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Still Guarding Secrets after Years of Attacks, RSA Earns Accolades
for its Founders
By Sara Robinson

In the fall of 1976, three friends, all young faculty members
at the Massachusetts Institute of Technology, began working
on a new type of cryptographic scheme. The group soon
established a dynamic—Ron and Adi would come up with
ideas, and Len would try to shoot them down. Len was
consistently successful; late one night, though, Ron came up
with an algorithm that Len couldn’t crack. That algorithm—
named RSA for the three developers, Ronald Rivest, Adi
Shamir, and Leonard Adleman—remains unbroken to this day.

“It wasn’t clear that it would endure as long as it has,” Rivest
says. “It has a surprising amount of vigor.”

Like all practical cryptographic schemes, however, RSA
stands on mathe-matically shaky ground. Because its security
rests on unproven assumptions, RSA comes with no guarantee
that the secrets it guards will remain safe. Still, for close to
thirty years, although researchers have found weaknesses in
implementations of the algorithm, its core  has wea-thered
every attack the best minds of cryptography have devised.

The algor-ithm’s robustness, even in the absence of rigorous
proof, provides a sense of security, researchers say. “We kind
of chip at the sides, but no one has figured out how to get at the
heart of it,” says Dan Boneh, a professor of computer science at
Stan-ford University.

Meanwhile, RSA has come to play a central role in electronic communications. As the first example of what is known as a  public
key cryptosystem, and the only one that has stood the test of nearly 30 years of attacks, RSA has become the algorithm of choice
for encrypting Internet credit-card transactions, securing e-mail, and authenticating phone calls. This month, in recognition of the
theoretical and practical contributions of RSA, Rivest, Shamir, and Adleman will receive the Association for Computing
Machinery’s 2002 Alan Turing Award, among the highest honors in computer science.

Not surprisingly, the security of RSA has remained a focus of cryptographic research, both theoretical and practical. Some
researchers have emphasized the secure implementation of RSA, a fascinating topic in itself. Complexity theorists, on the other
hand, have directed their efforts to the theoretical underpinnings of RSA, and the strength of the assumptions on which its security
rests.

A Nucleus of an Idea

“We stand today on the brink of a revolution in cryptography.”
This was the opening sentence in a landmark 1976 paper (published in the IEEE Transactions on Information Theory) by

Whitfield Diffie and Martin Hellman, then of Stanford University. The development of computer networks, they wrote, “promises
effortless and inexpensive contact between people or computers on opposite sides of the world.” In this new world, sensitive
information would need to be encrypted before being sent, possibly to strangers. Existing methods of key exchange, courier or
registered mail, would no longer make sense.

The two computer scientists went on to propose a new method for secure key exchange, where all the necessary information for
the exchange is publicly available. Their key mathematical idea, using ideas from the fledgling field of complexity theory, was to
make use of a function that’s easy to compute in one direction but computationally hard to invert.

In a finite field with a fixed generator g, it’s easy to compute g raised to a power, but no known efficient algorithm, given an
element of the field, can figure out what power of g it is. Diffie and Hellman used this property as follows: In a finite field of q
elements with a  fixed generator g, each user i generates an  integer xi chosen uniformly at random from 0  to q – 1. The user keeps
xi secret but then computes yi = gxi mod q and places it in a public database. Then, if i and j want to exchange information, they
derive a cryptographic key from kij = gxi xj mod q. Since gxi xj =  yi 

xj = yj 
xi,  i and j can each compute kij, using his/her private key

and the other person’s public key, by exponentiating, which is com-putationally easy. But it seems that no other user can compute
the key without taking a discrete logarithm, which, with current algorithms, is not computationally feasible if the numbers chosen
are large enough.

Although Diffie and Hellman’s meth-od worked only for key exchange, not for the actual encryption of messages, they discussed

In the late 1970s, computer scientists Ronald Rivest (right) and Adi
Shamir (center), with number theorist Leonard Adleman (left), all then
at MIT, devised the public key encryption code that bears their initials
(and that has been in use ever since to secure electronic transactions).
The trio is shown here at CRYPTO ’82. Today, Rivest is still at MIT,
where he is the Viterbi Professor of Computer Science; Shamir is the
Borman Professor in the Applied Mathematics Department at the
Weizmann Institute, and Adleman is the Distinguished Henry Salvatori
Professor of Computer Science and a professor of molecular biology
at the University of Southern California. They will receive the ACM’s
A.M. Turing Award this month.
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the possibility that similar ideas might provide a secure public key encryption and authentication scheme. A public key
cryptosystem, they said, should consist of a public encryption scheme E and a private decryption scheme D, where D and E are
easy to compute, and such that for a message M, D(E(M)) = M = E(D(M)). It should also be the case that revealing E publicly
does not give outsiders an easy way to compute D.

Such a scheme would be useful not only for encrypting messages but also for authenticating them. If D is applied to a message,
Diffie and Hellman explained, anyone receiving the message can verify that it came from the holder of the private key by applying
E to it. The key (so to speak) to finding such a scheme, they said, is something they called a  trap-door one-way function, a function
that is easy to compute but hard to invert unless you know the secret—the trap door. They left it open for their colleagues at MIT
to find an example of such a function.

“Diffie and Hellman prompted a lot of people to ask themselves what they could do in this public key framework,” says Dan
Bernstein, a cryptographer at the University of Illinois, Chicago.

Congratulations, Ron!

One day in November, shortly after the Diffie–Hellman paper appeared, Rivest was reading it in his MIT office when Adleman
dropped by. Rivest launched into an enthusiastic description of the results, but Adleman was not at all impressed: “It sounded like
they’d solved some sort of engineering problem,” he says.

Adleman and Shamir had joined the MIT mathematics department earlier that
year, and Rivest had become a member of the computer science department two
years earlier. Although Rivest and Shamir were interested in cryptography and
Adleman was primarily a number theorist, the three had a common interest in the
budding field of computational complexity. Because MIT was (and still is)
divided into interdepartmental laboratories, the three had offices near each other.

“We were both friends and colleagues and we were always walking into each
other’s offices, hanging out, and going on ski trips,” Adleman remembers. “It

was a very collegial atmosphere.”
The Diffie–Hellman paper might have failed to captivate Adleman, but Rivest found an enthusiastic collaborator in Shamir. The

two cryptographers started tossing around ideas for a system that would satisfy the Diffie–Hellman specifications. They quickly
focused on number theoretic problems, Rivest says, following the ideas from the Diffie–Hellman paper, and with this they managed
to capture Adleman’s attention.

The trio soon settled into the dynamic that would be so productive. When Rivest or Shamir would come up with a new number
theoretic scheme, Adleman, usually after only a few minutes’ thought, would poke a hole in it.

Most of the proposals had flaws that were fairly obvious to a number theorist, Adleman recalls, although he singles out one, based
on low-dimensional lattice reduction, that kept him up for a night.

The fun continued for several months; Shamir and Rivest would toy with the problem over dinners at local restaurants, and on
group vacations to Vermont ski resorts. Public key cryptosystems were even the topic of conversation at a student’s Passover seder
in 1977.

Around midnight the evening of the seder, Rivest called Adleman with a new idea. It was immediately clear to Adleman that the
idea was a good one. “My response was ‘Congratulations, Ron, that should work,’ ” Adleman says. So far, it has.

“What resonated with RSA is that it didn’t look like anything other than factoring would break it,” Adleman says.
Rivest wrote up the paper and sent a copy to Adleman. The authors were listed in the usual alphabetical order: Adleman, Rivest,

Shamir. Adleman immediately objected that he hadn’t done enough to be included as an author, but Rivest disagreed. Remembering
the sleepless night he spent thinking about the lattice-reduction proposal, Adleman reconsidered. “I thought that was genuine
work—the rest was all observation,” he recalls.

Adleman agreed to be listed on the paper but insisted that his name be last, out of alphabetical order, to reflect what he saw as
a minimal contribution. “I remember thinking that this is probably the least interesting paper I will ever write and no one will read
it and it will appear in some obscure journal,” he says.

Adleman was wrong about two things: the interest the RSA paper would generate, and the nature of the journal that would publish
it. RSA was first presented to the public by Martin Gardner, in an article in Scientific American in August 1977. The paper written
by Rivest, Shamir, and Adleman appeared in Communications of the ACM later that year.

A slew of other proposals for public key cryptosystems followed publication of the RSA protocol. One of them, strangely enough,
was based on the lattice-reduction idea that Adleman had grappled with. Naturally, Adleman shot it down.

How RSA Works

In the RSA public key cryptosystem, the recipient of a message has a public encryption key, e, made available to everyone, and
a private key, d, that he keeps secret.

Suppose Alice wants to send Bob a secret message m. In RSA, Bob creates his public key e by choosing two large primes, P and
Q, at random and multiplying them together to get N. T o find large primes, he chooses the numbers at random and, using one of
several fast probabilistic methods, tests their primality. He then picks a number e that is relatively prime to Φ(N) = (P – 1)(Q – 1).
Bob’s private key d is the multiplicative inverse of e mod Φ(N).

The encryption–decryption protocols, then, are as follows. Bob publishes his public key e together with N. Alice encrypts the
message m by raising it to the eth power mod N and sends it to Bob. To decrypt the message, Bob takes

“What resonated with RSA is that it
didn’t look like anything other than
factoring would break it.”
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me mod N and raises it to the dth power mod N. By a theorem of Euler, for any a relatively prime to N, aΦ(N) ≅ 1 (mod N). Thus,
med (mod N) = m1(mod Φ(N)) = m.

The security of RSA rests on the assumption that it’s infeasible to
compute  d, given only e and N when N is large enough. The only known
way to break RSA, in general, is to compute P and Q  by factoring N, and
there are no efficient (polynomial-time) factoring algorithms.

Since the RSA encryption and decryp-tion algorithms are slow com-
pared with symmetric key cryptosystems, in which the encryption and
decryption keys are the same, RSA is not typically used to encrypt entire
messages. Rather, a symmetric key algorithm, such as AES (the Ad-
vanced Encryption Standard), is used to encrypt the message; RSA is then used to transfer the key to the symmetric cipher.

The Complexity of RSA: What Would It Take to Break It?

In their paper, Rivest, Shamir, and Adleman give proofs that finding the decryption exponent d or Φ(N) is at least as hard as
factoring N. What they were not able to show is that factoring N  is the easiest way to break their encryption scheme.

“It may be possible to prove that any general method of breaking our scheme yields an efficient factoring algorithm,” they wrote.
“We have not been able to prove this conjecture, however.”

Surprisingly, in the decades since RSA was introduced, no one else has been able to prove it, either. Nor has anyone been able
to prove that factoring is easy—the efforts of scores of researchers over 30 years have produced merely a series of hints and partial
results.

To be sure, the size of the numbers that can be factored has increased by leaps and bounds, due to algorithmic advances like the
number field sieve and the inexorable advance of computer hardware technology. Even so, if N is chosen large enough (1024 bits
is the current standard), breaking RSA via factoring remains out of reach.

The Diffie–Hellman paper came on the heels of work that launched the field of computational complexity theory, the study of
the computational hardness of problems. In 1971, Stephen Cook, now a professor of computer science at the University of Toronto,
defined a large class of problems that he called NP (for non-deterministic, polynomial-time); intuitively speaking, these are
problems for which the correctness of a candidate answer can be quickly checked, but for which there are often exponentially many
instances to check. NP contains P, the class  of problems for which there are “fast,” polynomial-time algorithms.

Cook’s definition emerged from his proof that “satisfiability,” a well-known computational problem, is at least as hard as any
problem in NP. Specifically, he showed that any fast algorithm for the satisfiability problem can be converted into a fast algorithm
for any problem in NP.

Richard Karp of the University of California at Berkeley then demonstrated that a number of other well-known problems, which
he named NP-complete problems, also share this property.

Factoring, however, was and is not among the problems believed to be NP-complete. Until 1994, when Peter Shor of AT&T Labs
devised a polynomial-time algorithm for factoring on a quantum computer (a machine that still doesn’t exist at a practical scale),
there was no known efficient algorithm for factoring. A year later, a group of computer scientists showed that solution of NP-
complete problems on a quantum computer is unlikely. This and other results in complexity theory suggest that factoring is easier
than the satisfiability problem. Breaking RSA by factoring could thus be feasible, even if P ≠ NP.

There are also indications that cracking RSA may be easier than factoring. In 1998, Dan Boneh, with Ramarathnam Venkatesan
of Microsoft Research, showed that it’s not possible, using only algebraic steps, to convert an efficient algorithm for computing
eth roots mod N  into an efficient algorithm for factoring N.

Since RSA is not necessarily as hard as factoring, which seems likely to be easier than the NP-complete problems, it seems as
if it would be safer to build a cryptosystem on a problem that, like satisfiability, is known to be as hard as any problem in NP. But
applying the theory of NP-completeness to cryptography is tricky.

Diffie and Hellman referred, in their paper, to the classes P and NP and noted that ideally, a public key cryptosystem should be
based on a problem known to be NP-complete. But they cautioned that  conventional complexity the-ory categorizes problems by
their worst-case hardness, whereas for a public key cryptosystem, the underlying problem has to be hard in the typical case. Thus,
a cryptosystem based on a typical NP-complete problem could have the very undesirable property that 90% of the keys are easy
to break. It’s not necessarily the case, then, that NP-complete problems yield secure cryptosystems.

Still, Diffie and Hellman pointed out that the knapsack problem (given a set S of n integers and an integer y, find a subset of S
that sums to y), which Karp showed to be NP-complete, appears to be hard in the average case and suggested it as a candidate for
a public key cryptosystem. Indeed, after RSA was published, several researchers came up with cryptosystems based on the knapsack
problem. Unfortunately, none of them held up: The number theoretic glue used to convert the results into cryptosystems was too
weak.

Complexity theorists have demonstrated that the existence of trap-door one-way functions is a stronger assumption than P ≠ NP,
which means that the notion of secure public key cryptography could turn out to be nothing more than wishful thinking.

And yet provable security is not always a good thing. Michael Rabin of Harvard University designed a crypto-system that is
provably equivalent to factoring. The system isn’t practical, however, in that cracking a single encrypted message allows an
eavesdropper to factor N, and thus to read all other messages encrypted with the same key.

Even if an implementation holds up
under mathematical attacks,
a wily eavesdropper can get information
about RSA keys by other means.
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Theory Versus Practice

As complexity theorists have pondered the hardness of RSA and factoring, cryptographers have been working on another aspect
of RSA security: how it can be safely used in practice.

Boneh of Stanford calls RSA, as defined by its founders, “textbook RSA.” “Textbook RSA isn’t secure in practice,” he points
out, citing the following attack:

Suppose Bob has a public key (e, N), N = PQ, where N is 1024 bits, and imagine that Alice wants to send him a 64-bit message
M. Alice computes Me mod N and sends it. Alice’s message happens to be the product of two integers, M1 and M2, each less than
34 bits long (which is true about 20% of the time). A clever eavesdropper, let’s call her Eve, can then guess M by trying far fewer
than all 264 possibilities.

Clever Eve, realizing that

          C = Me = M1
e   M2

e (mod N),

             
1
e

C

M   =  M2
e (mod N),

makes a table of all possible

                                                                                           
1
e

C

M

for all possible M1 between 1 and 234. She does this in time 234. She then computes all possible values of M2
e (in time 234) and, by

sorting, checks to see if any of those values are in her table (sorting time is proportional to 34 . 234). The total time is still less than
240, which is far less than 264, the time needed to test all possibilities for the message M.

To protect against such attacks, implementations of RSA do some preprocessing of the message before applying the “textbook”
algorithm. One common method, called PKCS1, applied RSA to a block of bits consisting of the digits 02 (to identify it as an RSA-
encrypted string), followed by a random pad, and then the message. By elongating the message, PKCS1 thwarted the above attack.
But in 1998, Daniel Bleichen-bacher of Bell Labs found a weakness in this method as well.

The problem was the 02 identifier that appeared at the beginning of each RSA string. When the server decrypted the string and
didn’t see an 02, it would send back an error message, giving the sender information about the decrypted string. Bleichenbacher
was able to show that by repeatedly querying the server (several million times) with random integer multiples of the string, it is
possible to decrypt the entire RSA message.

This vulnerability could easily be fixed by limiting the number of such queries to the server. But what about similar attacks?
Fortunately, in the early 1990s, Mihir Bellare of the University of California at San Diego and Phil Rogaway  of the University of
California at Davis had published an efficient method, known as OAEP,  for preprocessing RSA messages; they showed that, under
some assumptions, the method resists a large class of attacks, including that of Bleichen-bacher. (Another method, by theoretical
computer scientists Danny Dolev of Hebrew University, Cynthia Dwork of Microsoft Research, and Moni Naor of the Weizmann
Institute, is provably secure with no assumptions, although it is inefficient.) Following the 1998 attack, OAEP became the standard
in practice.

Researchers have also found that the size of the encryption and decryption keys can affect RSA’s security. RSA runs faster when
the keys, particularly the decryption key, are small.  But a series of results gives bounds for d below which RSA is insecure. Most
recently, Boneh and Glenn Durfee of the Palo Alto Research Center showed that it’s possible to break RSA if d < N.292; researchers
conjecture that any d < N.5 is unsafe.

Even if an implementation holds up under mathematical attacks, a wily eavesdropper can get information about RSA keys by
other means. In a series of results, Paul Kocher, who owns a San Francisco-based computer security firm, has shown that RSA can
be broken by timing the decryption of a message or by measuring the power used by the device decrypting the message. Recent
implementations of RSA protect against such attacks as well.

Afterword

RSA’s success bears two important lessons for readers: If Ron Rivest comes to you with an engineering problem, listen, and if
he wants to put your name first on the resulting paper, let him. “ARS sounds better and better to me now,” Adleman quips.

Sara Robinson is a freelance writer based in Pasadena, California.


