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Abstract
We present a memory-based learning (MBL) approach
to shallow parsing in which POS tagging, chunking, and
identification of syntactic relations are formulated as
memory-based modules. The experiments reported in
this paper show competitive results, the Fβ=1 for the
Wall Street Journal (WSJ) treebank is: 93.8% for NP
chunking, 94.7% for VP chunking, 77.1% for subject
detection and 79.0% for object detection.

Introduction
Recently, there has been an increased interest in ap-
proaches to automatically learning to recognize shallow
linguistic patterns in text [Ramshaw and Marcus, 1995,
Vilain and Day, 1996, Argamon et al., 1998,
Buchholz, 1998, Cardie and Pierce, 1998,
Veenstra, 1998, Daelemans et al., 1999a]. Shallow
parsing is an important component of most text analy-
sis systems in applications such as information extrac-
tion and summary generation. It includes discovering
the main constituents of sentences (NPs, VPs, PPs) and
their heads, and determining syntactic relationships like
subject, object, adjunct relations between verbs and
heads of other constituents.

Memory-Based Learning (MBL) shares with other
statistical and learning techniques the advantages of
avoiding the need for manual definition of patterns
(common practice is to use hand-crafted regular expres-
sions), and of being reusable for different corpora and
sublanguages. The unique property of memory-based
approaches which sets them apart from other learn-
ing methods is the fact that they are lazy learners:
they keep all training data available for extrapolation.
All other statistical and machine learning methods are
eager (or greedy) learners: They abstract knowledge
structures or probability distributions from the train-
ing data, forget the individual training instances, and
extrapolate from the induced structures. Lazy learn-
ing techniques have been shown to achieve higher ac-
curacy than eager methods for many language pro-

cessing tasks. A reason for this is the intricate in-
teraction between regularities, subregularities and ex-
ceptions in most language data, and the related prob-
lem for learners of distinguishing noise from excep-
tions. Eager learning techniques abstract from what
they consider noise (hapaxes, low-frequency events,
non-typical events) whereas lazy learning techniques
keep all data available, including exceptions which
may sometimes be productive. For a detailed analy-
sis of this issue, see [Daelemans et al., 1999a]. More-
over, the automatic feature weighting in the similar-
ity metric of a memory-based learner makes the ap-
proach well-suited for domains with large numbers of
features from heterogeneous sources, as it embodies a
smoothing-by-similarity method when data is sparse
[Zavrel and Daelemans, 1997].

In this paper, we will provide a empirical evalua-
tion of the MBL approach to syntactic analysis on a
number of shallow pattern learning tasks: NP chunk-
ing, VP chunking, and the assignment of subject-verb
and object-verb relations. The approach is evalu-
ated by cross-validation on the WSJ treebank corpus
[Marcus et al., 1993]. We compare the approach quali-
tatively and as far as possible quantitatively with other
approaches.

Memory-Based Shallow Syntactic
Analysis

Memory-Based Learning (MBL) is a classification-
based, supervised learning approach: a memory-based
learning algorithm constructs a classifier for a task by
storing a set of examples. Each example associates a
feature vector (the problem description) with one of a
finite number of classes (the solution). Given a new
feature vector, the classifier extrapolates its class from
those of the most similar feature vectors in memory.
The metric defining similarity can be automatically
adapted to the task at hand.

In our approach to memory-based syntactic pat-
tern recognition, we carve up the syntactic anal-



ysis process into a number of such classification
tasks with input vectors representing a focus item
and a dynamically selected surrounding context. As
in Natural Language Processing problems in general
[Daelemans, 1995], these classification tasks can be seg-
mentation tasks (e.g. decide whether a focus word or
tag is the start or end of an NP) or disambiguation
tasks (e.g. decide whether a chunk is the subject NP,
the object NP or neither). Output of some memory-
based modules (e.g. a tagger or a chunker) is used as
input by other memory-based modules (e.g. syntactic
relation assignment).

Similar cascading ideas have been explored in other
approaches to text analysis: e.g. finite state partial
parsing [Abney, 1996, Grefenstette, 1996], statistical
decision tree parsing [Magerman, 1994], maximum en-
tropy parsing [Ratnaparkhi, 1997], and memory-based
learning [Cardie, 1994, Daelemans et al., 1996].

Algorithms and Implementation

For our experiments we have used TiMBL1, an MBL
software pack-
age developed in our group [Daelemans et al., 1999b].
We used the following variants of MBL:

• ib1-ig: The distance between a test item and each
memory item is defined as the number of features for
which they have a different value (overlap metric).
Since in most cases not all features are equally rele-
vant for solving the task, the algorithm uses informa-
tion gain (an information-theoretic notion measuring
the reduction of uncertainty about the class to be pre-
dicted when knowing the value of a feature) to weight
the cost of a feature value mismatch during compari-
son. Then the class of the most similar training item
is predicted to be the class of the test item. Clas-
sification speed is linear to the number of training
instances times the number of features.

• IGTree: ib1-ig is expensive in basic memory and
processing requirements. With IGTree, an oblivious
decision tree is created with features as tests, and or-
dered according to information gain of features, as a
heuristic approximation of the computationally more
expensive pure MBL variants. Classification speed
is linear to the number of features times the average
branching factor in the tree, which is less than or
equal to the average number of values per feature.

For more references and information about these al-
gorithms we refer to
[Daelemans et al., 1999b, Daelemans et al., 1999a]. In
[Daelemans et al., 1996] both algorithms are explained

1TiMBL is available from: http://ilk.kub.nl/

in detail in the context of MBT, a memory-based POS
tagger, which we presuppose as an available module in
this paper. In the remainder of this paper, we discuss
results on the different tasks in section Experiments,
and compare our approach to alternative learning meth-
ods in section Discussion and Related Research.

Experiments
We carried out two series of experiments. In the first
we evaluated a memory-based NP and VP chunker, in
the second we used this chunker for memory-based sub-
ject/object detection.

To evaluate the performance of our trained memory-
based classifiers, we will use four measures: ac-
curacy (the percentage of correctly predicted out-
put classes), precision (the percentage of predicted
chunks or subject- or object-verb pairs that is cor-
rect), recall (the percentage of chunks or subject-
or object-verb pairs to be predicted that is found),
and Fβ [C.J.van Rijsbergen, 1979], which is given by
(β2+1).prec.rec
β2.prec+rec , with β = 1. See below for an example.
For the chunking tasks, we evaluated the algorithms

by cross-validation on all 25 partitions of the WSJ tree-
bank. Each partition in turn was selected as a test set,
and the algorithms trained on the remaining partitions.
Average precision and recall on the 25 partitions will
be reported for both the ib1-ig and igtree variants of
MBL. For the subject/object detection task, we used
10-fold cross-validation on treebank partitions 00–09.
In section Related Research we will further evaluate our
chunkers and subject/object detectors.

Chunking

Following [Ramshaw and Marcus, 1995] we defined
chunking as a tagging task, each word in a sentence
is assigned a tag which indicates whether this word is
inside or outside a chunk. We used as tagset:

I NP inside a baseNP.

O outside a baseNP or a baseVP.

B NP inside a baseNP, but the preceding word is in
another baseNP.

I VP and B VP are used in a similar fashion.

Since baseNPs and baseVPs are non-overlapping and
non-recursive these five tags suffice to unambiguously
chunk a sentence. For example, the sentence:

[NP Pierre Vinken NP ] , [NP 61 years NP ] old , [V P
will join V P ] [NP the board NP ] as [NP a nonexecutive

director NP ] [NP Nov. 29 NP ] .

should be tagged as:

http://ilk.kub.nl/


Methods context accuracy precision recall Fβ=1

NPs

IGTree 2-1 97.5 91.8 93.1 92.4
IB1-IG 2-1 98.0 93.7 94.0 93.8
baseline words 0 92.9 76.2 79.7 77.9
baseline POS 0 94.7 79.5 82.4 80.9

VPs

IGTree 2-1 99.0 93.0 94.2 93.6
IB1-IG 2-1 99.2 94.0 95.5 94.7
baseline words 0 95.5 67.5 73.4 70.3
baseline POS 0 97.3 74.7 87.7 81.2

Table 1: Overview of the NP/VP chunking scores of 25-fold cross-validation on the WSJ using IB1-IG with a context
of two words and POS right and one left, and of using IGTree with the same context. The baseline scores are
computed with IGTree using only the focus POS tag or the focus word

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 Class
Weight 39 40 4 3 2 10 12 18 29 18 31 13 24

Inst.1 -1 0 0 seen VBN - - - - sisters PRP$ seen VBN S
Inst.2 1 0 0 seen VBN sisters PRP$ seen VBN man NN lately RB O
Inst.3 2 0 0 seen VNB seen VBN man NN lately RB . . -

Table 2: Some sample instances for the subject/object detection task. The second row shows the relative weight of
the features (truncated and multiplied by 100; from one of the 10 cross-validation experiments). Thus the order of
importance of the features is: 2, 1, 11, 9, 13, 10, 8, 12, 7, 6, 3, 4, 5.

PierreI NP VinkenI NP ,O 61I NP yearsI NP oldO
,O willI V P joinI V P theI NP boardI NP asO aI NP
nonexecutiveI NP directorI NP Nov.B NP 29I NP .O

Suppose that our classifier erroneously tagged di-
rector as B NP instead of I NP , but classified the
rest correctly. Accuracy would then be 17

18 = 0.94.
The resulting chunks would be [NP a nonexecutive NP ]
[NP director NP ] instead of [NP a nonexecutive direc-
tor NP ] (the other chunks being the same as above).
Then out of the seven predicted chunks, five are correct
(precision= 5

7 = 71.4%) and from the six chunks that
were to be found, five were indeed found (recall= 5

6 =
83.3%). Fβ=1 is 76.9%.

The features for the experiments are the word form
and the POS tag (as provided by the WSJ treebank) of
the two words to the left, the focus word, and one word
to the right. For the results see Table 1.

The baseline for these experiments is computed with
IB1-IG, with as only feature: i) the focus word, and ii)
the focus POS tag.

The results of the chunking experiments show that
accurate chunking is possible, with Fβ=1 values around
94%.

Subject/Object Detection

Finding a subject or object (or any other relation of a
constituent to a verb) is defined in our classification-
based approach as a mapping from a pair of words (the
verb and the head of the constituent) and a represen-
tation of its context to a class describing the type of
relation (e.g. subject, object, or neither). A verb can
have a subject or object relation to more than one word
in case of NP coordination, and a word can be the sub-
ject of more than one verb in case of VP coordination.

Data Format

In our representation, the tagged and chunked sentence

[NP My/PRP$ sisters/NNS NP] [VP have/VBP
not/RB seen/VBN VP] [NP the/DT old/JJ
man/NN NP] lately/RB ./.

will result in the instances in Table 2.

Classes are S(ubject), O(bject) or “-” (for anything
else). Features are:

1 the distance from the verb to the head (a chunk just
counts for one word; a negative distance means that
the head is to the left of the verb),



Together Subjects Objects
# relations 51629 32755 18874
Method acc. prec. rec. Fβ=1 prec. rec. Fβ=1 prec. rec. Fβ=1

Random baseline 3.9 3.9 3.9 4.5 4.5 4.5 2.7 2.5 2.6
Heuristic baseline 65.9 66.5 66.2 69.3 61.6 65.2 61.6 75.1 67.7

IGTree 96.9 79.5 73.2 76.2 80.9 71.4 75.8 77.2 76.4 76.8
IB1-IG 96.6 74.4 76.9 75.6 76.2 76.9 76.5 71.5 76.7 74.0

IGTree & IB1-IG unanimous 97.4 89.8 68.6 77.8 89.7 67.6 77.1 89.8 70.4 79.0

Table 3: Results of the 10-fold cross validation experiment on the subject–verb/object–verb relations data. We
trained one classifier to detect subjects as well as objects. Its performance can be found in the column Together.
For expository reasons, we also mention how well this classifier performs when computing precision and recall for
subjects and objects separately.

2 the number of other baseVPs between the verb and
the head (in the current setting, this can maximally
be one),

3 the number of commas between the verb and the
head,

4 the verb, and

5 its POS tag,

6–9 the two left context words/chunks of the head, rep-
resented by the word and its POS

10–11 the head itself, and

12–13 its right context word/chunk.

Features one to three are numeric features. This prop-
erty can only be exploited by IB1-IG. IGTree treats
them as symbolic. We also tried four additional fea-
tures that indicate the sort of chunk (NP, VP or none)
of the head and the three context elements respectively.
These features did not improve performance, presum-
ably because this information is mostly inferrable from
the POS tag.

To find subjects and objects in a test sentence, the
sentence is first POS tagged (with the Memory-Based
Tagger MBT) and chunked (see section Experiments:
Chunking). Subsequently, all chunks are reduced to
their heads.2

Then an instance is constructed for every pair of a
baseVP and another word/chunk head provided they
are not too distant from each other in the sentence. A
crucial point here is the definition of “not too distant”.
If our definition is too strict, we might exclude too many
actual subject-verb or object-verb pairs, which will re-
sult in low recall. If the definition is too broad, we will
get very large training and test sets. This slows down

2By definition, the head is the rightmost word of a
baseNP or baseVP.

learning and might even have a negative effect on pre-
cision because the learner is confronted with too much
“noise”. Note further that defining distance purely
as the number of intervening words or chunks is not
fully satisfactory as this does not take clause structure
into account. As one clause normally contains one ba-
seVP, we developped the idea of counting intervening
baseVPs. Counts on the treebank showed that less than
1% of the subjects and objects are separated from their
verbs by more than one other baseVP. We therefore
construct an instance for every pair of a baseVP and
another word/chunk head if they have not more than
one other baseVP in between them.3

These instances are classified by the memory-based
learner. For the training material, the POS tags and
chunks from the treebank are used directly. Also,
subject-verb and object-verb relations are extracted to
yield the class values.

Results and discussion The results in Table 3 show
that finding (unrestricted) subjects and objects is a
hard task. The baseline of classifying instances at
random (using only the probability distribution of the
classes) is about 4%. Using the simple heuristic of clas-
sifying each (pro)noun directly in front of resp. after the
verb as S resp. O yields a much higher baseline of about
66%. Obviously, these are the easy cases. IGTree,

3The following sentence shows a subject-verb pair (in
bold) with one intervening baseVP (in italics):
[NP The plant NP ], [NP which NP ] [V P is owned V P ] by
[NP Hollingsworth & Vose Co. NP ] , [V P was V P ] under
[NP contract NP ] with [NP Lorillard NP ] [V P to make V P ]
[NP the cigarette filters NP ] .
The next example illustrates the same for an object-verb
pair:
Along [NP the way NP ] , [NP he NP ] [V P meets V P ] [NP a
solicitous Christian chauffeur NP ] [NP who NP ] [V P of-
fers V P ] [NP the hero NP ] [NP God NP ] [NP ’s phone num-
ber NP ] ; and [NP the Sheep Man NP ] , [NP a sweet, rough-
hewn figure NP ] [NP who NP ] [V P wears V P ] – [NP what
else NP ] – [NP a sheepskin NP ] .



Method Tagger accuracy precision recall Fβ=1

A,D&K Brill – 91.6 91.6 91.6
R&M Brill 97.4 92.3 91.8 92.0
C&P Brill – 90.7 91.1 90.9
IB1-IG Brill 97.2 91.5 91.3 91.4
IB1-IG MBT 97.3 91.6 91.5 91.6
IB1-IG WSJ 97.6 92.2 92.5 92.3
IB1-IG,POSonly WSJ 96.9 90.3 90.1 90.2

Table 4: Comparison of MBL and MBSL on same dataset of several classifiers, the experiments with IB1-IG are all
carried out with a context of five words and POS left and three right

which is the better overall MBL algorithm on this task,
scores 10% above this baseline, i.e. 76.2%. The differ-
ence in accuracy between IGTree and IB1-IG is only
0.3%. In terms of F-values, IB1-IG is better for find-
ing subjects, whereas IGTree is better for objects. We
also note that IGTree always yields a higher precision
than recall, whereas IB1-IG does the opposite.

IGTree is thus more “cautious” than IB1-IG. Pre-
sumably, this is due to the word-valued features. Many
test instances contain a word not occurring in the train-
ing instances (in that feature). In that case, search in
the IGTree is stopped and the default class for that
node is used. As the “-” class is more than ten times
more frequent than the other two classes, there is a
high chance that this default is indeed the “-” class,
which is always the “cautious” choice. IB1-IG, on the
other hand, will not stop on encountering an unseen
word, but will go on comparing the rest of the fea-
tures, which might still opt for a non-“-” class. The
differences in precision and recall surely are a topic for
further research. So far, this observation led us to com-
bine both algorithms by classifying an instance as S
resp. O only if both algorithms agreed and as “-” oth-
erwise. The combination yields higher precision at the
cost of recall, but the overall effect is certainly positive
(Fβ=1 = 77.8%).

Discussion and Related Research

In [Argamon et al., 1998], an alternative approach to
memory-based learning of shallow patterns, memory-
based sequence learning (MBSL), is proposed. In this
approach, tasks such as base NP chunking and subject
detection are formulated as separate bracketing tasks,
with as input the POS tags of a sentence. For ev-
ery input sentence, all possible bracketings in context
(situated contexts) are hypothesised and the highest
scoring ones are used for generating a bracketed out-
put sentence. The score of a situated hypothesis de-
pends on the scores of the tiles which are part of it
and the degree to which they cover the hypothesis. A

tile is defined as a substring of the situated hypoth-
esis containing a bracket, and the score of a tile de-
pends on the number of times it is found in the train-
ing material divided by the total number of times the
string of tags occurs (i.e. including occurrences with
another or no bracket). The approach is memory-
based because all training data is kept available. Sim-
ilar algorithms have been proposed for grapheme-to-
phoneme conversion by [Dedina and Nusbaum, 1991],
and [Yvon, 1996], and the approach could be seen as a
linear algorithmic simplification of the DOP memory-
based approach for full parsing [Bod, 1995]. In the re-
mainder of this section, we show that an empirical com-
parison of our computationally simpler MBL approach
to MBSL on their data for NP chunking, subject, and
object detection reveals comparable accuracies.

Chunking

For NP chunking, [Argamon et al., 1998] used data ex-
tracted from section 15-18 of the WSJ as a fixed train
set and section 20 as a fixed test set, the same data
as [Ramshaw and Marcus, 1995]. To find the opti-
mal setting of learning algorithms and feature con-
struction we used 10-fold cross validation on section
15; we found IB1-IG with a context of five words
and POS-tags to the left and three to the right as
a good parameter setting for the chunking task; we
used this setting as the default setting for our ex-
periments. For an overview of the results see Ta-
ble 4. Since part of the chunking errors could be
caused by POS errors, we also compared the same
baseNP chunker on the same corpus tagged with i) the
Brill tagger as used in [Ramshaw and Marcus, 1995],
ii) the Memory-Based Tagger (MBT) as described in
[Daelemans et al., 1996]. We also present the results of
[Argamon et al., 1998], [Ramshaw and Marcus, 1995]
and [Cardie and Pierce, 1998] in Table 4. The latter
two use a transformation-based error-driven learning
method [Brill, 1992]. In [Ramshaw and Marcus, 1995],
the method is used for NP chunking, and in



Subjects Objects
# subsequences 3044 1626
Method prec. rec. Fβ=1 prec. rec. Fβ=1

A,D&K 88.6 84.5 86.5 77.1 89.8 83.0

IGTree 79.9 71.7 75.6 84.4 85.8 85.1
IB1-IG 84.7 81.6 83.1 87.3 85.8 86.5
IB1-IG POS only 83.5 77.9 80.6 76.1 83.3 79.6
IB1-IG without chunks 29.2 24.4 26.6 85.0 18.5 30.4
IB1-IG with treebank chunks 89.4 88.6 89.0 91.9 91.3 91.6

Table 5: Comparison of MBL and MBSL on subject/object detection as formulated by Argamon et al.

[Cardie and Pierce, 1998] the approach is indirectly
used to evaluate corpus-extracted NP chunking rules.

As [Argamon et al., 1998] used only POS informa-
tion for their MBSL chunker, we also experimented with
that option (POSonly in the Table). Results show that
adding words as information provides useful informa-
tion for MBL (see Table 4).

Subject/object detection

For subject/object detection, we trained our algorithm
on section 01–09 of the WSJ and tested on Argamon et
al.’s test data (section 00). We also used the treebank
POS tags instead of MBT. For comparability, we per-
formed two separate learning experiments. The verb
windows are defined as reaching only to the left (up to
one intervening baseVP) in the subject experiment and
only to the right (with no intervening baseVP) in the
object experiment. The relational output of MBL is
converted to the sequence format used by MBSL. The
conversion program first selects one relation in case of
coordinated or nested relations. For objects, the actual
conversion is trivial: The V–O sequence extends from
the verb up to the head (seen the old man for the ex-
ample sentence on page 3). In the case of subjects, the
S–V sequence extends from the beginning of the baseNP
of the head up to the first non-modal verb in the ba-
seVP (My sisters have). The program also uses filters
to model some restrictions of the patterns that Arga-
mon et al. used for data extraction. They extracted e.g.
only objects that immediately follow the verb.

The results in Table 5 show that highly comparable
results can be obtained with MBL on the (impover-
ished) definition of the subject-object task. IB1-IG as
well as IGTree are better than MBSL on the object
data. They are however worse on the subject data.
Two factors may have influenced this result. Firstly,
more than 17% of the precision errors of IB1-IG con-
cern cases in which the word proposed by the algorithm
is indeed the subject according to the treebank, but the
corresponding sequence is not included in Argamon et
al.’s test data due to their restricted extraction pat-

terns. Secondly, there are cases for which MBL cor-
rectly found the head of the subject, but the conversion
results in an incorrect sequence. These are sentences
like “All [NP the man NP] [NP ’s friends NP] came.”
in which all is part of the subject while not being part
of any baseNP.

Apart from using a different algorithm, the MBL ex-
periments also exploit more information in the train-
ing data than MBSL does. Ignoring lexical information
in chunking and subject/object detection decreased the
Fβ=1 value by 2.5% for subjects and 6.9% for objects.
The bigger influence for objects may be due to verbs
that take a predicative object instead of a direct one.
Knowing the lexical form of the verb helps to make
this distinction. In addition, time expressions like “(it
rained) last week” can be distinguished from direct ob-
jects on the basis of the head noun. Not chunking the
text before trying to find subjects and objects decreases
F-values by more than 50%. Using the “perfect” chunks
of the treebank, on the other hand, increases F by 5.9%
for subjects and 5.1% for objects. These figures show
how crucial the chunking step is for the succes of our
method.

General

Clear advantages of MBL are its efficiency (especially
when using IGTree), the ease with which information
apart from POS tags can be added to the input (e.g.
word information, morphological information, wordnet
tags, chunk information for subject and object detec-
tion), and the fact that NP and VP chunking and dif-
ferent types of relation tagging can be achieved in one
classification pass. It is unclear how MBSL could be
extended to incorporate other sources of information
apart from POS tags, and what the effect would be
on performance. More limitations of MBSL are that it
cannot find nested sequences, which nevertheless occur
frequently in tasks such as subject identification4, and
that it does not mark heads.

4e.g. [SV John, who [SV I like SV], is SV] angry.



Conclusion

We have developed and empirically tested a memory-
based learning (MBL) approach to shallow parsing in
which POS tagging, chunking, and identification of syn-
tactic relations are formulated as memory-based mod-
ules. A learning approach to shallow parsing allows
for fast development of modules with high coverage,
robustness, and adaptability to different sublanguages.
The memory-based algorithms we used (IB1-IG and
IGTree) are simple and efficient supervised learning
algorithms. Our approach was evaluated on NP and
VP chunking, and subject/object detection (using out-
put from the chunker). Fβ=1 scores are 93.8% for NP
chunking, 94.7% for VP chunking, 77.1% for subject
detection and 79.0% for object detection. The accu-
racy and efficiency of the approach are encouraging (no
optimisation or post-processing of any kind was used
yet), and comparable to or better than state-of-the-art
alternative learning methods.

We also extensively compared our approach to
a recently proposed new memory-based learning al-
gorithm, memory-based sequence learning (MBSL,
[Argamon et al., 1998] and showed that MBL, which
is a computationally simpler algorithm than MBSL,
is able to reach similar precision and recall when re-
stricted to the MBSL definition of the NP chunking,
subject detection and object detection tasks. More im-
portantly, MBL is more flexible in the definition of the
shallow parsing tasks: it allows nested relations to be
detected; it allows the addition and integration into
the task of various additional sources of information
apart from POS tags; it can segment a tagged sentence
into different types of constituent chunks in one pass; it
can scan a chunked sentence for different relation types
in one pass (though separating subject-verb detection
from object-verb detection is surely an option that must
be investigated).

In current research we are extending the approach
to other types of constituent chunks and other types
of syntactic relations. Combined with previous results
on PP-attachment [Zavrel et al., 1997], the results pre-
sented here will be integrated into a complete shallow
parser.
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