
LINEAR COMPLEXITY OF TRANSFORMED SEQUENCES

Harriet J. Fell1

College of Computer Science, Northeastern University
Boston, Massachusetts 02115 USA

Abstract:

This paper deals with the effect of bit change errors on the linear complexity of finite
sequences. Though a change in a single bit can cause a large change in linear complexity,
it is shown that on the average the change will be small even when many bits, e.g. 10%,
are changed. General bijections on the set of sequences of length n are studied and tight
bounds are found on the average difference in linear complexity between a sequence and
its image. It is also shown that to change all sequences of length n into sequences with
linear complexity less than c(n) where limn→∞ c(n)/n = 0, at least n−1

n
2n of the sequences

must have close to half of their bits changed.

1 Introduction

The linear complexity of a finite sequence can change drastically if a single bit is changed or
deleted. For example, the sequence 0, 0, . . . , 0, 1 of length n has maximal linear complexity,
n, while deleting the last bit or changing it to a 0 results in a sequence of linear complexity
0. A shift register that generates a given sequence can be found, with Λ2 operations, after
seeing only 2Λ bits where Λ is the linear complexity of the sequence [2], so sequences
of low linear complexity are not cryptographically secure. At the Workshop on Stream
Ciphers, at Karlsruhe, Germany, January 9-12, 1989, W. Diffie suggested that for many
finite sequences, it might be possible to find small linear feedback shift registers (LFSRs)
that generate nearby sequences. That is, if we can tolerate some errors, we might find it
easy to generate a sequence close enough to a given sequence for cryptanalytic purposes.

In this paper, we look at functions that take sequences of length n into sequences of
length n and study the average difference in the linear complexity of a sequence and its
image. We then apply these results to analyze the average change in linear complexity
when errors, caused by changed bits, are introduced into a sequence.

1This work was supported in part by The Institut National de Recherche en Informatique et en
Automatique, Rocquencourt, France.

1

2 Notation

We restrict our attention to sequences over the field with two elements, Z2. Let
Sn = {0, 1}n be the set of all sequences of zeros and ones of length n. If sεSn then
s = s1, s2, . . . , sn where each si, {i = 1, . . . , n} is either 0 or 1. We assume that si, 1 ≤
i ≤ n are uniformly and independently distributed random variables, so that all sεSn are
equiprobable.

An infinite sequence s = {si}i=1...∞ is said to be generated by an LFSR of length k if
there exist constants a0, . . . , ak−1 such that

si+k = ak−1si+k−1 + . . .+ a1si+1 + a0si for i ≥ 1

For sεSn we define the linear complexity, Λ(s), to be the length of the smallest LFSR
that generates a sequence whose first n terms are s1, s2, . . . , sn. If k ≤ n, we will use Λk(s)
to denote the linear complexity of the sequence, s1, s2, . . . , sk.

If s, tεSn, we define ∆(s, t) = |Λ(s)−Λ(t)| and for 1 ≤ k ≤ n,∆k(s, t) = |Λk(s)−Λk(t)|.

3 Changing a Bit and Other Bijections

The drastic increase in linear complexity caused by changing the last bit of a sequence
of n zeros brings up the question of the general effect of a single bit change on the linear
complexity of a finite sequence.

Fix an integer k, 1 ≤ k ≤ n and for each sεSn, let s̃kεSn be the sequence obtained
from s by changing the kth bit, i.e. s̃kk = 1− sk and s̃ki = si, for i = 1 . . . n, i 6= k. Define

k

∆ (n) =
1

2n−1

∑
sεSn,sk=0

| ∆(s, s̃k) | . (1)

This is the average change in linear complexity caused by a change in the kth bit. Although
a change in the nth bit can cause a severe change in linear complexity, theorem 3.1 states
that on the average, the change is close to one. We first present two lemmas that will be
used in in the proof of this theorem and in later sections.

Lemma 3.1 Let sεSn and let s̃n be defined as above, then ∆(s, s̃n) =| Λ(s) − Λ(s̃n) | is
given by

∆(s, s̃n) =

{
0 ifΛn−1(s) = Λn−1(t) ≥ n

2

n− 2k ifΛn−1(s) = Λn−1(t) = k < n
2

.

Proof: This result is due to Massey, [2].

Lemma 3.2 The distribution of Λ(s), sεSm is given by

card{s : Λ(s) = k} =

1 k = 0
2 · 4k−1 k ≤ m/2
4m−k k > m/2

.

Proof: This result follows, by induction, from lemma 3.1. It appears in a slightly different
form in Rueppel, [3, page 36].

2

Theorem 3.1 The average change in the linear complexity of a n-bit string caused by a
change in the last bit is given by

n

∆ (n) =

8
9

+ 3n−4
9·2n−1 −→ 8

9
n even

10
9

+ 3n−4
9·2n−1 −→ 10

9
n odd

.

Proof: From definition (1), we have

n

∆ (n) =
1

2n−1

∑
sεSn,sn=0

| ∆(s, s̃n) | .

Lemma 3.1 implies that ∆(s, s̃n) depends only on Λn−1(s) so

n

∆ (n) =
1

2n−1

∑
0≤k<n

2

(n− 2k)card{sεSn, sn = 0 | Λn−1(s) = k}

and applying lemma 3.2 with m = n− 1, yields

n

∆ (n) =
1

2n−1

[
n · 1 +

M∑
k=1

(n− 2k)(2 · 4k−1)

]

where M = n
2
− 1 when n is even and M = n−1

2
when n is odd. Observing that

M∑
k=1

4k−1k =
(3M − 1)4M + 1

9
(2)

we have,

n

∆ (n) =
1

2n−1

[
n + 2n

(
4M − 1

3

)
− 4

(
(3M − 1)4M + 1

9

)]
.

Finally, substituting the appropriate values for M gives the desired results.

2

Having found the average change in linear complexity caused by changing the last bit
of a sequence of n zeros, we now look, more generally, at the average change when the kth

bit is changed, 1 ≤ k ≤ n. Changing the kth bit (or m bits in fixed positions) induces a
bijection on Sn. Given a bijection, ϕ : Sn −→ Sn, we denote by ∆ϕ, the average value of
| Λ(s)−Λ(ϕ(s)) |. We then obtain an upper bound on ∆ϕ which serves, also, as an upper
bound on the average change in linear complexity caused by flipping the kth bit.

Theorem 3.2 Let ϕ : Sn −→ Sn be a bijection. Then the average value, ∆ϕ, of
| Λ(s)− Λ(ϕ(s)) | is bounded above by

4
3
− 1

3(2n−2)
n even

5
3
− 1

3(2n−2)
n odd.

For each n, there exists a bijection that attains this bound.

3

Proof: The average of the absolute value of the differences in linear complexity between
s and ϕ(s) is given by

∆ϕ =
1

2n
∑
sεSn

| Λ(s)− Λ(ϕ(s)) |

≤ 1

2n
∑
sεSn

(
| Λ(s)− n

2
| + | Λ(ϕ(s))− n

2
|
)
.

=
1

2n−1

∑
sεSn

| Λ(s)− n

2
|

since ϕ is a bijection. So we evaluate the sum

S ≡
∑
sεSn

| Λ(s)− n

2
| .

From the distribution of linear complexity, (lemma 3.2), we see that if n is even,

S =
n

2
+

n/2∑
k=1

2 · 4k−1(
n

2
− k) +

n∑
k=1+n/2

4n−k(k − n

2
)

and if n is odd,

S =
n

2
+

(n−1)/2∑
k=1

2 · 4k−1(
n

2
− k) +

n∑
k=(n+1)/2

4n−k(k − n

2
).

Let us first consider n even. Replacing n−k+ 1 with k in the last sum and combining
terms yields

S =
n

2
+

n/2∑
k=1

4k−1
(

(1 +
3n

2
)− 3k

)
=

2

3
(2n − 1).

and finally,

∆ϕ ≤
S

2n−1
=

4

3
− 1

3 · 2n−2
.

A similar calculation yields the result for n odd.
To construct a bijection, ϕ, that obtains the upper bound, start with the sequences of

highest and lowest linear complexity, working inward, and always choosing for an image
the sequence most distant in linear complexity and not yet used. By the above proof ϕ
attains the maximum value for ∆ϕ.

2

4

4 Other Bit Change Functions

A bijection on Sn will take some strings to images of lower linear complexity, but others
will have images with higher linear complexity. An algorithm which, given a string, sεSn,
tries to produce a sequence, of “low” linear complexity, that differs from s in only a small
percentage of its bits, should not be a bijection. Ideally, bits will only be altered when
the change results in a string of lower linear complexity. In general, such an algorithm
will induce a function ϕ : Sn → Sn but ϕ will not be a bijection. Here, we first consider
such functions ϕ with the restriction that ϕ transforms only a bounded number of strings
to the same image string, e.g. functions that alter no more than k fixed bits. This leads
to upper bounds similar to those in the previous section. We then consider functions
on strings subject to the condition that the linear complexity of all the image strings be
“low”. Our final result shows that, under this condition, there must be strings that have
“many” bits changed by the function.

Theorem 4.1 Let 0 ≤ k ≤ n and let ϕ be a function, ϕ : Sn → Sn such that
card{ϕ−1(s)} ≤ 2k for all sεSn. Then an upper bound for ∆ϕ is given by

∆ϕ ≤
k

2
− 1 + 2k

3 · 2n−1
+

4/3 n even k even
3/2 n odd k odd
3/2 n even k odd
5/3 n odd k even

.

For each n and k, there exists a function, satisfying the conditions above such that ∆ϕ

attains this upper bound.

Proof:
As in the analysis of bijections, we have

∆ϕ ≡
1

2n
∑
sεSn

| Λ(s)− Λ(ϕ(s)) |

≤ 1

2n
∑
sεSn

(
| Λ(s)− n

2
| + | Λ(ϕ(s))− n

2
|
)

=
1

2n
∑
sεSn

| Λ(s)− n

2
| + 1

2n
∑
sεSn

| Λ(ϕ(s))− n

2
| .

The analysis for bijections gives an upper bound on the first of these sums so we have,

∆ϕ ≤
1

2n
∑
sεSn

| Λ(ϕ(s))− n

2
| − 1

3 · 2n−1
+

{
2/3 n even
5/6 n odd

. (3)

5

Now we must find an upper bound for

S =
∑
sεSn

| Λ(ϕ(s))− n

2
|

=
n∑
j=0

| n
2
− j | card{ϕ(s) | Λ(ϕ(s) = j}.

This will be maximal when the image values, Λ(ϕ(s)) are as far as possible from n
2
. Since

each s can have up to 2k pre-images, we start with the elements of Sn whose linear
complexity is farthest from n

2
, assuming each has 2k pre-images until we have enough

pre-images to cover the 2n elements of Sn, so by lemma (3.2) we obtain:

n− k odd:

S ≤ 2k

n
2

+
n

2
+

M∑
j=1

(
n

2
− j)(2 · 4j−1 + 4j)

with M = n−k−1

2
as for this value of M ,

2k

1 + 1 +
M∑
j=1

(2 · 4j−1 + 4j)

 = 2n

so that we have used all 2n sequences in Sn as pre-images. Regrouping terms, we now
obtain

S ≤ 2k

n +
M∑
j=1

3

2
4j(

n

2
− j)

= 2k
[
n +

3n

4

(
4M+1 − 4

3

)
− 2

(
(3M − 1)4M + 1

3

)]
.

By substituting M = n−k−1
2

and reducing we obtain

S ≤ 2k
[
n + n(2n−k−1 − 1) − 2

3

((
3(n− k − 1)

2
− 1

)
2n−k−1 + 1

)]

= 2k
[
2n−k−1(k +

5

3
) − 2

3

]
and dividing by 2n yields

S

2n
≤ 1

2
(k +

5

3
) − 2k

3 · 2n−1
=
k

2
+

5

6
− 2k

3 · 2n−1
.

6

n− k even:

S ≤ 2k

n
2

+
n

2
+

M−1∑
j=1

(
n

2
− j)(2 · 4j−1 + 4j)

 + (
n

2
−M)

(
2 · 4M−1

)
with M = n−k

2
as for this value of M ,

2k

1 + 1 +

n−k

2
−1∑

j=1

(2 · 4j−1 + 4j)

 + 2 · 4
n−k

2
−1

 = 2n.

Regrouping terms, we now obtain

S ≤ 2k

n +

M−1∑
j=1

3

2
4j(

n

2
− j)

 + 22M−1(
n

2
− M)

= 2k
[
n + 22M−1(

n

2
−M) +

3n

4

(
4M − 4

3

)
− 2

(
(3M − 4)4M−1 + 1

3

)]
.

By substituting M = n−k
2

and reducing we obtain

S ≤ 2k
[
2n−k−2(2k +

8

3
) − 2

3

]
and dividing by 2n yields

S

2n
≤ k

2
+

2

3
− 2k

3 · 2n−1
.

Finally, substituting these upper bounds into the inequality (3) gives the desired
results.

As in the case of a bijection, we can construct a function, ϕ : Sn → Sn that satisfies the
conditions of the theorem and attains the upper bound by starting with those elements of
Sn which have highest and lowest linear complexity, working inward and always choosing
for an image the element of Sn which is still available and maximizes the difference in
linear complexity. The only difference is that each element of Sn can be used as an image
2k times. The following table shows how to construct this function when n = 6 and
k = 2. Each string can have 4 pre-images. The table says that the unique string of linear
complexity 6 and ant three of those with linear complexity 5 should be mapped to the
string with linear complexity zero. The average change, ∆ϕ = 2.28125, as the theorem
states.

7

Λ card{s | Λ(s) = Λ} Λ∗ card{s′ | Λ(ϕ(s′)) = Λ
and Λ(s′) = Λ∗}

0 1 6 1
5 3

1 2 5 1
4 7

2 8 4 9
3 23

3 32
4 16
5 4 3 9

2 7
6 1 2 1

1 2
0 1

2

Theorem 4.2 Given c(n), 0 < c(n) < n
2
, there exists a largest µ, 0 < µ < 1, such that

there are at least n−1
n

2n sequences for which at least a fraction of µ bits must be changed
to get a sequence with linear complexity less than c(n). The fraction µ is a function of n

and c(n). If limn→∞
c(n)
n

= 0 (e.g. if c ≤ p(log2(n)) for a polynomial, p) then µ converges
to 1

2
as n→∞.

Proof:
Let M(µ, n) be the number of sequences in Sn within Hamming distance µn of a fixed

string, sεSn. Then, for 0 < µ < 1/2,

M(µ, n) =
bµnc∑
k=0

(
n
k

)
≤ 2nH2(µ) (4)

where H2(x) = −x log2(x)− (1−x) log2(1−x) is the entropy function, (MacWilliams and
Sloane, [1, page 310]).

The number of sequences in Sn with linear complexity less than c(n) is given by:

1 +
c(n)∑
k=1

2 · 4k−1 = 1 + 2

(
22c(n) − 1

3

)
=

1 + 22c(n)+1

3
≤ 22c(n)+1.

8

In order to change 2n

n
of the sequences in Sn to sequences of linear complexity less

than c(n) by altering at most µn bits of each sequence, we must have:

22c(n)+1M(µ, n) ≥ 2n

n
.

Hence M(µ, n) must satisfy

M(µ, n) ≥ 2n−log2(n)

22c(n)+1
= 2n − log2(n) − 2c(n) − 1.

Substituting the upper bound from (4), we have

2nH2(µ) ≥ M(µ, n) ≥ 2n − log2(n) − 2c(n) − 1.

Comparing the exponents, we see that

H2(µ) ≥ 1− log2(n) + 2c(n) + 1

n
.

So H2(µ)→ 1 and hence, µ→ 1
2

as n tends to infinity, (MacWilliams and Sloane [1, page
308]).

2

5 Conclusion and Future Work

The results of this paper tell us two things, of cryptographic importance, about the
difference in linear complexity of strings and their neighbors vis-à-vis Hamming distance.

1: For large n there are strings in Sn which are cryptographically secure in the sense
that they are far, in Hamming distance, from any string of “low” linear complexity.

2: There are enough such secure strings that we cannot expect to find an algorithm
which for “most” strings produces nearby strings (in Hamming distance) of “low” linear
complexity.

This suggests the following paths for future investigation:

1. Classify those sequences which are close (in Hamming distance) to sequences of
“low” linear complexity. The results of this paper put bounds on how many such
sequences there are but do not indicate what they look like.

2. Study the effect of synchronization errors on the linear complexity of sequences. We
say that two sequences are k − close if one can be obtained from the others by a
sequence of no more then k errors where we now include added and lost bits as
well as changes of bits. A sequence is k-close to many more sequences than it is
within k of in Hamming distance. Theorem 6.2 does not immediately generalize in
a useful way. As with Hamming distance, we should classify those sequences which
are k-close to sequences of “low” linear complexity.

3. Answer these questions for “practical” sequences, e.g. those that can be generated
by nonlinear registers of acceptable size.

9

References

[1] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
North-Holland Mathematical Library, Amsterdam, 1977.

[2] J. M. Massey. Shift-Register Synthesis and BCH Decoding. IEEE Trans. Information
Theory 15, 122-127 (1969).

[3] R. A. Rueppel. Analysis and Design of Stream Ciphers. Springer, Berlin,1986.

10

