
CSU200 Discrete Structures Professor Fell Trees

Graphs
A graph is a set of vertices and a set of edges connecting the vertices.
A path is a list of vertices connected by edges (that you can follow).

Examples

F E

D

C

B

A

A Directed Graph

F E

D

C

B

A

Paths

An Undirected Graph

ABCAD ADA
FEBCAD ABFECFD
CACAC ECFECF

Trees
A tree is a connected graph without any loops (closed paths).

Examples
Neither of the graphs above is a tree.

G
F E

D

C

B

A The tree to the left is an unrooted
tree. Usually, when we work
with trees, there is a special node
designated as the root of the
tree.

An Unrooted Tree

nodes
or

vertices

G

The root

A Rooted Tree

F E

D

C

B

A

The root
A Tree Hanging from its Root

A

B

C

E

G

D

F

The children of D are A, E,
B, G, E, and F are leaves of
above is 3.

If the order of the children m

 This is a subtrA

B G

C

A Directory Tree

 Lectures

 Online

Theorem: A tree with n nod
Proof by Induction:
Base Case: A tree with 1
Induction step:
 Induction Assumptio
Suppose a tree T has k + 1 n
removing L from T along wi
by the induction assumption
has k edges. Q.E.D.
A Rooted Tree Hanging from its Root

 D, A, and C are internal nodes; they have children.
 E, F, B, and G are leaves; they have no children.

 and, F. A, E, and, F are siblings. The parent of B is C.
the tree. They have no children. The height of the tree

atters, the tree is called an ordered tree.

ee of the tree above. It has height 2.

 This is a tree of height 0. G

 Discrete Structures

Problems Exams Grades

 Written

es has n - 1 edges.

node has 0 edges.

n: Every tree with k nodes has k - 1 edges.
odes. T must have a leaf L. Let T' be the tree obtained by
th the edge that connected L to its parent. T' has k node. So
, T' has k - 1 edges. T has just one more edge than T' so T

Binary Trees
A binary tree is either an empty tree or an ordered tree in which every node has exactly
two subtrees, called the left and right subtrees.

Expression Trees
An algebraic expression can be represented by a binary tree.
a b+ corresponds to the tree

ba

+ +
 / \ or
 a b

(2a − +)c corresponds to the tree

2 c
+a

-

Notice that there are operators, e.g. +, -, *, or /, at all the internal nodes and literals, or
numbers are at the leaves. In an expression tree, the order of the children is important
(3 - 5 ≠5 - 3).

Example

Given the expression () ()
()

5
/ 2

c
a x y

w a
 +

∗ + − − 
,

a) Give the corresponding expression tree.

*

a -
/+

/

2y

x +

c5

-

a w

b) Give the Scheme expression that corresponds to the tree.

 (* a (- (+ x (/ y 2)) (/ (+ 5 c) (- (w a))))

Notice that the Scheme expression, E(T) of an expression tree T is given by:
 (root-operation E(left subtree of T) E(right subtree of T))

Traversing Binary Trees
To traverse a tree (or graph), you must visit every node of the tree (or graph). What you
or your program does when it visits a node will depend on the application. If the nodes
contain student records, a visit might entail entering the current semester's final grades or
printing a tuition bill. When discuss traversal methods, we usually indicate a visit by
writing the name of the node.

There are four common methods of traversing an ordered rooted tree.

1. Level Order Traversal

K

J L

MC H

A

D

G

FE

B

 To traverse a tree in level order, visit the root (level 0) and then visit the nodes on
each successive level from left to right. If we traverse the tree above in level order, we
will visit the nodes as follows:

D A E F C H K M B G L J

2. Preorder Traversal

visit node D

D

B G

A

C

1

then
preorder Traverse
 subtree 1
preorder Traverse
 subtree 2
preorder Traverse
 subtree 3

2

E

H

3

F

M

L J

K

 To traverse a tree in preorder, visit the root, then do a preorder traversals of
subtrees of the root from left to right. If we do a preorder traversal of the tree above, we
will visit the nodes as follows:

D A C B G E F H K L J M

If T is a binary tree, preorder(T) is given by

321

 preorder(T) {
 if (T is not null) {
 visit(root(T));
 preorder(left(T));
 preorder(right(T));
 }
 }

If we traverse a binary expression tree in preorder we get a scheme-like representation of
the expression with no parentheses. . The parentheses are not really needed to parse the
expression and calculate its value.

3. Inorder Traversal

inorder Traverse
 subtree 1
then
visit node D
then
inorder Traverse
 subtree 2
inorder Traverse
 subtree 3

 To traverse a tree inorder, do an inorder traversal of the leftmost subtree, then
visit the root, then do inorder traversals of remaining subtrees of the root from left to
right. If we do an inorder traversal of the tree above, we will visit the nodes as follows:

3
21

K

J L

MC H

A

D

G

FE

B

B C G A D E H F L K J M

If T is a binary tree, inorder(T) is given by

321

 inorder(T) {
 if (T is not null) {
 inorder(left(T));
 visit(root(T));
 inorder(right(T));
 }
 }

If we traverse a binary expression tree inorder we get an expression in "infix" notation
but parentheses may be necessary to make the expression really correspond to the tree.

4. Postorder Traversal

postorder Traverse
 subtree 1
postorder Traverse
 subtree 2
postorder Traverse
 subtree 3
then
visit node D

 To traverse a tree in postorder, do postorder traversals of subtrees of the root from
left to right., then visit the root. If we do a postorder traversal of the tree above, we will
visit the nodes as follows:

3
21

K

J L

MC H

A

D

G

FE

B

B G C A E H L J K M F D

If T is a binary tree, postorder(T)

321

 postorder(T) {
 if (T is not null) {
 postorder(left(T)
 postorder(right(T
 visit(root(T));
 }
 }

If we traverse a binary expression tree p
notation. This order is used for input on
parse the expression and calculate its va

is given

);
));

ostorder
 HP calc
lue.
 by

 we get an expression in reverse Polish
ulators. No parentheses are necessary to

