
CSU200 Discrete Structures Professor Fell Trees 
 
Graphs  
A graph is a set of vertices and a set of edges connecting the vertices.   
A path is a list of vertices connected by edges (that you can follow). 
 
Examples 
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Paths 

An Undirected Graph 

ABCAD     ADA 
FEBCAD     ABFECFD 
CACAC     ECFECF 
 
Trees 
A tree is a connected graph without any loops (closed paths). 
 
Examples 
Neither of the graphs above is a tree. 
 
 
 
 
 
 
 
 
 
 

G
F E 

D 

C 

B

A The tree to the left is an unrooted 
tree.  Usually, when we work 
with trees, there is a special node 
designated as the root  of the 
tree. 

An Unrooted Tree 
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A Tree Hanging from its Root 



 
 
 
 
 
 
 
 
 
                                             
                                             

 

A 

B

C 

E 

G

D 

F

 
The children of D are A, E,
B, G, E, and F are leaves of 
above is 3.   
 
If the order of the children m
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A Directory Tree  
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Theorem: A tree with n nod
Proof by Induction: 
Base Case: A tree with 1 
Induction step:  
 Induction Assumptio
Suppose a tree T has k + 1  n
removing L from T along wi
by the induction assumption
has  k edges.  Q.E.D. 
A  Rooted Tree Hanging from its Root

       D, A, and C are internal nodes; they have children.                                      
       E, F, B, and G are leaves; they have no children. 

 and, F.  A, E, and, F are siblings.  The parent of B is C. 
the tree.  They have no children.  The height of the tree 

atters, the tree is called an ordered tree. 

ee of the tree above.  It has height 2. 

              This is a tree of height 0. G
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es has n - 1 edges. 

node has 0 edges. 

n: Every tree with k nodes has k - 1 edges. 
odes.  T must have a leaf L.  Let T' be the tree obtained by 
th the edge that connected L to its parent.  T' has k node.  So 
, T' has k - 1 edges.  T has just one more edge than T' so T 



Binary Trees 
A binary tree is either an empty tree or an ordered tree in which every node has exactly 
two subtrees, called the left and right subtrees. 
 
Expression Trees 
An algebraic expression can be represented by a binary tree.   
a b+   corresponds to the tree                                             
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Notice that there are operators, e.g. +, -, *, or /, at all the internal nodes and literals, or 
numbers are at the leaves.  In an expression tree, the order of the children is important  
(3 - 5 ≠5 - 3). 
 
Example 
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a) Give the corresponding expression tree. 
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b) Give the Scheme expression that corresponds to the tree. 
 
 (* a (- (+ x (/ y 2)) (/ (+ 5 c) (- (w a)))) 
 
Notice that the Scheme expression, E(T) of an expression tree T is given by: 
 (root-operation E(left subtree of T) E(right subtree of T)) 
 
 



Traversing Binary Trees 
To traverse a tree (or graph), you must visit every node of the tree (or graph).  What you 
or your program does when it visits a node will depend on the application.  If the nodes 
contain student records, a visit might entail entering the current semester's final grades or 
printing a tuition bill.  When discuss traversal methods, we usually indicate a visit by 
writing the name of the node. 
 
There are four common methods of traversing an ordered rooted tree. 
 
1. Level Order Traversal 
 

K

J L

MC H

A 

D

G

FE

B

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 To traverse a tree in level order, visit the root (level 0) and then visit the nodes on 
each successive level from left to right.  If we traverse the tree above in level order, we 
will visit the nodes as follows: 

D A E F C H K M B G L J 
 

2. Preorder Traversal 
 
visit node D 
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then 
preorder Traverse 
   subtree 1 
preorder Traverse 
   subtree 2 
preorder Traverse 
   subtree 3 
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 To traverse a tree in preorder, visit the root, then do a preorder traversals of 
subtrees of the root from left to right.  If we do a preorder traversal of the tree above, we 
will visit the nodes as follows: 

D A C B G E F H K L J M 
 
If T is a binary tree, preorder(T) is given by 

321

 preorder(T) { 
   if (T is not null) { 
  visit(root(T)); 
  preorder(left(T)); 
  preorder(right(T)); 
   } 
 } 
 
If we traverse a binary expression tree in preorder we get a scheme-like representation of 
the expression with no parentheses.  .  The parentheses are not really needed to parse the 
expression and calculate its value. 
 
 
3. Inorder Traversal 
 
inorder Traverse 
   subtree 1 
then 
visit node D 
then 
inorder Traverse 
   subtree 2 
inorder Traverse 
   subtree 3 
 
 
 
 To traverse a tree inorder, do an inorder traversal of the leftmost subtree, then 
visit the root, then do inorder traversals of remaining subtrees of the root from left to 
right.  If we do an inorder traversal of the tree above, we will visit the nodes as follows: 
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If T is a binary tree, inorder(T) is given by 

321

 inorder(T) { 
   if (T is not null) { 
  inorder(left(T)); 
  visit(root(T)); 
  inorder(right(T)); 
   } 
 } 
 



If we traverse a binary expression tree inorder we get an expression in "infix" notation 
but parentheses may be necessary to make the expression really correspond to the tree. 
 
4. Postorder Traversal 
 
 
postorder Traverse 
   subtree 1 
postorder Traverse 
   subtree 2 
postorder Traverse 
   subtree 3 
then 
visit node D 
 
 
 
 
 To traverse a tree in postorder, do postorder traversals of subtrees of the root from 
left to right., then visit the root.  If we do a postorder traversal of the tree above, we will 
visit the nodes as follows: 
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If T is a binary tree, postorder(T) 
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 postorder(T) { 
   if (T is not null) {
  postorder(left(T)
  postorder(right(T
  visit(root(T)); 
   } 
 } 
 
If we traverse a binary expression tree p
notation.  This order is used for input on
parse the expression and calculate its va
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 we get an expression in reverse Polish 
ulators.  No parentheses are necessary to 


