Lecture 2 - Strings and DFAs

Strings

An *Alphabet* is any finite set. We call the elements of the alphabet *symbols* or letters or bits or digits...

Examples

$$\begin{split} \Sigma 1 &= \{0, 1\} \\ \Sigma 2 &= \{a, b, c, \dots, z\} \\ \Gamma &= \{0, 1, x, y, z\} \\ \Delta &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \end{split}$$

A $\mathit{string}\, \mathrm{over}\, \mathrm{and}\, \mathrm{alphabet}$ is a finite sequence of symbols from that alphabet.

The *length* of a string w, denoted by |w|, equals the number of symbols in w.

 ε is the empty string.

 Σ^* is the set of all strings over the alphabet Σ .

 w^R is the *reverse* of w.

A substring of w is sequence of consecutive symbols in w.

xy, the *concatenation* of strings x and y is the symbols of x followed by the symbols of y.

A language over alphabet Σ is any subset of Σ^* .

Deterministic Finite Automata A *finite automaton* is 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*.
- 2. Σ is a finite set called the *alphabet*.
- 3. $\delta: Q \times \Sigma \to Q$ is the *transition function*.
- 4. q_0 is the *start state*.
- 5. $F \subseteq Q$ is the set of accept states.

Examples M1 Alphabet = $\{0, 1\}$

M2 Alphabet = $\{a, b, c\}$

M3 Alphabet = $\{q, d, n\}$

M4 Alphabet = $\{a, b\}$

M5 Alphabet = $\{a, b, c, d\}$

M6 Alphabet = $\{a, b\}$

M8 Alphabet = $\{a, b\}$

