
College of Computer & Information Science CS1800
Northeastern University Discrete Structures

The RSA (Rivest-Shamir-Adelman) cryptosystem

1 Introduction

The RSA cryptosystem is a public-key cryptosystem, widely used for secure communication and
e-commerce applications. It is often used to encrypt messages sent between two communicating
parties so that an eavesdropper who overhears the conversation cannot decode them easily. It also
enables a party to append an unforgeable signature to the end of a message. This signature cannot
be ”easily” forged and can be checked by anyone.

2 How do public-key cryptosystems work?

Consider our protagonists Alice and Bob who want to communicate with each other securely.
Suppose Bob wants to send a message to Alice. In a typical public-key cryptosystem Alice has two
keys, a secret (or private) key that only Alice knows and a public key that Alice advertises to the
whole world. Each key yields a function that map a message to another message: the public key
yields a public encryption function – let us call it PA – and the secret key yields a secret decryption
function SA. A typical message exchange proceeds as follows.

Bob encrypts his message M using PA and sends the message PA(M) to Alice.

If Alice receives PA(M), she applies SA and obtains SA(PA(M)) = M .

So we want two functions SA and PA such that SA(PA(M)) = M , for all permissible messages
M . Furthermore, our selection of SA and PA should be such that any eavesdropper, who can read
message PA(M), cannot “efficiently” extract M from this; or, ideally, cannot “efficiently” extract
any reasonable information from this.

3 Diffie-Hellman secret-key sharing protocol

Diffie-Hellman was published in 1976 by Stanford Electrical Engineering Professor Martin Hellman
and Whitfield Diffie, his graduate student. Later it emerged that the idea had already been discov-
ered by Malcolm Williamson of GCHQ (the British NSA). The Diffie-Hellman scheme is a brilliant
breakthrough enabling the sharing of secrets in public.

We will develop the Diffie-Hellman idea as a natural progression of ideas we have already seen. The
goal is to develop an encryption scheme where the the method of encryption can be made entirely
public without revealing the decryption scheme. We first saw the shift cipher. The shift cipher is
basically addition modulo n. However, if the shift is made public then the decryption scheme is also

1



revealed because the additive inverse modulo n is easy (trivial) to calculate. Then we saw the linear
cipher which uses multiplication. Here, if the multiplier is made public then too the decryption
scheme is revealed because the Extended Euclid Algorithm allows us to efficiently calculate the
multiplicative inverse modulo n. The natural next step is then to look at exponentiation and this
is the core of Diffie-Hellman. There is no known easy way to compute the “exponential inverse”
modulo n more formally known as the discrete log.

The basic Diffie-Hellman protocol is as follows: Alice and Bob jointly choose and publicly announce
a prime p and a generator g. (A generator is a number in 1 . . . p− 1 such that gk mod p is different
for each k in 1 . . . p − 1). They independently choose secrets a and b respectively. Then they
exchange the exponentials, i.e. Alice sends ga mod p to Bob while Bob sends gb mod p to Alice.
Voila! Alice and Bob both possess the secret gab mod p (Alice takes the gb mod p Bob sent her and
raises it to the power of her secret a while Bob takes ga mod p and raises it to the power of his
secret b) while any eavesdropper has no knowledge of gab mod p.

The Diffie-Hellman protocol can be used to implement a public key cryptosystem as follows. Alice
advertizes (g, p, ga mod p) as her public key. To send a message M , Bob chooses a random b, and
sends the pair (gb mod p, M ′), where M ′ is obtained by encrypting M using the key gab mod p (for
example by doing a bit-wise XOR of M and the key).

4 How does RSA work?

RSA, due to Ronald Rivest, Adi Shamir, and Leonard Adelman, is the most popular public key
cryptosystem today, widely used in commercial applications. The basic RSA cryptosystem is com-
pletely specified by the following sequence of steps.

1. Alice selects at random two large primes p and q.

2. Alice computes n = pq.

3. Alice selects a small odd integer e that is relatively prime to (p − 1)(q − 1).

4. Alice sets d so that de mod (p − 1)(q − 1) equals 1.

5. Alice publish the pair (e, n) as the public key, with PA(M) = M e mod n.

6. Alice stores the pair (d, n) as the secret key, with SA(E) = Ed mod n.

In order to send message M in {0, 1, . . . , n− 1}, Bob sends PA(M) = M e mod n. On receiving the
encrypted message Alice computes SA(PA(M)) = Mde mod n. Our choices of d, e, and n ensure
that Mde mod n equals M .

To see the last step, we need to understand the mathematical underpinnings of RSA, which we will
do so in Section 5. But first, let us do a couple of examples. Take

p = 5, q = 3;n = 5 · 3 = 15; (p − 1)(q − 1) = 4 · 2 = 8; e = 3.

We need to find the multiplicative inverse of 3 mod 8. Well, 3 · 3 = 9 mod 8 = 1. So d = 3.

2



Here is another example. Suppose we take

p = 7, q = 11;n = 7 · 11 = 77; (p − 1)(q − 1) = 6 · 10 = 60; e = 13.

What is d? Note that d is the multiplicative inverse of e mod 60. We can calculate it using the
Extended Euclid algorithm to obtain 37; you can verify that 37 · 13 mod 60 = 1.

Suppose the message M = 2. Then the encrypted message is 213 mod 77. We calculate it as follows:

22 mod 77 = 4
24 mod 77 = 16
28 mod 77 = 256 mod 77 = 25

213 mod 77 = (25 · 16 · 2) mod 77 = 800 mod 77 = 30.

To decrypt, Alice computes 3037 mod 77, which can be calculated as follows.

302 mod 77 = 900 mod 77 = 53
304 mod 77 = 532 mod 77 = 2809 mod 77 = 37
308 mod 77 = 372 mod 77 = 1369 mod 77 = 60

3016 mod 77 = 602 mod 77 = 3600 mod 77 = 58
3032 mod 77 = 582 mod 77 = 3364 mod 77 = 53
3037 mod 77 = (3032 · 304 · 30) mod 77 = (53 · 37 · 30) mod 77 = 2.

5 Why does RSA work?

This portion of the notes is outside the scope of this course. While we will go over parts of this
material, you are not expected to master these contents. We do hope that it piques your interest
enough to read and explore more.

We can prove that RSA works by showing that for any M in {0, . . . , n− 1}, the following equation
holds.

Mde mod n = M (1)

We establish the above Equation using a nice theorem due to the French mathematician Pierre
Fermat, called Fermat’s Little Theorem.

Theorem 1 Fermat’s Little Theorem If p is prime, then for all 1 ≤ a < p, we have

ap−1 mod p = 1.

Proof: Consider a · x and a · y for x 6= y, 1 ≤ x, y < p. We claim they are different modp since
otherwise, p divides a or x− y, both not possible. So, a · 1 mod p, a · 2 mod p, . . . , a · (p− 1) mod p
are all different numbers in {1, 2, ..., p − 1}. Thus, we have

(a · 1) · (a · 2) · · · (a · (p − 1)) = ap−1 · (p − 1)! = (p − 1)! mod p.

3



Thus, p either divides ap−1 − 1 or divides (p − 1)!. The latter is not possible, hence the claim.
We now establish Equation 1. Recall that de mod (p − 1)(q − 1) = 1. So de = k(p − 1)(q − 1) + 1
for some integer k. We will show that M (p−1)(q−1) mod n is equal to 1. Note that this immediately
implies that Mde mod n = M .

We consider two cases. In the first case, M is relatively prime to both p and q; in the second, M
has a common factor with either p or q.

1. Let us consider the first case. By Fermat’s Little Theorem, we know that Mp−1 mod p = 1
and M q−1 mod q = 1. Therefore, we have M (p−1)(q−1) mod p and M (p−1)(q−1) mod q are both
1. Thus, M (p−1)(q−1) is of the form k1p + 1 as well as of the form k2q + 1 for some integers
k1 and k2. This implies that k1p = k2q; since p and q are different primes, this can hold only
if k1 is a multiple of q and k2 is a multiple of p. It thus follows that M (p−1)(q−1) is of the
form kpq + 1 = kn + 1 for some integer k. In other words, M (p−1)(q−1) mod n equals 1. This
completes the proof for the first case.

2. We now consider the case where M shares a common factor with either p and q. In this
case, M is a multiple of p or q. Suppose, without loss of generality M = kp for some
integer k. Let us consider what Mde mod p and Mde mod q are. Since M is a multiple of p,
Mde mod p = 0. So Mde is a multiple of p. We now calculate Mde mod q as follows. Since
M < n, it follows that k < q; so M is relatively prime to q. By Fermat’s Little Theorem, we
then have M q−1 mod q = 1. Therefore, we also have M (p−1)(q−1) mod q = 1, implying that
Mde mod q = M mod q. We thus have

Mde mod p = 0;Mde mod q = M mod q.

Let M1 denote Mde mod pq. It follows that

M1 mod p = 0;M1 mod q = M mod q.

Thus M1 is of the form `p for some integer ` < q. But since q divides M −M1 = (k − `)p for
nonnegative integers k, ` < q, it follows that k = `, implying that M1 = M .

We have thus shown that the decryption function of RSA, when applied to an encrypted message,
yields the original unencrypted message as desired.

6 Is RSA secure and efficient?

What are the individual steps in RSA? Which of these can be executed efficiently? How secure is
RSA? Here is a brief discussion on the efficiency and security of RSA.

• Generating two large random primes: How do we perform this? Well, one way to do it is to
generate a random number and then test whether it is prime. How do we test whether it is
prime? Our naive scheme (that works in time proportional to the square root of the number)
is too slow and inefficient. Fortunately, there are faster, efficient, ways to do it.

4



• We need to raise a number to a (potentially) large power in modular arithmetic. We have
seen how to do this efficiently using the repeated squaring method.

• We also need to find a multiplicative inverse in modula arithmetic. This can be done efficiently
using the Extended Euclid Algorithm.

• We do not want the number n (used in the RSA private and public key) to be easily factored
into its prime factors p and q. A naive algorithm takes time proportional to the square root
of n. Fortunately, there is *no* efficient way known for this problem.

• As stated, RSA is a deterministic encryption system; i.e., a particular message is encrypted
the same way every time. This is prone to easy attacks, referred to as plaintext attacks,
where the attacker may be aware that the message being sent is one of a small number of
possibilities, and can try the public encryption system with different possibilities. One way
to avoid this attack, is making the system randomized – for instance by adding a fixed-size
random pad to the plaintext message and encrypting the padded message. The random pad
is chosen independently at every step, thus making the above plaintext attack more difficult.

5


