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1. Approaches to formal commonsense reasoning

This special issue consists largely of expanded and revised versions of selected papers of
the Fifth International Symposium on Logical Formalizations of Commonsense Reasoning
(Common Sense 2001), held at New York University in May 2001.1,2 The Common
Sense Symposia, first organized in 1991 by John McCarthy and held roughly biannually
since, are dedicated to exploring the development of formal commonsense theories using
mathematical logic.

Commonsense reasoning is a central part of human behavior; no real intelligence is
possible without it. Thus, the development of systems that exhibit commonsense behavior
is a central goal of Artificial Intelligence. It has proven to be more difficult to create
systems that are capable of commonsense reasoning than systems that can solve “hard”
reasoning problems. There are chess-playing programs that beat champions [5] and expert
systems that assist in clinical diagnosis [32], but no programs that reason about how far one
must bend over to put on one’s socks. Part of the difficulty is the all-encompassing aspect
of commonsense reasoning: any problem one looks at touches on many different types
of knowledge. Moreover, in contrast to expert knowledge which is usually explicit, most
commonsense knowledge is implicit. One of the prerequisites to developing commonsense
reasoning systems is making this knowledge explicit.

John McCarthy [25] first noted this need and suggested using formal logic to encode
commonsense knowledge and reasoning. In the ensuing decades, there has been much
research on the representation of knowledge in formal logic and on inference algorithms to
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manipulate that knowledge. The arguments for a declarative knowledge representation—it

allows the explicit representation of knowledge; it is modular; it supports modification
far more easily than implicit, procedural knowledge—have gained credence not only
among the AI community, but in the broad field of computer science. Basic principles
of knowledge representation have been incorporated into the design of object-oriented
languages and rule-based systems. But the formalization of commonsense reasoning
remains an elusive goal. Seemingly trivial reasoning problems that, in McCarthy’s words,
can be carried out by any non-feeble minded human are still beyond the representational
and reasoning abilities of existing theories and systems. (See [8] for examples.)

Progress has been slow because formalizing commonsense reasoning presents a variety
of challenges. One must (1) develop a formal language that is sufficiently powerful and
expressive; (2) capture the many millions of facts that people know and reason with;3

(3) correctly encode this information as sentences in a logic; and (4) construct a system
that will use its knowledge efficiently. The knowledge of these difficulties is as old as the
endeavor itself. Forty-four years ago, linguist and logician Yehoshua Bar-Hillel (see the
Discussion section of [25]) argued the inadequacy of standard deduction for planning in
real-world domains in which circumstances can change—and perhaps presaged the need
for default logics; pointed out the problems in formalizing even a simple relation like “At”;
and questioned how a computer could choose from millions of facts the few facts relevant
to a specific problem at hand.

There have been two strategies for tackling these very hard problems. On the one hand,
researchers have methodically and painstakingly worked on foundational problems and
have constructed small (“toy”) formalizations to test their progress. On the other hand,
there have been attempts to encode vast amounts of facts to enable broad commonsense
reasoning. The Cyc Project [20,21], which aims to construct an encyclopedic knowledge
base of all facts needed to perform commonsense reasoning, is the best known of these
efforts. Other projects with a similar flavor include DARPA’s HPKB project [33] which
focused on creating very large and fast knowledge bases for commonsense reasoning in
the domains of warfare and geography. In the subsequent discussion, we will refer to
the first strategy as the foundational approach, and to its proponents and practitioners as
foundationalists. Because of the renown of the Cyc project, we will refer to the second
strategy as the Cyc approach. Cyc’s adherents and practitioners are commonly called
CycLists [44] and throughout this paper, we will extend this usage to all proponents of
the second approach.

The foundational and Cyc research programs focus on different subsets of Bar-Hillel’s
challenges. Foundationalists have concentrated on three issues: First, they have spent much
effort developing sufficiently powerful and expressive alternatives to or extensions of
classical logics. These include default logics that allow plausible reasoning [26,29,37],
as well as logics of knowledge and belief [10], logics of obligation [35], and temporal
reasoning [11,17,24]. Second, they have focused much attention on ensuring that the
logical axioms they write down precisely model the facts they are attempting to formalize.

3 Estimates on the number of facts people know range from ten million to several hundred million: see Erik
Mueller’s article at http://www.signiform.com/erik/pubs/cshumans.htmfor a discussion and list of references.
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This is a process in which the careful teasing out of implicit knowledge, the delineation

of boundary cases, and the recognition and construction of general rules are as important
as determining how one can translate such knowledge into a formal system. Third, they
have studied the ways in which their systems can efficiently make inferences.4 Where
foundationalists have fallen short is in the construction of large-scale theories. A typical
foundational research project will focus on one or several toy problems, ranging in size
from a few axioms to several dozen axioms.

The Cyc research program, on the other hand, focuses exactly on the construction of
large-scale theories. CycLists have thus far constructed a knowledge base of several million
commonsense facts, and plan to acquire at least several million more in the next few years.
They are, of course, concerned about getting things right: the intention is to say a lot of
facts and get as many right as possible. But absolute correctness is not a goal: it is expected
that the representational language will be imperfect, that some data will be wrong, and that
the translation of some facts into logic will go awry. Thus, they are not nearly so concerned
with getting comprehensive solutions to fundamental representational problems [7]. They
are also naturally concerned with efficient reasoning, because their theories are so large,
but their methodologies to promote efficiency rest on fairly standard heuristics.5

There is less interaction that one might expect between the foundationalist and Cyc
research groups. None of the papers in this special issue, for example, cite or mention Cyc
at all. This disconnect is in large measure due to the fact that the Cyc camp has published
very little about the representations they use since [21], now thirteen years out of date,
and hardly as informative as one would have wished, even at the time. Even now that the
Cyc Upper Ontology has been made available to the public,6 the great majority of the
knowledge base remains inaccessible.

Yet one cannot entirely explain the gap between the foundationalists and CycLists on
Cyc’s limited publication activity. Cyc is cited frequently by researchers working on large-
scale ontologies and knowledge bases and knowledge engineering. Indeed, there has in
recent years been increasing collaboration between the academic community and Cyc.
Specifically, portions of Cyc’s Upper Ontology were incorporated into the HPKB project
[33] and served as the starting point for the Rapid Knowledge Formation project, which
aimed to develop tools to enable subject matter experts to quickly enter domain knowledge
[42].

Rather, the fundamental reason for the disconnect is probably a lack of shared
interests. While both foundationalists and CycLists are nominally interested in formalizing
commonsense reasoning, they are in fact working on different research problems, at
least for the time being. Since both a solid foundation and large-scale formalizations are

4 One might think that efficiency is not a particular concern due to the small size of most existing
axiomatizations. In fact, however, theorem provers can run into efficiency problems even when dealing with
relatively small axiom sets. Moreover, the computational complexity of some tasks like planning arises from the
search through possible states, not the number of axioms in the planning theory.

5 See Cyc’s Ontology Engineers handbook, at http://www.cyc.com/doc/handbook/oe/06-el-hl-and-the-
canonicalizer.html.

6 See http://www.cyc.com/cyc-2-1/cover.html.
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necessary for formalizing commonsense reasoning, one would hope that as these projects

develop, their research interests will eventually converge.

2. Trends in formal commonsense reasoning

Commonsense reasoning is such a broad area that one might expect that researchers
attempting to capture it would head off in hundreds or thousands of different directions.
For better or worse, this has not happened. Research has tended to cluster in a few areas,
which have remained relatively stable over the last few decades. These include default or
nonmonotonic reasoning, logics of knowledge, and temporal reasoning, mentioned above,
as well as spatial reasoning [36] and theories of belief, desire, and intention [6].

There has been substantial progress in each of these areas. For example, research in
nonmonotonic reasoning, in it earliest days [26,29,37], focused mostly on developing
logics that allowed one to express default rules and perform default inference. Later
researchers gave semantics to these logics [31], explored the connection between logic
programming and nonmonotonic logic [30,34], and investigated new paradigms for
default reasoning, such as consequence relations [18] and belief revision [1]. In addition,
researchers have thoroughly explored the integration of default reasoning with theories
of action [13,38,41], investigated the connections among existing systems of default
reasoning [9,15,16], and considered how nonmonotonic reasoning and planning might best
be implemented and used for applications [12,22].

This is indicative of the research trends that have recently emerged: the integration
of different fields of commonsense reasoning, the development of unified, expressive
theories, the development of implemented systems, and the examination of somewhat
larger problems than have previously been considered. These trends are evident in the
papers appearing in this issue.

Many papers in this collection owe a direct debt to problems first proposed by John
McCarthy, e.g., in [25,27]. This was not true twelve years ago when the Common Sense
Symposia first started, nor even five years ago—perhaps because at that time the formal
commonsense community was still struggling with preliminary but difficult foundational
problems. The progress that has been made in areas such as nonmonotonic reasoning
and temporal reasoning has enabled the community to turn its attention toward creating
larger and more flexible commonsense reasoning systems that incorporate some of the
spirit of the Advice Taker. McCarthy was far ahead of his time; the formal commonsense
community may now be ready to catch up with his vision.

3. Papers in the special issue

One of the criticisms of the foundational camp is that so many researchers develop their
own theories to solve a particular problem, even when similar theories already exist. The
result is a large number of theories, mostly incomparable, each suited to some problem,
but none suited to a broad class of problems. This is particularly true of the reasoning-
about-actions community, where the Situation Calculus [24], the Event Calculus [17,41],
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and the Fluent Calculus [43] are only a few of the many formalisms currently available.

There have been some efforts to compare various popular formalisms [40], but ultimately
one must choose a specific, narrow formalism. Whether or not language shapes thought,
it is certainly the case that one’s theory is shaped by the ontology of the formalism that
one chooses. The state of the art is that when a researcher selects a temporal logic, he has
already committed himself to significant decisions about the theory that he will create. For
example, the Event Calculus commits one to a linear time structure in which time points are
arranged in a total order; the Situation Calculus commits one to a branching time structure
in which time points are arranged in a partial order.

Bennett and Galton advance the state of the art one large step further. They present
a very expressive language (Versatile Event Logic or VEL) for representing temporal
relationships and events. VEL incorporates a variety of different approaches to temporal
reasoning within a single framework. For example, existing formalisms view events either
as transitions between states or occurrences over intervals or suitably modified syntactic
units, and force the user to explicitly refer to (respectively) either time points or time
intervals or propositional tenses. In contrast, VEL allows the user to choose whichever
representation is most suitable for his needs, and further, to simultaneously use multiple
representations if desired. In their generous and flexible framework, Bennett and Galton
also provide some unusual features, such as a modal operator to describe alternative
histories. This feature can facilitate hypothetical and counterfactual reasoning. Bennett and
Galton suggest that their framework can be used as a lingua franca for comparing different
temporal formalisms, and demonstrate that the Situation Calculus and the Event Calculus
can be represented within VEL. This is a modest claim: VEL may be most useful when
researchers use it as their primary temporal formalism and exploit its flexibility to develop
more realistic and powerful theories of action than are possible using existing logics.

In the past two decades, researchers have struggled to formalize the notion of causation.
The aim has been to develop a theory of causation that supports inference in multiple
directions (e.g. from cause to effect, from effect to cause, from behavior to object
properties, etc. [39]). This entails, among other things, solving several temporal reasoning
problems: determining which fluents, or time-varying properties, do not change as the
result of an action, without having to explicitly list all such properties (the frame problem),
determining the indirect effects of an action, without having to explicitly list all such effects
(the ramification problem), and concisely representing the conditions necessary for the
successful performance of an action (the qualification problem).

Researchers early on [26,28] conjectured that default logics could help solve these
problems, partly because statements of the form “typically X is the case” can be used to
concisely represent phenomena of change and causation, and default logics are designed to
express such statements. For example, default logics make it easy to say that it is typically
the case that if you strike a match, it will light, and that it is typically the case that if you
park your car somewhere, it will remain there until you next drive it. However, a naive
integration of default logic into temporal logic can be inadequate, particularly with respect
to reasoning about conflicting defaults. Consider for example, the principle of inertia,
which states that properties typically remain the same over time. Two instances of the
principle of inertia—animals typically stay alive and guns typically stay loaded—conflict
in a scenario in which a gun is loaded and after a short time fired point-blank at a turkey’s
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head. The difficulty (the Yale Shooting problem [14]) is that naive default temporal logics

do not support the preference of the expected models (the gun stays loaded, and the turkey
dies) over the unexpected models (the turkey stays alive, entailing that the gun must have
become unloaded), and thus do not support any prediction about the turkey’s status.

There has been a flurry of solutions to these temporal reasoning problems, and
an emerging consensus on the fundamental concepts that support these solutions. For
example, it is now understood that a proper formalization of the principle of inertia, which
is central to a solution to the frame problem, requires a sufficiently rich theory of causation,
and that formalizing constraints between fluents can help reason about ramifications [43].
Often, however, such solutions have appeared in piecemeal fashion.

Giunchiglia, Lee, Lifschitz, McCain, and Turner present a theory of causal reasoning
that integrates many of the insights that have been learned from this research. In their
nonmonotonic causal logic, one can distinguish between a fact being true and a fact having
a cause. There is a strong connection between a fact being caused and a fact obtaining
(being true at some point): a fact is caused iff the fact obtains. (The “if” part of this principle
can be explicitly disabled for specific facts, if desired.) Giunchiglia et al. show how their
theory can be used to elegantly formalize the principle of inertia and constraints. They
further introduce the action description language C+, a formal language for describing
transition systems, and define a correspondence between action descriptions and causal
theories.

Giunchiglia et al. also deal with implementational issues. The development of
implemented systems for reasoning about actions has received increasing attention in
recent years as theories of action have matured, enabling researchers to study concrete
examples. Giunchiglia et al. demonstrate how problem statements in C+ can be translated
into the Causal Calculator [23] and thereby demonstrate how solutions to some well-known
toy problems of commonsense reasoning can be computed. Their work thus integrates an
action language, a theory of causal reasoning, and an implemented system for reasoning
about action and causation into one unified package.

The enumeration and elaboration of and detailed investigation into toy problems has
a rich and worthy history in AI. Toy problems such as Missionaries and Cannibals and
Blocks World have generated a wealth of groundbreaking research. McCarthy compares
the use of such toy problems to the use of drosophila in biological research, and argues
[27] that they are essential to progress in formal commonsense reasoning. He believes
that especially because commonsense reasoning is so complex and difficult to formalize,
it is important to study simpler cases that allow researchers to focus on the particular
research problems they are trying to solve. For example, the simplified Blocks World
allows researchers to concentrate on planning issues and temporal reasoning problems and
ignore motion planning and sensing.

Nevertheless, many members of the research community believe that in addition to toy
problems, researchers should also look at somewhat larger problems. They believe that
toy problems can often simplify a real-world problem to such an extent that nearly all
interesting aspects are altered, and research results are not of much use. For example,
certain variants of the Yale shooting problem are so weakened that they can be solved
without any formalization of causation. Moreover, because most toy problems focus on
only one or two aspects of commonsense reasoning, solving them does not entail exploring
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how different commonsense problems interact with one another, or how one can integrate

solutions. In addition, exclusively examining toy problems promotes insularity by reducing
researchers’ motivation to examine commonsense problems that arise in the real world,
and prevents researchers from discovering if their formalizations will scale up to larger
problems.

There has therefore been an attempt to enlarge “drosophila” from toy-problem size.
During the last few years, several mid-sized challenge problems have been proposed.
Erik Sandewall has suggested for commonsense research two microworlds with fairly
rigorous specifications, a simplified traffic world and a simplified zoo world.7 A sampling
of commonsense reasoning problems, such as reasoning about staking a plant, reasoning
about cracking an egg, and reasoning about surprising a friend with a birthday present, can
be found on the Common Sense Problem Page.8 Some of these problem descriptions list
a number of variants. In general an acceptable representation for such a problem should
also handle a wide range of variants; this helps guarantee that the representation is not
too narrowly tailored to the specific problem. (McCarthy [27] calls this the principle of
elaboration tolerance.) For example, variants of the staking problem include situations
where the stake is not pushed into the ground; where the stake is very far from the plant;
where the gardener attempts to use a heavy chain on a small plant, and so on.

The potential advantages of working on such mid-sized problems include the develop-
ment of core, reusable theories of commonsense reasoning, testing existing theories as they
are integrated into axiomatizations of mid-sized problems, and the discovery of new repre-
sentational issues and problems that might not appear in an artificially small toy problem.

This issue contains two papers describing their approaches to such mid-sized benchmark
problems. Akman, Erdogan, Lee, Lifschitz, and Turner present axiomatizations of both the
zoo and traffic worlds. They axiomatize these microworlds in C+, the action description
language discussed above by Giunchiglia et al., thus demonstrating C+’s expressiveness
and its ability to handle the frame, ramification, and other temporal reasoning problems.
The new representational issues that arose included representing continuous motion using
integer arithmetic, and representing change in the absence of action. For example, if a car
is already on a road and there is no specific action to stop or leave the road, the car will
continue and its position will change. The paper proposes ways to represent such facts
using dynamic laws that do not contain action constants.

Shanahan gives a detailed axiomatization of the egg-cracking domain. The problem,
which appears on the Common Sense Problem Page, is to characterize the correct
procedure of cracking an egg and transferring its contents to a bowl. Variants include
situations in which the bowl is made of loose-leaf paper, the bowl is upside down, and
the agent tries the egg-cracking procedure with a hard-boiled egg. The problem itself is
quite a complex one, since cracking an egg involves reasoning about so many domains
of physical reasoning: containment and parts, materials, collisions, liquids, and vessels.
Shanahan develops simple re-usable theories for each of these domains. He integrates this
theory with the extension of the Event Calculus that he had earlier developed to solve

7 See http://www.ida.liu.se/ext/etai/lmw/.
8 See http://www-formal.stanford.edu/leora/commonsense.
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the frame problem [41] to arrive at an elegant axiomatization of the egg-cracking domain.

Moreover, Shanahan demonstrates that his theory can be modified, with little effort, to
handle the listed variants of the egg-cracking problem, as well as several that are not
listed. Shanahan argues, however, that one cannot forever do armchair axiomatizations.
He contends that it is necessary to at some point check one’s formalizations in the real
world, for example, by running an implementation of one’s axiomatization on a robot.
In the egg-cracking axiomatization, he therefore attempts, as much as possible, to work
toward the ultimate goal of having a set of bottom-level predicate and function symbols
that can be anchored through robot sensors and actuators.

The need to closely couple formal axiomatizations with an implemented robot that
senses and acts in the real world is the driving force behind the work of Amir and Maynard-
Zhang. They present an integration of Brooks’ subsumption architecture [4] with logical
representations and formal reasoning algorithms. Like Brooks, they suggest decomposing
a domain along behavioral lines. Thus, their architecture includes layers for high-level
motion planning, local action planning, destination seeking, and obstacle avoidance. Each
layer consists of (1) the set of axioms describing the layer’s behavior, (2) the sensory input
and output latches, which accept input axioms from the sensors and from higher layers, (3)
the set of goal sentences which determines, via proof and instantiation, the layer’s behavior,
and (4) the default assumptions, used to implement (via circumscription) nonmonotonic
reasoning. A layer operates by collecting data from sensors and inputs from higher level
theories and trying to prove the layer’s goal from the theory and the default assumptions.
Goals are transmitted to the layer below, or to the robot manipulators. Amir and Maynard-
Zhang’s system has been implemented on a Nomad 200 robot which travels to different
rooms in a multi-story building. The architecture affords great flexibility: it is possible to
correct the robot’s behavior at run-time by giving it a fact encoded in logical form. This
comes very close to McCarthy’s dream of the Advice Taker.

McCarthy has long argued that a commonsense theory should be elaboration tolerant.
That is, it should be relatively easy to add new facts to a theory, or new details to a problem
statement, without having to rework large parts of one’s existing theory. McCarthy has
taken the classic Missionaries and Cannibals problem (MCP), in which three missionaries
try to ferry three cannibals across a river without being eaten [2]. In the original problem,
there is one boat which holds two people, and if the cannibals ever outnumber the
missionaries, the missionaries get eaten. One can encode the problem as a sequence of
triples, each of which indicates the number of missionaries, cannibals, and boats on the left
bank of the river. But this representation is exceedingly brittle. It cannot support a solution
to a problem that has extra facts about the river or boats, for example. McCarthy [27]
proposes 19 elaborations, including the 4 person MCP (4 missionaries and 4 cannibals;
this is unsolvable), the conversion MCP (three missionaries can convert 1 cannibal if they
get him alone), and the big cannibal MCP (one cannibal is so large that he cannot fit into a
boat with anyone else).

Gustafsson and Kvarnström show how one can use techniques from object-oriented
programming to construct theories that are elaboration tolerant. They argue that the key
to elaboration tolerance is proper organization, which is facilitated by using the object-
oriented paradigm. One should initially design the domain formalization at a high level of
abstraction and organize the domain so that one can add details later on. In their theory,
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domain entities are represented as objects, which are organized into classes. As in classical

object-oriented programming, methods are associated with objects. However, a method in
this paradigm is not a sequence of code; it is a set of formulas that must be satisfied when
the method is invoked. Inheritance allows re-use of appropriate methods, while adding,
or when necessary, overriding existing attributes, constraints, and methods allows new
information to be added. For example, the big cannibal MCP is modeled by adding a
new class of Big Cannibals that extends the original Cannibals class; a new constraint
is then added to this class so that whenever a big cannibal is on a boat, he is alone in the
boat. Gustafsson and Kvarnström show that all solvable MCP elaborations that McCarthy
proposed can be handled in their new paradigm.

Despite the trend toward larger benchmark problems, most axiomatizations that
formalists produce are still quite small. Gordon argues that for the broad domain of
reasoning about rational action (and a fortiori for the entire domain of commonsense
reasoning), it is unreasonable to expect that existing techniques will ever result in
comprehensive formalizations. He contends that the amount of research required to
correctly formalize even one basic concept is so large that the scope of the endeavor cannot
be supported by the AI community. This is, of course, close to the Cyc camp’s arguments.
But Gordon’s solution is quite different. He describes a method that he used to sketch out
a compendium of planning strategies. This method consists of four steps: first, collecting
strategies, using expert texts, interviews, and interpretive observation; second, translating
each strategy into a pre-formal representation, a stylized and restricted subset of English;
third, identifying the words and phrases corresponding to concepts that would need to be
formalized in a logical axiomatization; and fourth, organizing representational terms and
areas. For example, one warfare strategy identified is giving false information to one’s
enemy. Some of the concepts included in the pre-formal representation for this strategy are
adversarial relationships, cooperative plans, information, and false beliefs, concepts which
appear in other strategies not only in the domain of warfare, but also in the business world
and in the (anthropomorphized) animal kingdom.

Gordon has made contributions in both representation and methodology. He has
demonstrated how to collect and organize a large amount of commonsense information
in a relatively short period of time. His work is intentionally broad rather than deep.
Many of the representational terms he identifies will need to be further decomposed into
primitive concepts in a formal representation. Nevertheless, the expectation is that the pre-
formal representation will facilitate the development of the structure of the formal theory.
Moreover, converting a collection of facts in pre-formal representation into a formal theory
may be easier, or at least more principled, than the two techniques used today: sitting
down to write down in formal logic the commonsense facts one knows, or constructing
a microworld that corresponds to what one knows and subsequently axiomatizing that
microworld. For the domain of planning strategies, Gordon has transformed “what it is that
one knows” before one sets out to write formal axioms. His methodology should enable us
to make this transformation for other domains as well.

Because of the computational complexity of theorem proving, logicists have long been
concerned with the efficiency of their theories. This concern is evident in several of the
papers already discussed. For example, one of the motivations for Amir and Maynard-
Zhang’s subsumption architecture is divide-and-conquer: because each layer has fewer
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axioms, theorem proving is quicker. One goal of formal commonsense reasoning is making

reasoning more efficient by declaratively encoding heuristic information [25]. That is, it
should be possible to tell a planning system that one strategy is better than another. This
approach is explored in detail by Sierra-Santibáñez. She shows that a set of simple but
powerful meta-rules for action selection suffices to enable her program to find better plans
more quickly both in the blocks world and in a logistics domain.

Efficiency is also one of the motivating concerns of Benferhat, Kaci, Le Berre,
and Williams. They consider the problem of revising one’s beliefs as one gets more
information. While most algorithms for standard and iterated belief revision mandate
throwing out inconsistent information, Benferhat et al. propose a method to weaken
inconsistent information by turning a piece of inconsistent information into one disjunct
of a larger statement. This method turns out to be equivalent, but more efficient than, the
lexicographical approach, a coherence-based approach where an inconsistent knowledge
base is replaced by a set of maximally preferred consistent subbases [3,19].

4. Dedication

Ray Reiter (1939–2002) was one of the founding fathers of formal AI. A recipient of the
IJCAI Award for Research Excellence in 1993, he was widely recognized for his leadership
in the areas of deductive databases, logic programming, truth maintenance systems, and
temporal reasoning. His seminal work on default logic [37] along with the work of [29]
and [26] established the field of nonmonotonic reasoning.

Reiter extended and popularized the situation calculus, which prior to his work had
been widely considered to be too inexpressive to be useful. He used the situation calculus
and the concept of goal regression to provide one of the first comprehensive solutions to
the frame problem. In doing so, he jump-started a fruitful and active line of inquiry into
temporal reasoning. His recent book detailing this exploration, Knowledge in Action [38],
is an exemplar of the best work of foundationalist researchers: rigorous yet accessible;
formal yet grounded in application. He was a leader in the knowledge representation
community, helped establish the conferences on Principles of Knowledge Representation
and Reasoning, and chaired the first of those conferences in 1989. He was an active
participant in the Common Sense Symposia, and served as one of the program chairs of
Common Sense 2001, the symposium that gave rise to this special issue.

Ray Reiter’s memory lives on in all those in the AI community who knew him. His
influence lives on in the excellent group of Ph.D. students he advised, and in everyone who
reads his papers. He is sorely missed by all those he touched. We dedicate this issue to his
memory.
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