Chapter 11

Mathematical Methods
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Processing of written and spoken human language is computation. However, language
processing is not a single type of computation. The different levels of information
encoding in our language as well as the spectrum of applications for language technology
pose a range of very distinct computational tasks. Therefore a wide variety of
mathematical methods have been employed in human language technology. Some of
them have led to specialized tools for a very restricted task, while others are part of the
mathematical foundations of the technology. In this overview a very general map is
drawn that groups the different approaches. Some particularly relevant classes of
methods are highlighted in the remaining sections of the chapter.

In the early days of language processing, most if not all researchers underestimated the
complexity of the problem. Many of them tried to bypass a mathematical
characterization of their tasks and solve the problem simply by looking at the envisaged
inputs and outputs of their systems. Purely procedural early approaches to machine
translation fall in this category. These attempts failed very badly. However, there is one
major difference between language processing and most other areas with highly complex
calculation tasks, e.g., computational meteorology. One system exists that can handle
human language quite decently, i.e., the human cognitive system. Moreover, there is a
scientific discipline that strives for a formal description of the human language faculty.
Very soon the great majority of researchers became convinced that one needed to utilize
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390 Chapter 11: Mathematical Methods

insights from linguistics—including phonetics and psycholinguistics—in order to make
progress in modelling the human language user.

Modern linguistics tries to characterize the mapping between a spoken or written
utterance and its meaning. Linguists do this in roughly the following way. They break
up the complex mapping into suitable levels of representation, specify representations in
dedicated formalisms, and they employ the same formalisms for specifying the implicit
linguistic knowledge of a human language user. Traditionally their main data are
collected or invented example sentences, judged and interpreted by introspection.
Almost exclusively, discrete symbolic methods have been employed for representing
different types of information in linguistics. (The only exception was phonetic signal
processing, where Fourier transformations converted the two-dimensional acoustic signal
into a three-dimensional spectrogram.)

11.1.1 High-level Linguistic Methods

The mathematical methods of syntax, morphology and phonology are suited for
describing sets of strings, especially hierarchically structured strings. Most of these
methods came from formal language theory. Most notable is the formal theory of
languages and grammars emerging from the Chomsky hierarchy, an inclusion hierarchy
of classes of languages. Each class of languages corresponds to a certain level of
computational complexity. For these classes of languages, classes of grammars were
found that generate the languages. Each class of languages also corresponds to a type of
automaton that accepts strings of a language. Typical for this research was the close
interaction between theoretical computer science and formal syntax with strong
influences in both directions. Much investigation has gone into the question of the
proper characterization of human language with respect to the Chomsky hierarchy.

The grammars and automata of formal language theory can rarely be applied to natural
language processing without certain modifications. The grammar models developed in
linguistics do not directly correspond to the ones from formal language theory. A variety
of grammar models have been designed in linguistics and language technology. Some of
these models are mentioned in section 3.3. For a comprehensive description you will
have to resort to handbooks such as Jacobs, v. Stechow, et al. (1993). A long tradition
of work was devoted to efficient parsing algorithms for many grammar models. This
work is summarized in section 11.4.

The grammars of formal language theory are rewrite systems with atomic nonterminal
symbols that stand for lexical and syntactic categories. However, in human language
such categories have complex properties that influence their syntactic distribution.
Therefore mathematical tools were developed for expressing linguistic entities as sets of
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complex features. A new class of logic, so called feature logic evolved. This branch of
research, often subsumed under the term unification grammar, had close links with
similar developments in knowledge representation and programming languages. The
specialized processing methods that were developed for unification grammars had strong
connections with constraint logic programming. In this book, unification grammars are
described in section 3.1. For a more detailed introduction, please refer to Shieber (1988).

The situation is somewhat different in semantics. Here representation languages are
needed in which we can represent the meaning—or better informational content—of an
utterance. In order to provide unambiguous representations of meaning that can serve
as the basis for inferences, logic is employed. Many varieties of higher order predicate
logic have been developed for this purpose. Special representation languages such as
frame and script languages came from artificial intelligence (Al). In the last few years,
many of them have received a logical foundation. General purpose and specialized
inference techniques have been employed for interpreting the meaning representation in
connection with knowledge about the linguistic context, situational context, and the
world. Logical deduction is the inference technique mainly used, but there are also
approaches that utilize abduction methods. For the use of some semantic formalisms in
language technology, refer to section 3.5.

The last two decades witnessed a convergence of theoretical linguistics and language
processing with respect to their mathematical methods. On the one hand, this
movement proved very fruitful in many areas of language processing. On the other hand,
it also lead to some disillusionment concerning the potentials of formal linguistic tools
among practitioners of language technology.

Although the specification of linguistic knowledge improved quite a bit through the use
of advanced representation techniques, the resulting systems still lacked coverage,
robustness, and efficiency, the properties required for realistic applications. It even
seemed that every increase in linguistic coverage was accompanied by a loss of efficiency
since efficient processing methods for linguistic representation formalisms are still
missing.

11.1.2 Statistical and Low-level Processing Methods

Encouraged by a breakthrough in the recognition of spoken words, many researchers
turned to statistical data-driven methods for designing language technology applications.
For most of them, the line of reasoning went as follows. Linguistic investigation of
linguistic competence and cognitive modelling of human language processing have not
yet achieved a sufficient understanding and formalization of the mapping from the
language signal to the informational contents of the utterance or vice versa. However,
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only very few applications need the complete mapping anyway. Even if we had a formal
model of the complete mapping, we do not have a model of the cognitive system that
could support it, since Al has not come close to modelling human knowledge processing.

If one cannot get access to the human linguistic competence through standard methods
of linguistic research, it may be possible to induce the knowledge necessary for a specific
application indirectly by correlating linguistic data with the desired outputs of the
machine. In case of a dictation system, this output is the appropriate written words. For
a machine translation system, the output consists of the translated sentences. For an
information access system the output will be a query to a data base. After decades of
expecting technological progress mainly from investigating the cognitive structures and
processes of the human language user, attention moved back to the linguistic data
produced by humans and to be processed by language technology.

The predominant approach is based on an information theoretic view of language
processing as a noisy-channel information transmission. In this metaphor, it is assumed
that a message is transmitted which we have to recover from observing the output of the
noisy channel. It is described as the source-channel model in section 1.6. The approach
requires a model that characterizes the transmission by giving for every message the
probability of the observed output. The other component is the language model which
gives the so-called a-priori distribution, the probability of a message in its context to be
sent.

A special type of stochastic finite-state automata, hidden Markov models (HMMs) have
been utilized for the recognition of spoken words, syllables or phonemes (section 1.5).
Probabilistic derivatives of many grammar models have been proposed. Statistical
methods are employed today for substituting or supporting discrete symbolic methods in
almost every area of language processing. Examples of promising approaches are
statistical part-of-speech tagging (section 3.2.2), probabilistic parsing (section 3.7),
ambiguity resolution (section 3.7), lexical knowledge acquisition (Pustejovsky, 1992),
and statistical machine translation (Brown, Cocke, et al., 1990).

A special area that has developed rapidly during the last few years, mainly in
conjunction with the statistical methods, is the utilization of optimization techniques for
spoken and written language processing. Optimization methods are used to find the best
solution or solutions among a number of possible solutions applying some evaluation
criterion. Since the number of possible solutions, e.g., word hypotheses for a whole
utterance in speech recognition, can be rather large, the search needs to be highly
efficient. Optimization techniques, especially from dynamic programming, are presented
in section 11.7.

Connectionist methods constitute a different paradigm for statistical learning and
probabilistic processing on the basis of an acquired language model. Neural nets have
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proven very useful in pattern recognition. In language technology, both self-trained and
prestructured nets are explored for a variety of tasks. A major problem for syntactic and
semantic processing is the limitations of connectionist methods concerning the modelling
of recursion. A major problem for applying neural nets to speech processing that stems
from the temporal nature of speech is time sequence matching. In section 11.5
connectionist methods for speech processing are summarized. A combination of
connectionist methods with hidden Markov models is described.

Another major area of very promising new technology is the development of specialized
low-level processing methods for natural language. Especially noteworthy is the
renaissance of finite-state processing techniques. Finite state transducers were applied
with great success to morphological processing. These approaches are described in
section 11.6. Recently finite state parsers were constructed that out-perform their
competition in coverage and performance. The finite-state technology for syntax is
presented in section 3.2.2. Finite-state methods are also applied in semantics and in
discourse modelling.

11.1.3 Future Directions

Challenges for future research concerning the individual mathematical methods are
presented in the sections that describe them. We will conclude this section by addressing
key research problems that extend over the multitude of approaches.

One major challenge is posed by the lack of good formal methods for concurrent
symbolic processing. Although there have been various attempts to employ methods and
programming languages for concurrent processing in language technology, the results are
not yet convincing. The appropriate hardware and well-suited problems for parallel
processing are there. What are missing are better formal concepts of concurrency in
computation.

Badly needed for progress in language technology is a better general view linking the
diverse formal approaches and characterizing their respective virtues and shortcomings.
With respect to the employed mathematical methods we currently witness the
coexistence of three major research paradigms, shown in Figure 11.1. However, when we
look at individual research systems and new applications, we rarely see a system that
does not combine formal tools from more than one of the paradigms. In most cases the
observed combinations of methods are rather ad-hoc. There is no general methodology
yet that tells us which mix of methods is most appropriate for a certain type of
application.

A few examples from recent research may illustrate the relevant direction for future
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specification of linguistic
competence in "high-level"
logical-linguistic formalisms
(e.g., unification grammars or
rhethorical structure theory)

statistical (and connectionist)
methods for deriving linguistic

"low-level," performance
oriented models of competence

competence and performance and performance
(e.g., spoken word recognition, (e.g., FSA-parsing orATN-based
statistical MT) message extraction)

Figure 11.1: Major research paradigms.

investigation:

Compilation methods may be used to relate high-level competence grammars and
low-level performance methods (Alshawi, 1992; Kasper, Kiefer, et al., 1995).
Alternatively, learning methods such as explanation-based learning can also be applied
in order to derive low-level performance grammars from high-level linguistic
specifications (Samuelsson, 1994).

The connections between statistical methods and general automata theory are addressed
in Pereira, Riley, et al. (1994), where it is proposed that the concept of weighted
finite-state automata (acceptors and transducers) may serve as the common formal
foundation for language processing.

Statistical methods can be used for extending knowledge specified in high-level
formalisms. An example is the learning of lexical valency information from corpora
(Manning, 1993). Statistical methods can also be used for deriving control information
that may speed up processing with high-level grammars. Specific linguistic
generalizations could be merged or intersected with statistical language models in order
to improve their robustness. Intersecting linguistic and statistical models, for instance,
can improve precision in part-of-speech tagging.

We expect that extensive research on the theoretical and practical connections among
the diverse methods will lead to a more unified mathematical foundation of human
language processing.
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11.2 Statistical Modeling and Classification
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The speech communication process is a very complicated one for which we have only an
incomplete understanding. It has thus far proven to be best treated as a stochastic
process which is well characterized by its statistical properties.

There are two fundamental assumptions which underlie the statistical model of speech.
The first is that speech is literate. That is, it is well represented by a small set of
abstract symbols which correspond to basic acoustic patterns. Second, the acoustic
patterns are differentiated by their short duration amplitude spectra. Measurement of
these spectra shows that they possess a high degree of variability even for the same
symbol and thus are most accurately classified by means of statistical decision theory.

There is another property of speech that makes the application of statistical methods to
it more difficult. Speech comprises several overlapping levels of linguistic structure
including phonetic, phonological, phonotactic, prosodic, syntactic, semantic and
pragmatic information. Thus, to be useful, a statistical characterization of the acoustic
speech signal must include a principled means by which the statistics can be combined
to satisfy all of the constraints composed by the aforementioned linguistic structure.
This section describes briefly the most effective statistical methods currently in use to
model the speech signal.

Although it is beyond the scope of this section to describe other uses of the statistical
methodologies outlined below, it is worth noting that other important applications of the
technology include machine translation (Alshawi et al., 1994), language identification
(Kadambe & Hieronymus, 1994), and handwriting recognition (Wilfong, 1995).

11.2.1 Primitive Acoustic Features

We call the voltage analog of the sound pressure wave the speech signal. The signal is
usually sampled at 0.1 msec. intervals to form a sequence of 16-bit integers. Because the
signal is nonstationary, we divide it into short frames of, say, 10 to 30 msec. duration at
5 to 10 msec. intervals. Thus frames of around a hundred samples are considered to be
stationary and a short duration spectrum is computed for each frame. Although many
methods of spectral estimation have been advocated in the past, the method of linear
prediction (Atal & Hanauer, 1971; Baker, 1979) is often used. Linear prediction provides
an n-dimensional (where n is often twelve) parameterization of the spectrum usually in
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the form of cepstral coefficients (Juang et al., 1987). Thus the information bearing
features of the speech signal are usually taken to be a sequence of twelve-dimensional
cepstral vectors with one vector computed every 10 msec.

Due to the intrinsic variability of the speech signal and specific assumptions inherent in
the linear prediction method, the sequence of cepstral vectors is a random process whose
statistical properties can be estimated. The representation of speech signals is discussed
in more detail in section 1.3 and section 11.3.

11.2.2 Quantization

Since we assume that speech is literate, the signal could also be represented as a
sequence of symbols where each symbol corresponds to a phonetic unit of varying
duration. Each phonetic unit corresponds to a region of the twelve-dimensional acoustic
feature space. The regions are defined statistically by estimating the probability of each
class conditioned on the vectors belonging to that class and then computing the pairwise
decision boundaries between the classes as the locus of points in the feature space where
both classes are equally probable.

If the decision boundaries are explicitly computed as described above, then an arbitrary
feature vector can be classified as resulting from the utterance of one phonetic class
simply by finding which region of the space it lies in. As a matter of practice, however,
this computation is not performed explicitly. Rather, a statistical decision rule is used.
The rule simply states that a feature vector belongs to that class whose probability is
largest conditioned on the vector. The effect of this decision rule is to quantize the
entire twelve-dimensional feature space into a small number of regions corresponding to
the phonetic classes.

11.2.3 Maximum Likelihood and Related Rules

Although the above-described rule is very intuitively appearing, it is not easily
implemented because there is no direct method for computing the probability of a
phonetic unit given its acoustic features. If, however, a large set of acoustic vectors
which have been phonetically labeled is available, then an indirect method, based on
Bayes rule, can be devised. Bayes rule allows us to estimate the probability of a
phonetic class given its features from the likelihood of the features given the class. This
method leads to the maximum likelihood classifier which assigns an unknown vector to
that class whose probability density function conditioned on the class has the maximum
value. It is most important to understand that ALL statistical methods of speech
recognition are based on this and related rules. The philosophy of maximum likelihood
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is now so much a part of speech recognition that citations of it in the literature are no
longer given. However, the interested reader will find its origins recounted in any
standard text on pattern recognition such as Duda and Hart (1973); Meisel

(1972); Patrick (1972). Statistical methods in speech recognition are often called by
different names such as minimum prediction residual method, minimum risk, minimum
probability of error or nearest neighbor. These rules are all closely related as they derive
from the same Bayesian argument.

11.2.4 Class Conditional Density Functions

From the previous section, it is clear that ALL statistical methods in speech recognition
rest on the estimation of class conditional density functions for phonetic units or, as we
shall see later, other linguistic constituents. Thus, the performance of a speech
processing algorithm depends critically on the accuracy of the estimates of the class
conditional density functions. These, in turn, depend on the existence of a sufficiently
large, correctly labeled training set and well understood statistical estimation
techniques. Regarding the former, there is little to be said of a practical nature except
that the more data available, the better. There are some theoretical results, such as the
Cramer-Rao (Patrick, 1972) bound relating variance of estimators to sample size.
Obviously the larger the size, the lower the variance and hence the lower the error rate.
However, it is quite difficult to relate estimator variance to error rate precisely, so the
various rules of thumb which are often invoked to determine sample size needed for a
specified performance level are unreliable.

There is one serious flaw to the above-described decision theory. It is predicated on the
principle that if the class conditional density functions are known exactly, then no other
decision rule based on the same training data can yield asymptotically better
performance. Unfortunately, the assumption of exact knowledge of the class conditional
density functions is never met in reality. The error may simply be in the parameter
values of the densities or, worse, their form may be incorrect.

An elegant solution to this problem is to directly minimize the classification error. This
may be done by Juang’s method of Generalized Probabilistic Descent (GPD) (Juang,
1992) which has proven to be effective in very difficult speech recognition problems

(Wilpon, 1994).

Another variant of the maximum likelihood methodology is clustering. In many
classification problems, the items in a class differ amongst themselves in a systematic
way. A simple example is the pronunciation of a word by speakers of different national
or regional accents or dialects. In such cases the class conditional densities will be
multi-modal with the modes and their shapes unknown. Such densities can be estimated
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by clustering techniques. The most effective such techniques are based on the
Lloyd-Max optimum quantizer (Lloyd, 1982) which has come to be known as the
k-means algorithm. These techniques have been applied to speech recognition by
Levinson et al. (1979). As we shall see in the next section, clustering methods are
implicitly used in the state-of-the-art recognition methods.

11.2.5 Hidden Markov Model Methodology

If speech were composed solely of isolated acoustic patterns then the classical statistical
decision theory outlined above would be sufficient to perform speech recognition.
Unfortunately, that is not the case. That is, the putative fundamental units of speech
are combined according to a rich set of linguistic rules which are, themselves, so
complicated that they are best captured statistically. The problem is that in order to
accomplish speech recognition, one must capture all the subtlety of linguistic structure
with a computationally tractable model. The lack of such a representation held back
progress in speech recognition for many years.

In the early 1970’s both Baker (1975) and Jelinek (1976) independently applied an
existing mathematical technique based on the hidden Markov model (HMM) to speech
recognition. As the name of the method implies, the original concepts were proposed by
A. A. Markov himself (Markov, 1913). The modern form of the mathematics was
developed by Baum and his colleagues (Baum & Eagon, 1967; Baum & Sell,

1968; Baum, 1972; Baum, Petrie, et al., 1970); the application of these methods to
speech recognition is described in more detail in section 1.5.

11.2.6 Syntax

While the HMM has proven itself to be highly effective in representing several aspects of
linguistic structure, other techniques are presently preferred for dealing with the
cognitive aspects of language, syntax and semantics. Let us first consider syntax which
refers to the relationship that words bear to each other in a sentence. Several aspects of
this grammatical structure are well-captured using statistical methods.

The simplest useful way of thinking about syntax is to define it as word order constraint.
That is, only certain words can follow certain other words. One way to quantify this is
to make a list of allowable n-grams, sequences of n words, in a language. We can
augment this list with n-gram probabilities, the probability of a word given its n — 1
predecessors. This reduces syntax to a Markov n-chain, not to be confused with an
HMM, and the desired probabilities can be estimated by counting relative frequencies in
large text corpora. Once these numbers are available, an error-ridden lexical
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transcription of a spoken sentence can be corrected by finding the sequence of n-grams
of maximum probability conditioned on the lexical transcription. A number of optimal
search strategies are available to find the best sequence (Nilsson, 1971; Viterbi, 1967).
For such practical cases, trigrams are typically used. A more detailed discussion of
n-gram syntactic models is provided in section 1.6.

While the n-gram methods are useful, they do not constitute full syntactic analysis since
syntax is more than word order constraint. In fact, the reason why syntax is considered

to be part of cognition is that grammatical structure is a prerequisite to meaning. This

aspect of syntax can also be exploited by statistical methods.

There are many ways to use full syntactic analysis, but the most intuitively appealing
method is to use the linguist’s notion of parts of speech. These syntactic constituents
are categories which define the function of a word in a sentence. Associated with the
parts of speech are rules of grammar which specify how parts of speech can be combined
to form phrases which, in turn, can be combined to form sentences. Finally, using
relative frequencies derived from text corpora, probabilities can be assigned to the
grammatical rules. Using techniques from the theory of stochastic grammars (Fu, 1974),
it is possible to find a sentence the joint probability of whose lexical transcription and
syntactic structure, or parse, is maximized for a given corrupted transcription from a
speech recognizer. In addition to these statistical parsing techniques, methods similar in
spirit to HMM techniques have been studied by Baker (1979) and Jelinek (1990). In
either case, syntax analysis both increases the accuracy of speech recognition and, as we
shall see in the next section, provides information necessary for the extraction of
meaning from a spoken utterance.

11.2.7 Semantics

The ultimate goal of speech recognition is to enable computers to understand the
meaning of ordinary spoken discourse. Semantics is that aspect of linguistic structure
relating words to meaning. Thus, the ultimate speech recognition machine will
necessarily include a semantic analyzer. At present, there exists no general theory of the
semantics of natural language. There are many proposed theories some of which are
abstract and others of which are worked out for specific limited domains of discourse.
All such theories rest on the idea that formal logical operations acting on lexical tokens
and syntactic structures yield a formal symbolic representation of meaning. These
theories have not yet been made statistical in any coherent way, although a new
approach (Pieraccini, Levin, et al., 1993) based on the HMM seems promising.

There is, however, a statistical methodology which captures useful semantic information.
It is called word sense disambiguation. A simple example is found in the word bank
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which has two meanings or senses. One sense is that of a financial institution and
another refers to the shores of a river. Clearly, the words commonly associated with the
two senses are quite different. If we know the words that are appropriate to each word
sense, then we can use search techniques to maximize the joint probability of word
sequences and word sense. This will result in higher lexical transcription accuracy.

The key to this line of reasoning is the precise measurement of the closeness of word
associations. Church and Hanks (1990) proposed using the information theoretic
measure of mutual information and has analyzed large text corpora to show that words
clustered by large mutual information contents are indicative of a single word sense. It is
thus possible to compile word sense statistics for large lexicons and apply them in
statistical parsing techniques as described earlier.

11.2.8 Performance

It would be impossible in a short paper such as this is to completely and quantitatively
characterize the performance of statistical speech recognizers. Instead, I will briefly
mention three benchmarks established by systems based on the methodologies described
above. They are moderate vocabulary speech understanding, large vocabulary speech
recognition and small vocabulary recognition of telephony. Detailed summaries may be

found in ARPA (1994); Wilpon (1994).

The most ambitious speech understanding experiment is presently ongoing under the
sponsorship of ARPA. Several laboratories have built (ATIS) systems that provide
airline travel information from spoken input. With a nominal vocabulary of 2000 words
and spontaneous discourse from undesignated but cooperative speakers, approximately
95% of all queries are correctly answered.

Another highly ambitious project in speech recognition is also sponsored by ARPA. In
this large vocabulary recognition task, the goal is lexical transcription only; so unlike the
ATIS task, no semantic processing is used. The material is text read from North
American business publications by undesignated speakers. The nominal vocabulary is
60,000 words. For this task, several laboratories have achieved word error rates of 11%
or less. Unfortunately, such results are obtained by computer programs requiring
hundreds of times real time.

Finally, the largest commercial use of speech recognition is in the AT&T telephone
network for the placement of calls. In this case, customers are allowed to ask for one of
five categories of service using any words they like so long as their utterance contains
one of five key words. This system is currently processing about 1 billion calls per year.
Calls are correctly processed more than 95% of the time without operator intervention.
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11.2.9 Future Directions

Incremental improvements can be made to statistical models and classification methods
in two distinct ways. First, existing models can be made more faithful. Second, existing
models can be expanded to capture more linguistic structure. Making existing models
more faithful reduces to the mathematical problem of lowering the variance of the
statistical estimates of parameter values in the models. There are two ways to
accomplish this. First, collect more data, more diverse data, more well-classified data,
more data representing specific phenomena. The data needed is both text and speech.
Second, improve estimation techniques by deriving estimators that have inherently lower
variances. The statistical literature is replete with estimation techniques very few of
which have been applied to large speech or text corpora. A related but different idea is to
improve classification rules. One possibility would be to include a loss function reflecting
the fact that some classification errors are more detrimental to transcription than others.
The loss function could be estimated empirically and employed in a minimum risk
decision rule rather than a maximum likelihood or minimum error probability rule.
Existing models can also be made more general by making them represent known,
well-understood linguistic structure. Two prime candidates are prosody and syntax.
Speech synthesizers make extensive use of prosodic models yet none of that knowledge
has found its way into speech recognition. Syntactic models tend to be of the n-gram
variety and could capture much more structure if association statistics were collected on
the basis of syntactic role rather than simple adjacency. Although semantics is much less
well understood than either prosody or syntax, it is still amenable to more detailed
statistical modeling than is presently done and the use of integrated syntactico-semantic
models also seems worthy of further exploration. The above suggestions are indicative of
the myriad possibilities for improvement of the speech technologies by building directly
upon existing methods. However, the speech research community would do well to
consider the possibility that no amount of incremental improvement will lead to a
technology which displays human-like proficiency with language. The obvious and
prudent policy for avoiding such an impasse is to encourage completely new concepts
and models of speech processing and new generations of researchers to invent them.
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11.3 DSP Techniques

John Makhoul
BBN Systems and Technologies, Cambridge, Massachusetts, USA

Digital signal processing (DSP) techniques have been at the heart of progress in speech
processing during the last 25 years (Rabiner & Schafer, 1978). Simultaneously, speech
processing has been an important catalyst for the development of DSP theory and
practice. Today, DSP methods are used in speech analysis, synthesis, coding,
recognition, and enhancement, as well as voice modification, speaker recognition, and
language identification.

DSP techniques have also been very useful in written language recognition in all its
forms (on-line, off-line, printed, handwritten). Some of the methods include
preprocessing techniques for noise removal, normalizing transformations for line width
and slant removal, global transforms (e.g., Fourier transform, correlation), and various
feature extraction methods. Local features include the computation of slopes, local
densities, variable masks, etc., while others deal with various geometrical characteristics
of letters (e.g., strokes, loops). For summaries of various DSP techniques employed in
written language recognition, the reader is referred to Impedovo, Ottaviano, et al.
(1991); Tappert, Suen, et al. (1990), as well as the following edited special issues:
Impedovo (1994); Pavlidis and Mori (1992); Impedovo and Simon (1992).

This section is a brief summary of DSP techniques that are in use today, or that may be
useful in the future, especially in the speech recognition area. Many of these techniques
are also useful in other areas of speech processing.

11.3.1 Feature Extraction

In theory, it should be possible to recognize speech directly from the digitized waveform.
However, because of the large variability of the speech signal, it is a good idea to
perform some form of feature extraction that would reduce that variability. In
particular, computing the envelope of the short-term spectrum reduces the variability
significantly by smoothing the detailed spectrum, thus eliminating various source
information, such as whether the sound is voiced or fricated and, if voiced, it eliminates
the effect of the periodicity or pitch. For nontonal languages, such as English, the loss of
source information does not appear to affect recognition performance much because it
turns out that the spectral envelope is highly correlated with the source information.
However, for tonal languages, such as Mandarin Chinese, it is important to include an
estimate of the fundamental frequency as an additional feature to aid in the recognition
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of tones (Hon, Yuan, et al., 1994).

To capture the dynamics of the vocal tract movements, the short-term spectrum is
typically computed every 10-20 ms using a window of 20-30 ms. The spectrum can be
represented directly in terms of the signal’s Fourier coefficients or as the set of power
values at the outputs from a bank of filters. The envelope of the spectrum can be
represented indirectly in terms of the parameters of an all-pole model, using linear
predictive coding (LPC), or in terms of the first dozen or so coefficients of the
cepstrum—the inverse Fourier transform of the logarithm of the spectrum.

One reason for computing the short-term spectrum is that the cochlea of the human ear
performs a quasi-frequency analysis. The analysis in the cochlea takes place on a
nonlinear frequency scale (known as the Bark scale or the mel scale). This scale is
approximately linear up to about 1000 Hz and is approximately logarithmic thereafter.
So, in the feature extraction, it is very common to perform a frequency warping of the
frequency axis after the spectral computation.

Researchers have experimented with many different types of features for use in speech
recognition (Rabiner & Juang, 1993). Variations on the basic spectral computation, such
as the inclusion of time and frequency masking, have been shown to provide some
benefit in certain cases (Aikawa, Singer, et al., 1993; Bacchiani & Aikawa,

1994; Hermansky, 1990). The use of auditory models as the basis of feature extraction
has been useful in some systems (Cohen, 1989), especially in noisy environments (Hunt,

Richardson, et al., 1991).

Perhaps the most popular features used for speech recognition today are what are
known as mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1980).
These coefficients are obtained by taking the inverse Fourier transform of the log
spectrum after it is warped according to the mel scale. Additional discussion of feature
extraction issues can be found in section 1.3 and section 11.2.

11.3.2 Dealing with Channel Effects

Spectral distortions due to various channels, such as a different microphone or telephone,
can have enormous effects on the performance of speech recognition systems. To render
recognition systems more robust to such distortions, many researchers perform some
form of removal of the average spectrum. In the cepstral domain, spectral removal
amounts to subtracting out the average cepstrum. Typically, the average cepstrum is
estimated over a period of time equal to about one sentence (a few seconds), and that
average is updated on an ongoing basis to track any changes in the channel. Other
similarly simple methods of filtering the cepstral coefficients have been proposed for
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removing channel effects (Hermansky, Morgan, et al., 1993). All these methods have
been very effective in combating recognition problems due to channel effects. Further
discussion of issues related to robust speech recognition can be found in section 1.4.

11.3.3 Vector Quantization

For recognition systems that use hidden Markov models, it is important to be able to
estimate probability distributions of the computed feature vectors. Because these
distributions are defined over a high-dimensional space, it is often easier to start by
quantizing each feature vector to one of a relatively small number of template vectors,
which together comprise what is called a codebook. A typical codebook would contain
about 256 or 512 template vectors. Estimating probability distributions over this finite
set of templates then becomes a much simpler task. The process of quantizing a feature
vector into a finite number of template vectors is known as vector quantization
(Makhoul, Roucos, et al., 1985). The process takes a feature vector as input and finds
the template vector in the codebook that is closest in distance. The identity of that
template is then used in the recognition system.

11.3.4 Future Directions

Historically, there has been an ongoing search for features that are resistant to speaker,
noise, and channel variations. In spite of the relative success of MFCCs as basic features
for recognition, there is a general belief that there must be more that can be done. One
challenge is to develop ways in which our knowledge of the speech signal, and of speech
production and perception, can be incorporated more effectively into recognition
methods. For example, the fact that speakers have different vocal tract lengths could be
used to develop more compact models for improved speaker-independent recognition.
Another challenge is somehow to integrate speech analysis into the training optimization
process. For the near term, such integration will no doubt result in massive increases in
computation that may not be affordable.

There have been recent developments in DSP that point to potential future use of new
nonlinear signal processing techniques for speech recognition purposes. Artificial neural
networks, which are capable of computing arbitrary nonlinear functions, have been
explored extensively for purposes of speech recognition, usually as an adjunct or
substitute for hidden Markov models. However, it is possible that neural networks may
be best utilized for the computation of new feature vectors that would rival today’s best
features.

Work by Maragos, Kaiser, et al. (1992) with instantaneous energy operators, which have
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been shown to separate amplitude and frequency modulations, may be useful in
discovering such modulations in the speech signal and, therefore, may be the source of
new features for speech recognition. The more general quadratic operators proposed by
Atlas and Fang (1992) offer a rich family of possible operators that can be used to
compute a large number of features that exhibit new properties which should have some
utility for speech processing in general and speech recognition in particular.
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11.4 Parsing Techniques

Aravind Joshi

University of Pennsylvania, Philadelphia, Pennsylvania, USA

Parsing a sentence means to compute the structural description (descriptions) of the
sentence assigned by a grammar, assuming, of course, that the sentence is well-formed.
Mathematical work on parsing consists of at least the following activities.

1. Mathematical characterization of derivations in a grammar and the associated
parsing algorithms.

2. Computing the time and space complexities of these algorithms in terms of the
length of the sentence and the size of the grammar, primarily,

3. Comparing different grammar formalisms and showing equivalences among them
wherever possible, thereby developing uniform parsing algorithms for a class of
grammars.

4. Characterizing parsing as deduction and a uniform specification of parsing
algorithms for a wide class of grammars.

5. Combining grammatical and statistical information for improving the efficiency of
parsers and ranking of multiple parses for a sentence.

The structural descriptions provided by a grammar depend on the grammar formalism
to which the grammar belongs. For the well-known context-free grammar (CFG) the
structural description is, of course, the conventional phrase structure tree (tress)
associated with the sentence. The parse tree describes the structure of the sentence. It is
also the record of the history of derivation of the sentence. Thus, in this case the
structural description and the history of the derivation are the same objects. Later, we
will comment on other grammar formalisms and the structural descriptions and histories
of derivation associated with them.

11.4.1 Parsing Complexity

For CFGs we have the well-known algorithms by Cocke, Kasami, and Younger (CKY)
(Kasami, 1965; Younger, 1967) and the Earley algorithm (Earley, 1970). All CFG
algorithms are related to these two in one way or another. As regards the complexity of
these algorithms it is well-known that the worst case complexity is O(n*) where n is the
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length of the sentence. There is a multiplicative factor which depends on the size of the
grammar and it is O(G?) where G is the size of the grammar (expressed appropriately in
terms of the number of rules and the number of non-terminals). There are results which
show improvements in the exponents of both n and ¢ but these are not significant for
our purpose. Of course, these complexity results mostly are worst case results (upper
bounds) and therefore, they are not directly useful. They do however establish
polynomial parsing of these grammars. There are no mathematical average case results.
All average case results reported are empirical. In practice, most algorithms for CFGs
run much better than the worst case and the real limiting factor in practice is the size of
the grammar. For a general discussion of parsing strategies, see Leermakers

(1993); Nedderhoff (1994); Sikkel (1994).

During the past decade or so a number of new grammar formalisms have been introduced
for a variety of reasons, for example, eliminating transformations in a grammar,
accounting linguistic structures beyond the reach of context-free grammars, integrating
syntax and semantics directly, etc.. Among these new formalisms, there is one class of
grammars called mildly context-sensitive grammars that has been mathematically
investigated very actively. In particular, it has been shown that a number of grammar
formalisms belonging to this class are weakly equivalent, i.e., they generate the same set
of string languages. Specifically, tree-adjoining grammars (TAG), combinatory categorial
grammars (CCG), linear indexed grammars (LIG), and head grammars (HG) are weakly
equivalent. From the perspective of parsing, weak equivalence by itself is not very
interesting because weak equivalence alone cannot guarantee that a parsing technique
developed for one class of grammars can be extended to other classes, or a uniform
parsing procedure can be developed for all these equivalent grammars. Fortunately, it
has been shown that indeed it is possible to extend a recognition algorithm for CFGs
(the CKY algorithm) for parsing linear indexed grammars (LIG). Then this parser can
be adapted for parsing TAGs, HGs, as well as CCGs. This new algorithm is polynomial,
the complexity being O(n®). The key mathematical notion behind the development of
this general algorithms is that in all these grammars what can happen in a derivation
depends only on which of the finite set of states the derivation is in. For CFG these
states can be nonterminal symbols. This property called the context-freeness property is
crucial because it allows one to keep only a limited amount of context during the parsing
process, thus resulting in a polynomial time algorithm. For CFGs this property holds
trivially. The significant result here is that this property also extends to the grammars
more powerful than CFGs, mentioned above. An Earley type algorithm has also been
developed for the tree-adjoining grammars and its complexity has been shown to be also
O(n®). For further information on these results, see Joshi, Vijay-Shanker, et al.

(1991); Schabes and Joshi (1988); Vijay-Shanker and Weir (1993).
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11.4.2 Derivation Trees

Although the grammars mentioned above are weakly equivalent and uniform parsing
strategies have been developed for them, it should be noted that the notions of what
constitutes a parse are quite different for each one of these grammars. Thus in a TAG
the real parse of a sentence is the so-called derivation tree, which is a record of how the
elementary trees of a TAG are put together by the operations of substitution and
adjoining in order to obtain the derived tree whose yield is the string being parsed. The
nodes of the derivation tree are labeled by the names of the elementary trees and the
edges are labeled by the addresses of the tree labeling the parent node in which the trees
labeling the daughter nodes are either substituted or adjoined. This derivation tree is
unlike the derivation tree for a CFG for which the notions of the derivation tree and the
derived tree are the same. For TAG these are distinct notions. For HG which deals with
headed strings and operations of concatenation and wrapping (both are string
operations) there is no notion of a derived tree as such. There is only the notion of a
derivation tree which is a record of how the elementary strings are put together and
what operations were used in this process. The terminal nodes are labeled by
elementary strings (headed strings) and the other nodes are labeled by the operations
used for combining the strings labeling the daughter nodes and also by the string
resulting by performing this operation. Thus this derivation tree is quite unlike the
standard phrase structure tree, especially when the combining operation labeling a node
is wrapping (wrapping one string around another to the right or left of its head) as a
non-standard constituent structure can be defined for the resultant tree.

For a CCG the parse of a sentence is the proof tree of the derivation. It is like the
phrase structure tree in the sense that the nodes are labeled by categories in CCG,
however, for each node the name of the operation used in making the reduction (for
example, function application or function composition) has to be stated at the node
also. Thus, in this sense they are like the derivation trees of HG. The derivation trees of
LIG are like the phrase structure trees except that with each node the contents of the
stack associated with that node are stated. Given this wide divergence of what
constitutes a structural description, the significance of the equivalence result and the
existence of a general polynomial parsing strategy can be better appreciated.

11.4.3 Unification-based Grammars

Almost all computational grammars incorporate feature structures (attribute value
structures), the category label being a special attribute singled out for linguistic
convenience and not for any formal reasons. These feature structures are manipulated by
the operation of unification, hence the term unification-based grammars. CFGs or any of
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the grammars mentioned above can serve as the backbones for the unification-based
grammars, CFGs being the most common (Shieber, 1988). As soon as feature structures
and unification are added to a CFG the resulting grammars are Turing equivalent and
they are no longer polynomially parsable. In practice, conditions are often placed on the
possible feature structures which allow the polynomial probability to be restored. The
main reason for the excessive power of the unification-based grammars is that recursion
can be encoded in the feature structures. For certain grammars in the class of mildly
context-sensitive grammars, in particular for TAGs, recursion is factored away from the
statement of so-called long-distance dependencies. The feature structures can be without
any recursion in them, thus preserving the polynomial parsability of the TAG backbone.

Some unification-based grammar formalisms, for example, the lexical-functional
grammar (LFG) are very explicit in assigning both a phrase structure and a feature
structure based functional structure to the sentence being parsed. Formal properties of
the interface between these two components have been studied recently. In particular,
computational complexity of this interface has been studied independently of the
complexity of the phrase structure component and the feature structure component. A
number of properties of different interface strategies have been studied that can be
exploited for computational advantage. A surprising result here is that under certain
circumstances an interface strategy that does no pruning in the interface performs
significantly better than one that does. For an interesting discussion of these results, see

Maxwell and Kaplan (1993).

11.4.4 Parsing as Deduction

Parsing can be viewed as a deductive process as is the case in CCG mentioned above.
The Lambek Calculus (LC) is a very early formulation of parsing as deduction (Lambek,
1958). The relationship between LC and CFG was an open question for over thirty
years. Very recently it has been shown that LC and CFG are weakly equivalent (Pentus,
1993). However, the proof of this equivalence does not seem to suggest a construction of
a polynomial parsing algorithm for LC and this is an important open question. The
framework of parsing as deduction allows modular separation of the logical aspects of
the grammar and the proof search procedure, thus providing a framework for
investigating a wide range of parsing algorithms. Such theoretical investigations have led
to the development of a program for rapid prototyping and experimentation with new
parsing algorithms and has been also used in the development of algorithms for CCGs,

TAGs, and lexicalized CFGs. For further details, see Shieber, Schabes, et al. (1994).
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11.4.5 LR Parsing

Left-to-right, rightmost derivation (LR) parsing was introduced initially for efficient
parsing of languages recognized by deterministic pushdown automata and have proven
useful for compilers. For natural language parsing LR parsers are not powerful enough,
however conflicts between multiple choices are solved by pseudo-parallelism (Lang,
1974; Tomita, 1987). Johnson and Kipps independently noted that the Tomita method
is not bounded by any polynomial in the length of the input string and the size of the
grammar. Kipps also shows how to repair this problem. These results are presented in
Tomita (1991). LR parsing has been applied to non-context-free languages also in the
context of natural language parsing (Schabes & Vijayshanker, 1990).

11.4.6 Parsing by Finite State Transducers

Finite state devices have always played a key role in natural language processing. There
is renewed interest in these devices because of their successful use in morphological
analysis by representing very large dictionaries by finite state automata (FSA) and by
representing two-level rules and lexical information with finite state transducers (FST).
FSAs have been used for parsing also, as well as for approximating CFGs. A main
drawback of using FSA for parsing is the difficulty of representing hierarchical structure,
thus giving incomplete parses in some sense. Recently, there has been theoretical work
on FSTs for their use in parsing, one of the approaches being the use of an FST and
computing the parse as a fixed point of the transduction. The parsers can be very
efficient and are well suited for large highly lexicalized grammars. For further details on
these issues, see (Karttunen, Kaplan, et al., 1992; Pereira, Rebecca, et al., 1991; Roche,
1994).

11.4.7 Remarks

We have not discussed various related mathematical topics, for example, mathematical
properties of grammars, unless they are directly relevant to parsing, and the
mathematical results in the application of statistical techniques to parsing. This latter
topic is the subject of another contribution in this chapter. It is worth pointing out that
recent mathematical investigations on lexicalized grammars have great significance to
the use of statistical techniques for parsing as these grammars allow a very direct
representation of the appropriate lexical dependencies.
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11.4.8 Future Directions

Some of the key research problems are (1) techniques for improving the efficiency of the
parsing systems by exploiting lexical dependencies, (2) techniques for exploiting certain
regularities in specific domains, e.g., particular sentence patterns tend to appear more
often in specific domains, (3) systematic techniques for computing partial parses, less
than complete parses in general, (4) applying finite state technology for parsing, in
particular for partial parses, (5) systematic techniques for integrating parsing with
semantic interpretation and translation, (6) investigating parallel processing techniques
for parsing and experimenting with large grammars.

Small workshops held in a periodic fashion where both theoretical and experimental
results can be informally discussed will be the best way to exchange information in this
area. Specific initiatives for parsing technology, for example for parallel processing
technology for parsing are needed for rapid progress in this area.
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11.5 Connectionist Techniques

Hervé Bourlard® & Nelson Morgan®

¢ Faculté Polytechnique de Mons, Mons, Belgium
b International Computer Science Institute, Berkeley, California, USA

There are several motivations for the use of connectionist systems in human language
technology. Some of these are:

e Artificial Neural Networks (ANN) can learn in either a supervised or unsupervised
way from training examples. This property is certainly not specific to ANNs, as
many kinds of pattern recognition incorporate learning. In the case of ANNs,
however, it sometimes is easier to eliminate some system heuristics, or to partially
supplant the arbitrary or semi-informed selection of key parameters. Of course this
is not often done completely or in an entirely blind way, but usually requires the
application of some task-dependent knowledge on the part of the system designer.

o When ANNs are trained for classification, they provide discriminant learning. In
particular, ANN outputs can estimate posterior probabilities of output classes
conditioned on the input pattern. This can be proved for the case when the
network is trained for classification to minimize one of several common cost
functions (e.g., least mean square error or relative entropy). It can be easily shown
that a system that computes these posterior probabilities minimizes the error rate
while maximizing discrimination between the correct output class and rival ones;
the latter property is described by the term discriminant. In practice, it has been
shown experimentally that real ANN-based systems could be trained to generate
good estimates of these ideal probabilities, resulting in useful pattern recognizers.

e When used for classification, prediction or parsing (or any other input/output
mapping), ANNs with one hidden layer and enough hidden nodes can approximate
any continuous function.

e Because ANNs can incorporate multiple constraints and find optimal combinations
of constraints, there is no need for strong assumptions about the statistical
distributions of the input features or about high order correlation of the input
data. In theory, this can be discovered automatically by the ANNs during training.

e ANN architecture is flexible, accommodating contextual inputs and feedback.
Also, ANNs are typically highly parallel and regular structures, permitting efficient
hardware implementations.
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In the following, we briefly review some of the typical functional building blocks for
HLT, and show how connectionist techniques could be used to improve them. In
subsection 11.5.3, we discuss a particular instance that we are experienced in using.
Finally, in the last subsection, we discuss some key research problems.

11.5.1 ANNs and Feature Extraction

Feature extraction consists of transforming the raw input data into a concise
representation that contains the relevant information and is robust to variations. For
speech, for instance, the waveform is typically translated into some kind of a function of
a short term spectrum. For handwriting recognition, pixels are sometimes complemented
by dynamic information before they are translated into task-relevant features.

It would be desirable to automatically determine the parameters or features for a
particular HLT task. In some limited cases, it appears to be possible to automatically
derive features from raw data, given significant application-specific constraints. This is
the case for the AT&T handwritten zip code recognizer (le Cun, Boser, et al., 1990), in
which a simple convolutional method was used to extract important features such as
lines and edges that are used for classification by an ANN.

Connectionist networks have also been used to investigate a number of other approaches
to unsupervised data analysis, including linear dimension reduction [including Bourlard
and Kamp (1988), in which it was shown that feedforward networks used in
auto-associative mode are actually performing principal component analysis (PCA)],
non-linear dimension reduction (Oja, 1991; Kambhatla & Leen, 1994), Reference-point
based classifiers, such as vector quantization vector quantization and topological map

(Kohonen, 1988).

It is however often better to make use of any task-specific knowledge whenever it is
possible to reduce the amount of information to be processed by the network and to
make its task easier. As a consequence, we note that, while automatic feature extraction
is a desirable goal, most ASR systems use neural networks to classify speech sounds
using standard signal processing tools (like Fourier transform) or features that are
selected by the experimenter (e.g., Cole, Fanty, et al. (1991)).

11.5.2 ANNs and Pattern Sequence Matching

Although ANNs have been shown to be quite powerful in static pattern classification,
their formalism is not very well suited to address most issues in HLT. Indeed, in most of
these cases, patterns are primarily sequential and dynamical. For example, in both ASR
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and handwriting recognition, there is a time dimension or a sequential dimension which
is highly variable and difficult to handle directly in ANNs. We note however that ANNs
have been successfully applied to time series prediction in several task domains (Weigend
& Gershenfeld, 1994). HLT presents several challenges. In fact, many HLT problems can
be formulated as follows: how can an input sequence (e.g., a sequence of spectra in the
case of speech and a sequence of pixel vectors in the case of handwriting recognition) be
properly explained in terms of an output sequence (e.g., sequence of phonemes, words or
sentences in the case of ASR or a sequence of written letters, words or phrases in the
case of handwriting recognition) when the two sequences are not synchronous (since
there usually are multiple inputs associated with each pronounced or written word)?

Several neural network architectures have been developed for (time) sequence
classification, including:*

e Static networks with an input buffer to transform a temporal pattern into a spatial
pattern (Bourlard & Morgan, 1993; Lippmann, 1989).

e Recurrent networks that accept input vectors sequentially and use a recurrent
internal state that is a function of the current input and the previous internal state

(Jordan, 1989; Kuhn, Watrous, et al., 1990; Robinson & Fallside, 1991).

o Time-delay neural networks, approximating recurrent networks by feedforward

networks (Lang, Waibel, et al., 1990).

In the case of ASR, all of these models have been shown to yield good performance
(sometimes better than HMMs) on short isolated speech units. By their recurrent aspect
and their implicit or explicit temporal memory they can perform some kind of
integration over time. This conclusion remains valid for related HLT problem:s.
However, neural networks by themselves have not been shown to be effective for large
scale recognition of continuous speech or cursive handwriting. The next section
describes a new approach that combines ANNs and HMMs for large vocabulary
continuous speech recognition.

11.5.3 Hybrid HMM/ANN Approach

Most commonly, the basic technological approach for automatic speech recognition
(ASR) is statistical pattern recognition using hidden Markov models (HMMs) as

'For a good earlier review of the different approaches using neural networks for speech recognition,
see Lippmann (1989). For a good overview of ANNs for speech processing in general, see Morgan and

Scofield (1991).
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presented in sections 1.5 and 11.2. The HMM formalism has also been applied to other
HLT problems such as handwriting recognition (Chen, Kundu, et al., 1994). ?

Recently, a new formalism of classifiers particularly well suited to sequential patterns
(like speech and handwritten text) and which combines the respective properties of
ANNs and HMMs was proposed and successfully used for difficult ASR (continuous
speech recognition) tasks (Bourlard & Morgan, 1993). This system, usually referred to
as the hybrid HMM/ANN combines HMM sequential modeling structure with ANN
pattern classification (Bourlard & Morgan, 1993). Although this approach is quite
general and recently was also used for handwriting recognition (Schenkel, Guyon, et al.,
1994; Schenkel, Guyon, et al., 1995) and speaker verification (Naik & Lubensky, 1994),
the following description will mainly apply to ASR problems.

As in standard HMMs, hybrid HMM/ANN systems applied to ASR use a Markov
process to temporally model the speech signal. The connectionist structure is used to
model the local feature vector conditioned on the Markov process. For the case of speech
this feature vector is local in time, while in the case of handwritten text it is local in
space. This hybrid is based on the theoretical result that ANNs satisfying certain
regularity conditions can estimate class (posterior) probabilities for input patterns
(Bourlard & Morgan, 1993); i.e., if each output unit of an ANN is associated with each
possible HMM state, it is possible to train ANNs to generate posterior probabilities of
the state conditioned on the input. This probability can then be used, after some

modifications (Bourlard & Morgan, 1993), as local probabilities in HMMs.
Advantages of the HMM/ANN hybrid for speech recognition include:

e a natural structure for discriminative training,
e no strong assumptions about the statistical distribution of the acoustic space,

e parsimonious use of parameters,

better robustness to insufficient training data,

an ability to model acoustic correlation (using contextual inputs or recurrence).

In recent years these hybrid approaches have been compared with the best classical
HMM approaches on a number of HLT tasks. In cases where the comparison was
controlled (e.g., where the same system was used in both cases except for the means of
estimating emission probabilities), the hybrid approach performed better when the
number of parameters were comparable, and about the same for some cases in which the

ZNeural network equivalents of standard HMMs have been studied, but essentially are different imple-
mentations of the same formalism (Bridle, 1990; Lippmann, 1989) and are not discussed further here.
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classical system used many more parameters. Also, the hybrid system was quite efficient
in terms of CPU and memory run-time requirements. Fvidence for this can be found in
a number of sources, including:

e Renals, Morgan, et al. (1994) in which results on Resource Management (a
standard reference database for testing ASR systems) are presented, and

e Lubensky, Asadi, et al. (1994) in which high recognition accuracy on a connected
digit recognition task is achieved using a fairly straightforward HMM/ANN hybrid
(and is compared to state-of-the-art multi-Gaussian HMMs).

e More recently, such a system has been evaluated under both the North American
ARPA program and the European LRE SQALE project (20,000 word vocabulary,
speaker independent continuous speech recognition). In the preliminary results of
the SQALE evaluation (reported in Steeneken and Van Leeuwen (1995)) the
system was found to perform slightly better than any other leading European
system and required an order of magnitude less CPU resources to complete the
test.

More generally, though, complete systems achieve their performance through detailed
design, and comparisons are not predictable on the basis of the choice of the emission
probability estimation algorithm alone.

ANNSs can also be incorporated in a hybrid HMM system by training the former to do
nonlinear prediction (Levin, 1993), leading to a nonlinear version of what is usually

referred to as autoregressive HMMs (Juang & Rabiner, 1985).

11.5.4 Language Modeling and Natural Language Processing

Connectionist approaches have also been applied to natural language processing. Like
the acoustic case, NLP requires the sequential processing of symbol sequences (word
sequences). For example, HMMs are a particular case of a FSM, and the techniques used
to simulate or improve acoustic HMMs are also valid for language models. As a
consequence, much of the work on connectionist NLP has used ANNs to simulate
standard language models like FSMs.

In 1969, Minsky and Papert (1969), showed that ANNs can be used to simulate a FSM.
More recently, several works showed that recurrent networks simulate or validate regular
and context-free grammars. For instance, in Liu, Sun, et al. (1990), a recurrent network
feeding back output activations to the previous (hidden) layer was used to validate a

string of symbols generated by a regular grammar. In Sun, Chen, et al. (1990), this was
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extended to CFGs. Structured connectionist parsers were developed by a number of
researchers, including Fanty (1985) and Jain (1992). The latter parser was incorporated
in a speech-to-speech translation system (for a highly constrained conference-registration

task) that was described in Waibel, Jain, et al. (1992).

Neural networks have also been used to model semantic relations. There have been
many experiments of this kind over the years. For example, Elman (1988) showed that
neural networks can be trained to learn pronoun reference. He used a partially recurrent
network for this purpose, consisting of a feedforward MLP with feedback from the
hidden layer back into the input.

The work reported so far has focused on simulating standard approaches with neural
networks, and it is not yet known whether this can be helpful in the integration of
different knowledge sources into a complete HLT system. Generally speaking,
connectionist language modeling and NLP has thus far played a relatively small role in

large or difficult HL'T tasks.

11.5.5 Future Directions

There are many open problems in applying connectionist approaches to HLT, and in
particular for ASR, including:

e Better modeling of nonstationarity—speech and cursive handwriting are in fact
not piecewise stationary. Two promising directions for this in the case of speech
are the use of articulatory or other segment-based models, and perceptually-based
models that may reduce the modeling space based on what is significant to the
auditory system.

e Avoiding conditional independence assumptions—to some extent the HMM/ANN
hybrid approach already does this, but there are still a number of assumptions
regarding temporal independence that are not justified. Perceptual approaches
may also help here, as may the further development of dynamic or predictive
models.

o Developing better signal representations—the above approaches may need new
features in order to work well in realistic conditions.

e Better incorporation of language models and world knowledge—while we have
briefly mentioned the use of connectionist language models and NLP, all of the
schemes currently employed provide only a rudimentary application of knowledge
about the world, word meanings, and sentence structure. These factors must
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ultimately be incorporated in the statistical theory, and connectionist approaches
are a reasonable candidate for the underlying model.

o Learning to solve these problems through a better use of modular
approaches—this consists of both the design of better solutions to subtasks, and
more work on their integration.

These are all long term research issues. Many intermediate problems will have to be
solved before anything like an optimal solution can be found.
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11.6 Finite State Technology

Ronald M. Kaplan
Xerox Palo Alto Research Center, Palo Alto, California, USA

A formal language is a set of strings (sometimes called sentences) made up by
concatenating together symbols (characters or words) drawn from a finite alphabet or
vocabulary. If a language has only a finite number of sentences, then a complete
characterization of the set can be given simply by presenting a finite list of all the
sentences. But if the language contains an infinite number of sentences (as all interesting
languages do), then some sort of recursive or iterative description must be provided to
characterize the sentences. This description is sometimes given in the form of a
grammar, a set of pattern-matching rules that can be applied either to produce the
sentences in the language one after another or else to recognize whether a given string
belongs to the set. The description may also be provided by specifying an automaton, a
mechanistic device that also operates either to produce or recognize the sentences of the
language.

Languages have been categorized according to the complexity of the patterns that their
sentences must satisfy, and the basic classifications are presented in all the standard
textbooks on formal language theory, e.g., Hopcroft and Ullman (1979). The sentences
of a reqular language, for example, have the property that what appears at one position
in a string can depend only on a bounded amount of information about the symbols at
earlier positions. Consider the language over the alphabet a, b, ¢ whose sentences end
with a ¢ and contain an a at a given position only if there is an earlier b. The strings
ccec and bac belong to this language but abe does not. This is a regular language since
it only requires a single bit to record whether or not a b has previous appeared. On the
other hand, the language whose sentences consist of some number of «’s followed by
exactly the same number of b’s is not a regular language since there is no upper bound
on the number of a’s that the allowable number of b’s depends on. This set of strings
belongs instead to the mathematically and computationally more complex class of
contexrt-free languages.

A regular language can be described by grammars in various notations that are known
to be equivalent in their expressive power—they each can be used to describe all and
only the regular languages. The most common way of specifying a regular language is by
means of a regular expression, a formula that indicates the order in which symbols can
be concatenated, whether there are alternative possibilities at each position, and
whether substrings can be arbitrarily repeated. The regular expression {c*b{alb|c}*|c}e
denotes the regular language described above. In the notation used here, concatenation
is represented by sequence in the formula, alternatives are enclosed in braces and
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separated by vertical bars, asterisks (often called the Kleene closure operator) indicate
that strings satisfying the previous subexpressions can be freely repeated, and e denotes
the empty string, the string containing no elements.

The regular languages are also exactly those languages that can be accepted by a
particular kind of automaton, a finite-state machine. A finite-state machine (fsm)
consists of a finite number of states and a function that determines transitions from one
state to another as symbols are read from an input tape. The machine starts at a
distinguished initial state with the tape positioned at the first symbol of a particular
string. The machine transitions from state to state as it reads the tape, eventually
coming to the end of the string. At that point, if the machine is in one of a designated
set of final states, we say that the machine has accepted the string or that the string
belongs to the language that the machine characterizes. An fsm is often depicted in a
state-transition diagram where circles representing the states are connected by arcs that
denote the transitions. An arrow points to the initial state and final states are marked
with a double circle. The fsm, shown in Figure 11.2, accepts the language

{c*b{alb|c}*|e}e:

Figure 11.2: Finite-state machine diagram.

Because of their mathematical and computational simplicity, regular languages and
finite-state machines have been applied in many information processing tasks. Regular
expressions are often used to specify global search patterns in word-processors and in
operating-system utilities such as Unix’ Grep. The lexical analysis component of most
modern programming language compilers is defined as a finite-state machine that
recognizes identifier classes, punctuation, numbers, etc. (Aho & Ullman, 1978). But
until relatively recently, finite-state techniques have not been widely used in natural
language processing. This is in large measure the result of Chomsky’s argument
(Chomsky, 1957) that natural language sentences are so rich and complicated that they
cannot be accurately characterized by means of regular or finite-state descriptions. One
consequence of this was that a generation of linguists and computational linguists came
to believe that finite-state techniques were of little or no interest.

It may well be true that complete and accurate natural language syntactic and semantic
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dependencies lie beyond the power of finite-state description, but work in the last twenty
years (and particularly in the last five years) has identified a number of important
problems for which very efficient and effective finite-state solutions can be found.

One set of solutions relies on the observation that finite-state descriptions can provide
an approximation to the proper grammatical description of a language, an
approximation that is often good enough for practical purposes. The information
extraction problem, for example, requires that documents and passages be identified
that are likely to contain information relevant to a given user’s needs. Full-blown
syntactic and semantic analyses of documents would certainly help to solve this
problem. But such analyses may provide much more information than this task actually
requires. Indeed, Appelt, Hobbs, et al. (1993) have constructed a finite-state solution
that is extremely efficient compared to more powerful but more complex extraction
systems and also has very favorable recall and precision scores. Their finite-state pattern
specifications can only approximate a complete analysis of a text, but the approximation
seems close enough for this particular purpose.

There has also been growing interest in using finite-state machines for storing and
accessing natural language dictionaries. Appel and Jacobson (1988) observed that the
words in a large lexicon can be very compactly represented in a state-transition graph.
This is because the graph can be transformed using determinization and minimization
techniques that are well-known from finite-state theory, with the result that prefixes and
suffixes common to many words are collapsed into a single set of transitions. Lucchesi
and Kowaltowski (1993) discuss access methods for finite-state dictionary
representations that permit efficient retrieval of translation and synonymy information
associated with particular words.

A third set of problems require that strings be systematically transformed into other
strings. For example, the negative prefix in in the abstract phonological representation
such as in+practical must be realized with an assimilated nasal as in impractical, or the
inflected form stopping must be mapped either to its stem stop (for use in information
retrieval indexing) or to its morphological analysis stop+PresentParticiple as an initial
step in further processing. One formalism for describing these kinds of string
transformations are context-sensitive rewriting rules as discussed for example by
Chomsky and Halle (1968). Johnson (1972) and later Kaplan and Kay (1981); Kaplan
and Kay (1994) showed that for each rule of this type there is a finite-state transducer
that maps input strings to exactly the same outputs that the rule prescribes. A
transducer is a simple extension of a basic finite-state machine: as it reads its input tape
and makes a transition from one state to another, it can also write a corresponding
symbol on a second tape. When it reaches a final state and the end of the input, the
string produced on the second tape is taken to be the output that the input string is
mapped to.
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Mathematically, the collection of input-output string-pairs for a given transducer
(corresponding perhaps to a particular rule) constitutes a regular relation. Regular
relations share many (but not all) of the formal properties of the regular languages (for
example, closure under union and concatenation) and also enjoy certain other
properties. In particular, the regular relations are closed under composition, and Kaplan
and Kay use this fact to show that the effect of an entire collection of rewriting rules
making up a phonological or morphological grammar can be implemented as a single
finite-state transducer. This device is much more efficient than any scheme using the
rules directly for performing the string transformations that the grammar describes.
Koskenniemi (1983) proposed a different rule notation, called two-level rules, for
characterizing phonological and morphological variations. These rules also denote only
regular relations and can be transformed to equivalent transducers.

Future Directions

In the years since Chomsky’s original criticism of finite-state techniques used for
syntactic description, our understanding of their mathematical and computational
properties has increased substantially. Of most importance, however, is our increased
awareness of the wide range of natural language processing problems that they can
fruitfully be applied to. Problems such as dictionary access and morphological analysis
seem to be inherently finite-state in character, and finite-state solutions for these
problems are complete as well as efficient. For applications such as information
extraction, finite-state approaches appear to provide extremely useful approximate
solutions. An exciting body of current research is exploiting more sophisticated
finite-state techniques to improve the accuracy of approximate syntactic analyses
without sacrificing their processing efficiency (e.g., Koskenniemi, 1990; Voutilainen &
Tapanainen, 1993). Given these improvements, we expect to see finite-state techniques
incorporated into a growing number of practical language processing systems.
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An optimal search method is one that always finds the best solution (or a best solution,
if there is more than one). For our purposes best is in terms of the value of a criterion
function, which defines a score for any possible solution. Optimization can be defined as
the process of finding a best solution, but it is also used, more loosely, meaning to find a
sequence of better and better solutions.

Optimization and search are vital to modern speech and natural language processing
systems. Although there are optimization techniques which are not normally thought of
as search, and search methods which are not optimal or not defined as optimizing
anything, most often we are dealing with search methods which seek to optimize a
well-defined criterion, and usually we understand the search method in terms of the way
it approximates to an optimal search.

Three well-known problems for which optimal search methods are important are:
training a set of models for speech recognition, decoding an acoustic pattern in terms of
a sequence of word models, and parsing an errorful symbol string with the least number
of assumptions of errors. Speech recognition and parsing are combinatorial optimization
problems: a solution is a sequence (or more complicated data structure) of symbols,
which in a speech recognition system might represent words. Training the parameters of
a set of models is a problem in (non-linear) continuous optimization: a solution is a
vector of real numbers (e.g., probabilities and parameters of probability density
functions). It is common, in speech and language processing, to reserve the term search
for combinatorial problems, particularly speech recognition, and to use optimization for
continuous problems such as training.

We must never forget that an optimal solution is not necessarily correct: it is only
optimal given the way the problem is posed. Speech recognition based on optimal search
has the important and useful property that we can usually categorize recognition errors
as model errors (the recognition criterion was inappropriate) or search errors (we failed
to find the mathematically optimal solution), by checking the value of the criterion for
the correct answer as well as the incorrect answer. In the case of model errors we must
improve the structure of the models, or the method of training or the training data itself.

A search method for ASR is usually expected to be an optimal (finds the best-scoring
answer) to good (and preferably controllable) approximation. The main properties of
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search methods, apart from optimality, are speed and use of computing resources. Other
attributes include delay (not the same as speed) and providing extra information, such
as alternative answers or details like scores and positions.

For some problems the optimal solution can be computed directly, using standard
numerical algorithms. A feed-forward neural network (see section 11.5) can be used as a
classifier without performing a search, and matrix inversion can be used as the basis for
some training methods. However, the most successful methods for dealing with
timescales and sequences in speech recognition are based on searches.

The most desirable search methods are those that are provably optimal. This is the case
with the standard speech recognition algorithms, which are based on dynamic
programming and the Markov property. The standard training methods use an efficient
re-estimation approach, which usually converges to at least a local optimum in a few
iterations through the training data. The standard model structures and training criteria
are chosen partly because they are compatible with such efficient search methods. Less
efficient methods, such as gradient descent or optimization by simulated annealing can
be used for more difficult (but possibly more appropriate) models and training criteria.

11.7.1 Dynamic Programming-based Search for Speech
Recognition

The most important search techniques for combinatorial problems in speech recognition
are based on dynamic programming (DP) principles (Bellman, 1957). DP is often the
key to efficient searches for the optimum path through a graph structure, when paths
are evaluated in terms of an accumulation of scores along a path. The Viterbi algorithm
(Forney, 1973) is an application of DP, and the forward-backward algorithm (Jelinek,
1976) is very closely related. Three speech recognition problems usually solved by DP
are those of unknown timescales, unknown word sequence and unknown word boundary
position. Our first example is a simple whole-word speech recognizer.

Consider a simple isolated word discrimination system with one word-model per
vocabulary word. FEach word model consists of a sequence of states, each state
corresponding to a position along the word. Associated with each state is information
(the output distribution) about the range of acoustic data (spectrum shapes, etc.) to be
expected at that point in the word. Most modern speech recognition systems use word
models composed of shared sub-word models (see section 1.5), (Poritz, 1988).

When given an unknown sound pattern (a sequence of frames of spectrum
measurements) we shall decide which word of the vocabulary has been said by picking
the word model which fits best.
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Different utterances of the same word can have very different timescales: both the
overall duration and the details of timing can vary greatly. The degree of fit is usually in
two parts: the fit to the spectrum and the fit to the timescale. To keep our example
simple, we assume that all we know (or want to use) about the timescales of words is
that states are used in strict sequence, each one being used one or more times before
moving on to the next one. There are many more elaborate schemes (section 1.5), most
of which penalize time-scale distortion. We shall also assume that best means minimum
sum of individual degree-of-fit numbers, which might be distances, or strain energy, or
negative log probabilities.

If we knew how to align the states of the model with the frames of the unknown pattern
we could score the model (and hence the word hypothesis) by combining the spectrum
fit scores. We define the model score as the result of choosing the best alignment. We
find that score (and the alignment if we want it) using a DP algorithm, as follows: we
introduce an optimal partial score, I, where [}, is the score for optimally aligning the
first 7 states of the model to the first ¢ frames of the input pattern. We are interested in
Fn 1, the score for optimally aligning all N states of the model to all T' frames of the
input pattern.

For our simple example F' can be computed from the DP step:
Fio=Min[F,_1, Fisy 1] + diy

where d;; is the degree of fit of the it" state of the word model to the measured
spectrum at time ¢. (If we are going to align state ¢ with frame ¢ we must align frame

t — 1 with state ¢ or with state ¢« — 1.) Fy can be computed by starting with Fy ; = d;,
and working through to frame 7.

Simple connected word recognition is done by processing all the word models together,
and allowing the scores to propagate from the end of one word to the start of another.
In practice we choose between words that could end at the current input frame, and
propagate just the best one. A pair of arrays, indexed by frame number, can keep track
of the identity of the best word ending at each input frame, and the best time for it to
start (Vintsyuk, 1971). The start-time for the current word is propagated with F' within
the words. There are several alternatives and elaborations, e.g., Ney (1984).

It is possible to operate such a connected word recognizer continuously using partial
trace-back: when all active optimal partial paths agree about the interpretation of some
past stretch of input data then nothing in the future data can change our interpretation
of that stretch: we can output that result and recover the associated storage.

In a large-vocabulary system we can save a lot of storage and computation by keeping
only the relatively good-scoring hypotheses. This pruning or beam search (Lowerre,
1976) can also reduce the delay in the partial trace-back.
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The connected-word search method outlined above processes each input frame as it
arrives, and considers all word endings at that time. There is another important class of
methods, called stack-decoders, in which words which start at the same time are
processed together (Paul, 1992).

We have considered tasks of finding optimal time alignments and sequence of words. It
can also be very useful to find close-scoring alternative sequences (Schwartz & Austin,
1991), which can be analyzed subsequently using sources of knowledge which it is
inconvenient to incorporate into the main search: for instance alternative acoustic
scoring methods or application specific systems.

Most real-time large-vocabulary systems rely for their speed on a multi-resolution
search: an initial fast match, using a relatively crude set of models, eliminates many
possibilities, and the fine match can then be done with much less work. Sometimes the
searches are performed in alternating forward and backward directions, with a
combination of scores used for pruning (Austin, Schwartz, et al., 1991). Additional
discussion of search in HMM-based systems can be found in section 1.5.

11.7.2 Training/Learning as Optimization

Training is the process by which useful information in training data is incorporated into
models or other forms used in recognition. The term learning is used of the complete
system which performs the training. We normally talk about training hidden Markov
models, but many artificial neural networks are defined so they include the training
algorithms, so we can refer to the neural network as learning from the data.

Most early artificial intelligence research on automatic learning focussed on problems of
learning structure. A classic problem is learning a grammar from example sentences.
Learning structure directly is a combinatorial problem, and is very difficult. Among the
techniques available are genetic algorithms (Goldberg, 1989) and optimization by
simulated annealing (Kirkpatrick, Gelatt, et al., 1983). Most established learning
methods used in speech recognition avoid the difficulties by replacing discrete
optimization problems with continuous problems. As an example, the rules of a regular
grammar can be replaced by a set of probabilities, and the probabilities define a
continuous (but bounded) space within which continuous optimization methods can be
used. Many types of neural networks can be seen as the result of generalizing discrete,
logical systems of rules so that continuous optimization methods can be applied.

In training, we are usually trying to optimize the value of a function F of the training
data and of unknown parameters #, and F is made up of a sum over the training
instances {x;}: F =X F;, where E; = F(x4,0). Evaluation of E for a given 6 needs a
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pass over all the training data. An example from HMMs is the probability of the model
generating the training data (usually a very small number!)

Available methods depend on the type of response surface (form of E as a function of 9)
and amount of extra information available, such as derivatives.

One of the simplest cases is when F is quadratic in §. There are standard methods for
finding the optimum # in a number of evaluations not much more than the
dimensionality of  (Press, Flannery, et al., 1988).

When E(8) is smooth and we can also compute the partial derivative of E with respect

to the components of 8, %, then there are many gradient based methods. In the
simplest case (gradient descent or ascent) we adjust # in proportion to %. Variations of

gradient descent, such as momentum smoothing, adaptive step size, conjugate gradients
and quasi-Newton methods, are available in the literature, e.g., Press, Flannery, et al.
(1988), and many have been applied for training neural networks of the multi-layer
logistic perceptron type (Rumelhart, Hinton, et al., 1986). The motivation and
application of these methods in speech recognition is discussed in section 11.5.

However, the most important methods in use in speech recognition are of the
expectation-maximization (E-M) type, which are particularly applicable to maximum
likelihood training of stochastic models such as HMMs. The basic idea is not difficult.
As an example, consider the problem of constructing the type of word model described
in section 11.7.1. Assume we have a crude version of the word model, and wish to
improve it. We first align the states of the model to each of several examples of the word
using the DP method outlined above, then re-estimate the output distributions
associated with each state, using statistics (such as the mean) of the data frames aligned
to that state. This cycle can be repeated, but usually converges well in a few iterations.
In the Baum-Welch procedure the alignment is a more sophisticated, probabilistic,
assignment of frames to states, computed using the forward-backward algorithm, and
convergence is provable for the most common forms of model. For details see section 1.5,

or e.g., Poritz (1988).

11.7.3 Future Directions

It is difficult to separate progress in search and optimization algorithms from the way
that the problem is posed (usually this means the form of the models). Dynamic
programming style algorithms rely on a key property of the structure of the models: the
pattern of immediate dependencies between random variables must form a singly
connected graph. More general (but efficient) search and optimization methods would
allow the exploration of models in which, for instance, multiple parallel factors explain
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the data more naturally and more parsimoniously.
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