Lecture 3 - Regular Languages, Operations, Expressions

Formal Definitions

A language over alphabet Σ is any subset of Σ^* .

Deterministic Finite Automata A *finite automaton* is 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*.
- 2. Σ is a finite set called the *alphabet*.
- 3. $\delta: Q \times \Sigma \to Q$ is the *transition function*.
- 4. q_0 is the *start state*.
- 5. $F \subseteq Q$ is the set of accept states.

Give the formal definition of some of these machines, $M1 \cdots M8$.

Formal Definition of Computation

A finite automaton $M = (Q, \Sigma, \delta, q_0, F)$, **accepts** a string $w \in \Sigma^*$, $w = w_1 w_2 \dots w_n$ if there is a sequence of states r_0, r_1, \dots, r_n in Q such that

1. $r_0 = q_0$. 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots, n-1$, and 3. $r_n \in F$.

A language is a *regular language* if some finite automata recognizes it.

Try to design DFAs that recognize the languages described below.

alphabet $\Sigma = \{m, n, o\}, \mathbf{L1} = \{mom\}$

alphabet $\Sigma = \{0, 1\}$ **L2** = $\{s \in \Sigma^* \mid 000 \text{ is a substring of } s\}$

alphabet $\Sigma = \{a, b\}$ **L3** = { $w \in \Sigma^* \mid w$ does not end with bb}

alphabet $\Sigma = \{a, b\}$ L4 = $\{s \in \Sigma^* | | s | > 4\}$

alphabet $\Sigma = \{0, 1\}$ L5 = $\{s \in \Sigma^* \mid 01101 \text{ is a substring of } s\}$

alphabet $\Sigma = \{0, 1\}$ L6 = $\{s \in \Sigma^* \mid 01101 \text{ is NOT a substring of } s\}$

Regular Operations

Let A and B be languages.

- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Concatenation $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
- Star $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

What about the alphabets?

Examples

- $A = \{$ red, green, blue $\} B = \{$ cat, dog $\}$
- Union $A \cup B = \{$ red, green, blue, cat, dog $\}$
- Concatenation $A \circ B = \{$ redcat, reddog, greencat, greendog, bluecat, bluedog $\}$
- Star $A^* = \{\varepsilon, \text{ red, green, blue, redred, redgreen, } \dots, \text{ greenred red blue green, } \dots\}$

Theorem: The class of regular languages is closed under the union operation.

Proof: Let L_1 and L_2 be regular languages, and let $M1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 . $M2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2 .

Construct $M = (Q, \Sigma, \delta, q_0, F)$ to recognize $L_1 \cup L_2$.

1. $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$ 2. Σ is the same or $\Sigma = \Sigma_1 \cup \Sigma_2$ and change proof. 3. $\delta((r_1, r_2), a) = (\delta(r_1, a), \delta(r_2, a)).$ 4. $q_0 = (q_1, q_2)$ 5. $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Example $M1 \cup M6$ but change the state names first.

Theorem: The class of regular languages is closed under the intersection operation.