complete information about the choices made by other actors. Second, given
current social knowledge about the group (the image network and group partitioning), the
actor makes a decision that minimizes its social imbalance. A decision involves consider-
ation of all possible tie statuses (no tie changes, adding a tie, deleting a tie and changing
the sign of a tie) controlled by an actor. Third, this decision is communicated to the group
according to the communication protocol.

The group process functions in a (nearly) continuous manner.11 Each execution of the
group process comprises three tasks. First, messages received from actors concerning tie
changes are used to update the current group network structure. Second, the group par-
titioning algorithm is used to compute clusters with minimum imbalance in the group’s
network. If there is more than one partition at the minimum imbalance level, one is chosen
randomly. Third, the optimal partition is sent to all actors. This implementation of the group
process insures that all actors share the same knowledge about the (randomly selected) min-
imum imbalance partition12 at all times. They need not—and often do not—share the same
knowledge concerning the details of the distribution of ties.

We can be more explicit about how actors make decisions.Fig. 6 displays the options
actor 1 has in the decision process for the network inFig. 2where the graph is the network

10 Scheduling actors randomly and asynchronously simulates parallel behavior typical of the real social world.
We also note that this approach to dynamics is quite different from the synchronous, round to round, approach
commonly used in social simulation.
11 In the real time multi-thread version of the model, the group process is executed every 200 ms, while the actors

are cycling through dormant and active phases on a much lower cycle frequency. In the discrete event version, the
group process executes every generation of actor decision making.
12 In general, when there are multiple equally well-fitting partitions they do not differ by much.
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image held by actor 1. This actor can maintain the status quo or change any of the six
possible ties to the other actors. Actor 1 can consider a total of 18 options once it has
assessed its current level of imbalance. Six of the options involve no change (“stay”) while
there are 12 change options. The current imbalance is a base line for comparing the impact
each tie change has on the level of imbalance. Of course, if the image held by actor 1 is
balanced there will be no change in its ties.

Each actor considers each of its ties (including null ties) to all other actors in its image of
the network. This means that, for example, actor 1 examines how imbalance would change
if the positive tie to actor 4 were changed to a negative tie, or became null. With each change,
a new imbalance level is computed. For actor 1, both changing the tie with actor 4 from
positive to negative or to a null tie creates a balanced image for actor 1. In this example,
actor 1 considers 18 options, 12 of which could change the imbalance status. These 18
options marked with a check, along with the current status, are rank ordered, and the best
one is selected. If there are multiple “best” choice options, one of these is chosen randomly.
An imbalanced structure in the actor’s image of the network can change in more than one
way and the partition structures resulting from these choices can be different. Each outcome
results from a different instantiation of a single process. As described above, two potential
actions for actor 1 to reach balance are changing the positive tie to actor 4 or changing the
negative tie to actor 2. Lacking further information, actor 1 chooses one of these randomly.
However, if the partition reported from the group process is{{1, 5, 7}, {2, 3, 4, 6}}, then
choosing to change the negative tie to actor 4 becomes the preferred option. It is possible
that an actor’s image of the network is balanced but when a partition structure is imposed
on the actor’s image, that partition has ties inconsistent with the structure described by
structure theorems. An empirical network structure can be moved to different states even if
the process generating change is the same and the starting conditions are the same.

If an actor makes a choice that changes the set of current social relations, it then com-
municates that choice to other actors and to the group process component of the model
(seeFig. 5). There are four implemented experimental conditions for the way an actor
communicates a change in the status of a tie.

1. The actor communicates the change only to the other actor who was the target of the
change. This is labeledsimple dyadiccommunication.

2. The actor communicates the change to all other actors with whom it has a positive tie.
This is labeledtell friendscommunication.

3. The actor communicates the change to all other actors with whom it has a tie, either
positive or negative. This is labeledtell acquaintancescommunication.

4. The actor communicates the change to all other actors in the network. This is labeled
broadcastcommunication.

All choice changes are also communicated to the group process component of the model.
This component maintains the current group network that reflects the choices of all actors.
The group component also continuously computes the optimal partition that minimizes
imbalance at the group level. This partition is sent continuously as a message to all actors,
and each actor makes balance computations using this current partition.13

13 When there are multiple equally well-fitting partitions, one is selected at random and is reported to all actors.
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The dynamics of the balance model operate at two levels. One is located at the level
of the individual actors where communication varies and reflects different social knowl-
edge situations. The second is the group level where the choices of the actors generate
a group network structure. In essence, the communication to the group structure is a cu-
mulated report of the dyadic communications. Thus, at the group level, a group network
emerges that is generated by the individual behaviors. In general, for a sufficiently long
simulation time, most group networks will be balanced if the structural balance hypoth-
esis is correct. (However, we must allow for configurations where the intra-actor image
networks are all balanced but the group level structure is not.) We turn now to a dis-
cussion of the two forms of simulation that incorporates this core actor and group level
behavior.

3.2. A multi-thread simulation model

The multi-thread simulation model represents each simulated actor and the group as
independent threads. Actors communicate with other actors and with the group through
pipes.14 The multi-thread model runs in “real time” in the sense that actors cycle through
active and dormant phases according to a real time clock, with the length of the dormant
phase set randomly.15 The group also cycles through regular active and dormant phases
in cycles that are short relative to the cycles of the actors. This approximates continuous
change and adjustment at the group level.

The multi-thread simulation model is most useful for displaying the dynamics of actor
choices. The model has a graphic user interface. This allows the user to set a number of
parameters and then see how those parameters generate a particular balance trajectory.Fig. 7
displays an example of a simulation run with the run’s parameter screen in the left panel
and the resulting equilibrium network in the right panel.16

In setting up these simulations, we had no hypotheses stating relations between variables.
Nor did we think in terms of ‘variance explained’ where a set of variables could be used
to account for the distribution of other variables in some linear or non-linear equation.
Additionally, we made no effort to set up systems of differential equations to model the
through time dynamics of variables. Instead, our basic concern was to capture the operation
of social processes generating events which, through time,generate relations between social
actors. While statements about relations between variables may be established from the
simulations at some future point, we think it necessary to understand the generation of
events and social relations over actors first. This led us to specify the following parameters
for runs of the simulation model.

1. The number of actors in the group (as the small group literature suggests that size
matters).

14 Java supports multiple threads and pipes which implement communications between threads. Threads and
pipes in Java are much like processes and pipes in the Unix operating system.
15 Dormant phases for actors are represented as “sleep” events in Java threads.
16 What it does not show is the sequences of changes that generate the trajectory of changes. However, this stream

is available to the analyst for detailed analyses.
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2. The length of the run time in seconds (because some processes have different time scales
and some sets of parameters may create conditions where ‘simple’ processes have to
operate for longer periods of time).

3. A minimum number of ties for actors (which, primarily, gets at the ability of social actors
to cut themselves off from others in the group and, secondarily, controls for the density
of ties).

4. A communication method (with one of the four experimental conditions that help gen-
erate local—and potentially inaccurate and incomplete—social knowledge).

5. The probability of negative ties (which is fixed across actors at the initial state because
groups vary in the extent to which they are contentious).

6. A simulation seed for random number generator.17

In the first example run, the group size is set to five actors and the communication method
is simple (dyadic). An equilibrium network18 of the resulting run is shown in right panel.
In general, partition membership is shown through color-coding the nodes in the network
diagrams. Circles represent actors and those in the same plus-set have the same color-coding.
In this run, actors 1 and 3 belong to the same plus-set while the remaining actors are in a
second plus-set. The signs of ties are also coded in the conventional fashion: solid darker
(black) ties are positive and lighter (red) lines represent negative ties. The arrows indicate
the direction of the tie. The tie between actors 1 and 3 inFig. 7 is a solid (black) line—as
are the reciprocal ties between actors 0, 2 and 4. The remaining ties are (red) lighter and,
therefore, negative.

Fig. 8 shows a similar pair of screens. The parameter settings inFig. 8 are identical
to those inFig. 7, except for a change in the simulation seed. This second run is simply
another realization of the same balance process with the same starting configuration. The
right panel shows this different realization. We now see three subgroups (as plus-sets) at an
equilibrium condition. The three plus-sets each have positive (black) ties within themselves,
and negative (red) ties going to members of other groups. The equilibrium group condition
is another balanced partition.

These results are important because they demonstrate that the same balance process can
generate structural outcomes that have been characterized in the empirical literature as
quite different. The number of plus-sets is different inFigs. 7 and 8. We have observed yet
another equilibrium outcome has only one plus-set. Such an outcome can be viewed as a
‘conforming’ structure in the sense that perceptions of every actor about every other actor
in the network are shared.19 The networks ofFigs. 7 and 8have multiple plus-sets and
there is no conformity across the group as a whole. Each plus-set contains actors in broad
agreement with each other member in the plus-set concerning actors in the other plus-sets.
However, there are disagreements across actors in different plus-sets.20 This can be labeled

17 The seventh parameter in the parameter screen (minimum graph edge), controls how long edges are in the
graphic displays of the network.
18 This is one outcome during one run of the model. Nothing in the balance procedure guarantees this specific

outcome and many outcomes of the balance process are possible. SeeFig. 11for another generated outcome.
19 If the graph is complete, these are identical.
20 These disagreements are not complete. Actors in plus-sets, say A and B, can agree with each other in their

negative assessments of the actors in plus-set, say C. However, they may disagree in their views of each other.
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as a ‘partial conformity’ or a ‘segmented conformity’ structure. To the extent that partial
conformity can be viewed as deviant, it seems that ‘conformity’ and ‘deviance’ can both be
outcomes (realizations) of a single process.

The graphical multi-thread simulation model can be used to study and demonstrate a
variety of phenomena that are difficult to illustrate in an article because they are recognized
by dynamic patterns of change. We list four of these phenomena.

1. Some groups reach equilibrium balance very quickly, requiring only a few choices to
eliminate imbalances, while other groups never reach complete equilibrium during de-
fault standard run times. Thus, the rate of convergence to equilibrium varies, depending
on a complex set of initial conditions and parameter settings.

2. As multiple groups form, some actors may be “caught in the middle”. Their group
membership changes frequently reflecting their ambiguous status.

3. If the minimum number of ties is reduced to zero, some actors may disassociate them-
selves from all of the other actors, become disconnected and remain isolates. To the
extent that a shared view of norms and beliefs exists for members of plus-sets, these
isolates adopt an anomic status. This can happen when the communication patterns are
less than broadcast conditions.

4. Reciprocated positive dyads and triples are quite stable, seldom changing during the
course of a run.

These types of results are important in that they demonstrate how a particular struc-
tural outcome occurs. However, the multi-thread model generates only one outcome at a
time, and since it runs in “real time” it takes considerable time to look at multiple out-
comes under controlled conditions. For these types of questions, a DES model is more
appropriate.

3.3. A discrete event simulation model

The primary difference between discrete event and multi-thread models is that discrete
event models do not run in “real time”. Instead, they schedule events (active actors receiving
messages, making choices and sending messages) in the future at random times. To manage
the dynamics of the simulation, a DES model keeps track of all future events in a time-based
priority queue, and continuously processes the event at the head of the queue. Processed
events generate new events in the future, which are inserted into the priority queue to be
processed when they reach the head of the queue.Fig. 9describes the DES methodology.
For a more detailed discussion of DES simulation seeFararo and Hummon (1994).

DES models focus on those points in a dynamic process when something changes and
skip over those times when nothing is happening. This makes the approach very efficient
in executing a process until some end state is reached. The DES model of balance is used
to conduct Monte Carlo experiments with differing sets of parameters covering group size,
incidence of negative ties and communication modes.

Unlike the multi-thread version of the model where a single simulation run is executed
in real time, the DES version requires an explicit stopping rule because thousands of runs
are executed to explore the behavior of the model over the entire parameter space. We
have defined social balance in a group as a two-level process, with both individuals and
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Fig. 9. Discrete event simulation methodology.

the group possibly achieving balance. Therefore, the stopping rule employed tests for each
level plus a total run time test: first, number balanced actors= number of actors; sec-
ond, group imbalance= 0; and third, run time> run time limit. If any test was true,
the run was terminated. It was possible for more than one test to be met at the same
time.

In general, the “all actors balanced” condition was achieved more quickly than the con-
dition of “group level balance”. Thus, the run time limit can effect the likelihood of which
stopping test determines the final configurations. Run time limits were set at approximately
10 times the mean time to achieve group level balance.Table 1presents statistics on stopping
conditions and the average times to finish a run.

The percentage of runs reaching the time limits for the four sized groups is small and
varies from 0.75% for 5 actors to 3.6% for 10 actors. Thus, most of the runs achieve balance
at one or both levels of the process. The percentage of runs stopped by achieving group
level balance is always less than all individuals achieving balance; however, both forms
of balance are common. The mean times to achieve balance reveal a different view of
the process; achieving balance at the group level takes far longer than at the individual
level. Overall, individual level balance accounts for about half of the runs, and is achieved
quickly, while group level balance accounts for about one-third of the runs, and takes far
longer.

Table 1
Run completion statistics: percent stopping rule and mean time

Number of
actors

Stopping rule

Time limit All actors
balanced

Group level
balanced

Both All

3 1.80 (1000) 46.00 (79) 14.75 (109) 37.45 (22) 100.00 (79)

5 0.75 (2800) 51.35 (86) 34.60 (268) 13.30 (29) 100.00 (162)

7 1.20 (12000) 54.20 (144) 41.65 (1230) 2.95 (176) 100.00 (739)

10 3.60 (72000) 54.55 (309) 41.00 (8532) 0.85 (71) 100.00 (6260)

All 1.84 (37755) 51.53 (159) 33.00 (3121) 13.64 (33) 100.00 (1810)

The values are given as percentage and mean time.
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4. Discrete event simulation experiments and outcomes

The parameters chosen for the experimental conditions focus on three interests (in ad-
dition to a general concern for the dynamics of structural balance). First, are large groups
likely to differ from small groups? Second, will the incidence of many negative ties at the
outset have different consequences than the presence of few negative ties? The intuition here
is that some groups differ in the extent to which they are contentious and that this matters.
Finally, because the amount of information available to each of the actors is critical, do
different communication modes generate information differences?

To explore these questions, we used the following parameter settings.

1. Group size:n = 3, 5, 7 and 10.
2. Probability of negative ties21 in the initial conditions:P = 0.1, 0.3, 0.5, 0.7 and 0.9,

which we denote byP(neg).
3. Communication methods: simple dyadic, tell friends (over positive ties), tell acquain-

tances (over positive and negative ties) and broadcast (tell everyone).

Each combination of parameters (for example,n = 3,P(neg) = 0.1 and simple dyadic),
the generation of sequences of ties was replicated 100 times. The following variables were
measured for each run.

1. The number of acts (actor choices) needed to reach an equilibrium (frequently a balanced
structure).

2. The level of group imbalance as measured by the line index (of imbalance).
3. The number of actors that achieved balance in their cognitive images of the signed social

network.
4. The average number of clusters in the final partition.

The number of acts to reach balance is a measure of how easy it is for a group to reach
equilibrium. We have noted already that there can be a difference between balance at the
group level, and the balance of individual actors. The second and third measures capture
this important distinction. Finally, from the multi-thread model, we know the number of
clusters formed during the balance process varies. We use the average number of the clusters
in the equilibrium partitions to capture this.

4.1. The number of acts to reach balance (or equilibrium)

Fig. 10 presents the results for the number of acts to reach balance for each of the
combinations of experimental conditions. The four graphs are drawn on different scales
because of the huge differences for different group sizes.

For groups of size 3, the trajectories for simple, broadcast and tell acquaintances are very
close to each other and only minor differences can be noted. The lowest two trajectories
are for simple and broadcast with a slight hint of a peak forP(neg) = 0.5. The trajectory
for tell acquaintances is slightly higher and reaches a maximum whenP(neg) = 0.7 and
remains there. The average number acts for the tell friends communication mode is the

21 This generates different numbers of negative ties for the starting configuration of ties.
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highest for all values ofP(neg) with a clear ‘tipping point’ atP(neg) = 0.5. Below this
value, the number of acts to reach balance increases with contentiousness and above this
value, the number of acts to reach balance declines asP(neg) increases. The differences
between this communication mode and the other three is clear (although this is magnified
by the scale used).

For group sizes of 5, 7 and 10, the trajectories for tell friends and tell acquaintances are
well above those for the simple and broadcast communication modes for most values of
P(neg). All trajectories are concave down, except for the tell friends mode for groups
of size 10 whenP(neg) > 0.7. For the lowest trajectory (for the broadcast mode), the
curves are almost flat and the average number of acts to reach balance is small. The
next lowest trajectory (for the simple communication mode) peaks at slightly above 10,
acts forP(neg) = 0.7 whenn = 5 and peaks at around 50, forP(neg) = 0.5 when
n = 7. The peak is higher forn = 10. The two highest trajectories (by a wide margin
for most values ofP(neg)) are for the tell friends and the tell acquaintances communi-
cation modes. These two trajectories intersect for group sizes >3, where the intersection
points occur atP(neg) = 0.2, 0.3 and 0.4 for the respective group sizes of 5, 7 and
10. Before the intersection points (lower values ofP(neg)), the tell acquaintance tra-
jectories are above the tell friends trajectories. This is reversed for higher values of
P(neg).

For the tell friends mode, the peaks for the average number of acts to reach balance are
slightly below 15 forn = 3, slightly below 50 forn = 5, around 375 forn = 7, and above
5000 forn = 10. The increase in ‘inefficiency’ is far from linear with group size as group
size increases. Also, the values ofP(neg) for which these maximum values occur increase
with the size of the group. The corresponding peaks for tell acquaintances are around 4, 25,
225 and >3000 for the four group sizes considered here. These can all be viewed as tipping
points and all occur whenP(neg) = 0.3.

Stepping back from the numerical details, it is clear that reaching balance is done most
efficiently for the simple and broadcast modes for all values of contentiousness. Beyond
n = 3, the difference between these two modes and the tell friends and tell acquaintances
modes is large for all but the extreme levels of contentiousness. In broadcast mode, all
actors have full information and reach balance faster for all values of contentiousness.
Indeed, contentiousness is not a particularly relevant parameter for achieving balance under
full information conditions. For the simple communication mode, actors have accurate
local information for the ties involving them and reach balance faster than either of the tell
acquaintances and tell friends modes, again for all levels of contentiousness. For low levels
of contentiousness, tell friends is more efficient than tell acquaintances. However, for higher
levels of contentiousness, the tell friends seems least efficient because actors are likely to
have higher levels ofbothincomplete and inaccurate information. It is clear also that group
size matters.

4.2. Average group imbalance at equilibrium

Fig. 11 shows the results for the average group imbalance at equilibrium where the
measure of imbalance is the line index (number oftiesinconsistent with balance for partitions
closest to the form described in the structure theorems). The triad has patterns that differ
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from those of the other group sizes. For groups of size 3, the level of imbalance increases
with contentiousness for all communication modes untilP(neg) is 0.5. Over this range, the
highest imbalance is associated with the broadcast mode. This is followed by the simple
mode and the two trajectories are close whenP(neg) ranges from 0.1 to 0.3. These two
trajectories are well above those for the other two communication modes. The tell friends
mode comes next in average imbalance with the lowest such level being associated with
the tell acquaintances mode. For both the simple and broadcast modes,P(neg) = 0.5 is
another tipping point after which lower levels of group imbalance occur with increases in
contentiousness. The trajectory increases for tell friends asP(neg) increases beyond 0.5 and
this mode has the highest average levels of group imbalance whenP(neg) exceeds 0.7. For
tell acquaintances, there is a drop in imbalance asP(neg) increases beyond 0.5 with another
reversal in the trajectory when contentiousness increases beyond 0.7. All average levels of
imbalance are<1.

There is great consistency in the results for the other three group sizes. In general, as
the contentiousness rises for groups of sizes 5, 7 and 10, the average level of imbalance
monotonically declines.22 The average imbalance levels increase as group size increases.
Consistent with the results whenn = 3 (for P(neg) < 0.7), the trajectories are ordered
with average group imbalance highest for the broadcast mode, followed in order by the
simple, tell friends and tell acquaintances communication modes. At face value, these
results seem counter-intuitive in two ways. First, group level imbalance islowestfor the
highest values of contentiousness. Second, the ordering of average group imbalance levels
has the broadcast mode, where all actors have full and accurate information, as having
the highest level of imbalance for all levels of contentiousness. If amount and accuracy
of local knowledge is the driving force in balance dynamics, then one would expect the
tell acquaintances condition to come next. Instead, it is associated with the lowest levels of
average group imbalance. One consistency in the results for the number of acts to equilibrium
and the average levels of group imbalance is that the broadcast and simple modes are at
one extreme while tell friends and tell acquaintances is at the other. For high levels of
contentiousness and forn = 7 and 10, the latter two conditions as very close to each other and
to zero.

4.3. The number of actors whose cognitive images are balanced

Recall that actors can have different images of the group network and that these can be
balanced even when the group as a whole is not imbalanced. One way of examining this
is to look at the average number of actors with balanced images of the group network at
equilibrium. This is shown inFig. 12.

For all group sizes and all levels of contentiousness, the number of actors with a balanced
image of the network with the broadcast mode is always (or is very close to) the group size.
Put differently, all actors have a balanced image for the broadcast mode. Next comes the
simple communication mode. The average number of actors with a balanced image is close to
the group size when the amount of contentiousness is at 0.1, the minimum value considered
here. As contentiousness rises, the average number of actors with a balanced image of

22 The exceptions occur the higher levels of contentious for the tell friends and tell acquaintances modes.
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the network under the simple communication mode declines monotonically withP(neg)
for group sizes 5, 7 and 10. For these two communication modes, the average number
of actors with a balanced image is much greater than for the other two communication
modes.

For all group sizes, the number of actors with a balanced image for the tell friends
communication mode declines monotonically withP(neg) as the level of contentiousness
rises untilP(neg) = 0.5. For groups of sizes of 3, 5 and 7, this value ofP(neg) marks a
tipping point after which the average number of actors with a balanced image of the network
increases as the levels of contentiousness rise. For groups of size 3, this average approaches
that of the simple communication mode forP(neg) = 0.9. For groups of size 10, this
average declines slightly for the tell friends condition untilP(neg) = 0.7, after which
increases in contentiousness are accompanied by increases in the average number of actors
with a balanced image of the network.

The results for the tell acquaintances are, in the main, consistent with regard to the patterns
for the tell friends condition with the exception that the average number of actors with a
balanced image of the network are higher.23 The anomaly comes for groups of size 3 where
the pattern for tell acquaintances has a distinctive trajectory in the form of a ‘W’. AsP(neg)
increases to 0.3, the average number of actors with a balanced image does decline in the
same way as for tell friends. However, forP(neg) between 0.3 and 0.5, the average number
of balanced actors increases with increases in the initial level of contentiousness. ForP(neg)
in the range for contentiousness (betweenP(neg) = 0.5 and 0.7, there is another range of
contentiousness where there are decreases in the average number of actors with a balanced
image as contentiousness increases. Finally, afterP(neg) = 0.7, increasing contentiousness
is associated with increases in the average number of actors with a balance image of the
network.

4.4. The number of clusters (plus-sets) in equilibrium partitions

The final aspect of the balancing process studied here is the number of plus-sets that are
formed at equilibrium.Fig. 13presents the average number of clusters for each group size
and all levels of contentiousness. Regardless of the group size, as contentiousness increases
so does the average number of clusters that are formed. This is fully consistent with the
extension of balance theory byDavis (1967)and the expectation of the formation of larger
numbers of plus-sets with more all-negative triples in the data. For groups of size 3, the
lowest trajectory occurs for the tell friends communication mode. The trajectories for the
remaining three communication modes are all very close. For groups of size 5, the trajectory
for tell friends has the smallest number of plus-sets once the initial level of contentiousness
reachesP(neg) = 0.2 and is clearly lower for higher initial levels of contentiousness. The
remaining three trajectories are close.

For groups of size 7 and lower levels of contentiousness (withP(neg) between 0.1 and
0.5), the trajectory for the tell friends communication mode remains close to the other three
trajectories. Once contentiousness levels are higher than 0.5, the average number of plus-sets

23 ForP(neg) = 0.1, for all group sizes, exceptn = 5, the average is slightly lower for tell acquaintances. Also,
for n = 10, the trajectory for tell acquaintances is slightly below that for tell friends untilP(neg) = 0.3.
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for this communication mode is distinctly lower than for the other communication modes.
This pattern is repeated for groups of size 10 but not untilP(neg) = 0.6 and by the time
P(neg) exceeds 0.7, this communication mode, the average number of plus-sets drops as
P(neg) increases beyond 0.7. For the higher levels of contentiousness, it appears that the next
smallest average number of plus-sets is associated with simple communication mode—with
the only clear difference occurring forn = 10. For the highest level of contentiousness, the
average number of plus-sets are associated, in order, by the broadcast, tell acquaintances,
simple and the tell friends communication modes.

4.5. Social balance and cliques

The results inFig. 13 demonstrate the strong relation between the contentiousness of
a group, and the number of clusters or cliques that are formed. What these graphs do
not show is a more subtle relation between cluster formation and the two types of balance
realized by the process. Specifically, we need to examine the relation between the number of
clusters, and the social balance measures at both individual and group levels. We estimated
general linear models that predicted the number of balanced actors and the group level
of imbalance, as a function of the number of acts to achieve balance and the number of
clusters, while controlling for all experimental design factors as fixed effects (number of
actors, contentiousness and communication mode) or random effects (stopping rule). The
Monte Carlo repetition factor was high enough that all statistical parameters and effects
are significant so we will not report the complete statistical models. However, what is of
particular interest is the relation between the measures of balance and the number of clusters,
controlling for all other variables and design effects.

The general linear models report that an increase in the number of clusters reduces group
level imbalance and reduces the number of balanced actors. Stated another way, within
the overall social balance process, clique formation improves group level balance, while
simultaneously lowering individual level balance. Recall that the level of clique formation
is a function of the contentiousness of the group. Thus, clique formation is a critical sub
process to social balance. Contentious groups of actors achieve social balance through clique
formation, while at times isolating a few actors who never achieve individual balance.
Finally, we note that we have observed this phenomena during runs of the multi-thread
model.

5. Summary and discussion

Structural balance theory is both limited in scope and ambitious in its claim to generality.
While dealing ‘only’ with small groups and simple psychological mechanisms, it can be
viewed as postulating and describing a very general set of social mechanisms that operate
in many, if not all, contexts where social relations are signed. In the simulations presented
here we modeled a balance theoretic process with two levels. One is located in the minds of
actors and is fully consistent with the initial (micro-level) formulation ofHeider (1946, 1958)
while the second (macro-level) is attentive to group level dynamics. At this group level, the
simulations are consistent with the line of work initiated byCartwright and Harary (1956)



46 N.P. Hummon, P. Doreian / Social Networks 25 (2003) 17–49

where attention has been focused on the structure of small groups. We have coupled the two
levels by having the micro- and macro-level processes inform and constrain each other as
they operate. While the results that we have generated are consistent with structural balance
(by design), the outcomes—as described above—were more complicated than we expected
and have serious implications for the empirical study of balance theoretic processes.

These simulations, while consistent with balance theory, do not appear to relate directly
to either experimental studies of balance or group level studies of balance theory. One of
the ‘design variables’ was the contentiousness of groups, operationalized by the probabil-
ities of negative ties in the initial conditions. We have not seen this in the literature even
though groups do differ in their levels of contentiousness. The ‘outcome variables’ were
the number of acts that groups need to reach balance (or equilibrium), the number of actors
whose cognitive images of the network are balanced, the number of clusters (plus-sets) at
equilibrium and the level of imbalance at the group level. From the perspective of group
level studies, only the last variable is featured as a relevant outcome variable. Most of the
experimental studies that have looked at balance have considered specific triples and the
relative frequencies of balanced and imbalanced triples in cognitive images in terms of
their existence, pleasantness and simple recognition. Isolated triples, whether hypotheti-
cal or real, are very restrictive and in most social groups there are multiple triples. The
simulations that we report embed individual actors in larger (social) structures and we do
not restrict attention to the location of actors in triples. Further, having actors located in
structures of plus-sets linked (in the main) by negative ties seems more comprehensible for
the actors involved. Viewing actors as capable of complex computations involving semi-
cycles of differing lengths (including triples) as an assessment of imbalance seems too
optimistic.

The simulation results suggest that: (1) the initial contentiousness is relevant; (2) the
modes of communication (which generate variations in the amount of information that
actors have concerning the groups within which they are located) is important for balance
theoretic dynamics; (3) these dynamics are different in ‘large’ small groups compared to
‘small’ small groups; and (4) there is a subtle relation between the number of plus-sets
formed and the two types of balance realized by the model. Some of our results are both
simple and provocative. The empirical structural balance theoretic hypothesis that human
signed networks tend towards balance has an ambiguous standing. While empirical studies
have documented movements towards balance, few social groups reach perfect balance.
Doreian and Krackhardt (2001)suggest that there may be multiple balance mechanisms
that may be switched on or off in given empirical contexts andDoreian (2002)suggests that
movement towards balance, if it exists, is neither simple nor direct. Our simulations suggest
at least two possible reasons for this. One is that if each actor has a balanced cognitive
image of the network, there is no need for any actor to make changes in their social ties. The
internal Heiderian mechanism is inoperative when there is no ‘tension’ requiring reduction.
It follows that a macro-level structure can be imbalanced while all cognitive images of
that network are balanced. A second explanation stems from the finding that group level
balance takes far more acts to be attained than individual level balance—and this number
of acts increases by orders of magnitude as the group size increases. It seems likely that
most empirically observed groups have not been studied for a long enough time and that
the empirically observed imbalanced structures represent a state that is well short of an
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equilibrium (whether balanced or not).Doreian et al. (1996), following a re-analysis of the
Newcomb data, observe that reciprocity, transitivity and balance theoretic mechanisms have
different time scales. Of these, balance had the longest time scale. Our simulations suggest
that they may have underestimated the length of the time scale for the operation of balance
theoretic mechanisms at the group level.

There are a variety of implications and next steps suggested by our results. One is that
the empirical study of the evolution of human small groups would be helped if we knew
more about the time scales of the processes studied in these groups. It would be useful
to have more information about the acts needed to reach balance—although we recognize
that observing these empirically would require a Herculean effort. The simulations empha-
size the essential stochastic nature of evolving group structures: groups starting with the
same initial conditions and evolving under the same process rules need not have the same
trajectory nor the same destination structure.24 There is both ambiguity and uncertainty
in evolving group structures, an observation reinforced by the large number of terminal
structures generated by the simulations. The same balance process can generate a single
cohesive plus-set of the whole group, disjoint mutually hostile plus-sets and a large plus-set
with a small number much disliked dyads and singletons. Clearly, an additional (much
needed) step is the construction of a catalogue of balanced (and near balanced) group
structures.

Simulations could shed light on the differences between the initial formulation of Heider
and that ofNewcomb (1968)concerning thep → o link in the triples ofFig. 1. While Heider
considered all of the triples in terms of balance mechanisms, Newcomb suggested that these
operate only if thep → o link is positive. In breaking a ‘singular’ balance mechanism into
eight sub-mechanisms,Doreian and Krackhardt (2001)found that only some of the balance
theoretic mechanisms appeared to operate and these all had thep → o link positive.25 It will
be straightforward to build a ‘Newcomb balance process’ and contrast it with the ‘Heider
balance process’ studied here.Scott (1963)suggested that actors differ in their cognitive
complexity and that “cognitively complex persons tended towards unbalanced groupings
(Scott, 1963, p. 66)”. Our simulations can be extended to have actors with differential
cognitive complexities as they are embedded in larger social structures. Actors can differ
in their memories of the processes as they unfold, yet another way in which differential
cognitive complexity can be generated.

The idea of differential popularity and unpopularity as a rival hypothesis to balance
theory uncovered byDoreian and Krackhardt (2001)in signed graphs echoes the earlier
finding of Feld and Elmore (1982)who argued that transitivity could be confused with
differential popularity and, worse, this could lead an investigator to place primary emphasis
on transitivity as the operating mechanism when differential popularity could be the more
potent mechanism for generating structural patterns. Building these alternative mechanisms
into further simulation studies would allow us to know—or at least provide us with clues for
knowing—how to distinguish the (combined and rival) operation of these kinds of processes
in empirical situations.

24 Recall our discussion ofFigs. 3 and 4regarding trajectories of evolving group structure.
25 There were other rival hypotheses including differential unpopularity and possible recognition of actor attributes

wherep ando could agree about someq regardless of how they regard each other.
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Following the current status of balance theory, we chose to model social balance as
two interacting processes, one embedded in the cognitions of social actors, and the other
operating at the group level. Having one without the other seems problematic. The balance
‘mechanism’ as specified by coupled group level and actor level processes means both levels
need to be present. While it is possible, in principle, to run the simulation without the group
level process and ask if the FSBH holds when only the Heiderian process operates, doing this
denies the social aspect of the balance processes. Looking only at intra-actor processes has
little or no structural relevance. Of course, studying only the group level process removes
the intra-actor processes. Our results and modeling experiences lead us to wonder about a
model in which both social choice mechanisms and the group partitioning process are part
of an actor’s cognitive processing. Would we see that same patterns if all balance processes
were executed at the actor level? This is a question that we hope to pursue.

Structural balance theory has a long history in which it is hailed as both a success and a
failure. Such a mixed reception is not an accident. We contend that neither the experimental
examination of triples nor the empirical study of balance processes at the group level can
provide adequate foundations for the study of the operation of balance. Balance theory is
a theory (or a set of rival theories) and we do not have a clear idea about the operation of
balance theoretic processes. Our hope is that using simulation models of the sort described
here will put us in a position to design better observational (and also experimental) studies
to empirically study the operation of structural balance in small groups and networks of
humans.
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