
CSU200 Discrete Structures Professor Fell Exponentials and Logs 
 
An exponential  function has an equation of the form 

0xy a b b= ⋅ >  
where a  is the constant of proportionality and b is the base. 
 
An exponential function  is defined for all real x.  Let's look at the example, 

, before we state the general rules.  (You have probably seen the function 
 in high school and  if you did AP calculus, but 

xy a b= ⋅

y =
2xy =
(10)y = x xe 2xy =  is very important 

in computer science.)  It is easy to define 2x for integer values of x. 
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y=2x  plotted at integer values of x, -3 ≤ x ≤ 2 and 
extended smoothly.  Grid lines are at integer values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We define  at all rational values of x as follows.  Set 2xy = mx
n

=  where m and n are 

integers and n is positive, so the sign of x is the same as the sign of m. 
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This agrees with the definition above when x is an integer.  These values fit along the 
graph we have already drawn.   
 



Values of  can be defined rigorously at irrational values of x using limits of values 
at rational approximations to x.  We won't be that rigorous here (It is material for a 
mathematical analysis course.) but if we want to compute 

2xy =

2π , for example, we know that 
we could approximate is as closely as we like by computing  

3 3.1 3.14 3.1452 , 2 , 2 , 2 ,  and so on.  
 
Properties of Exponentiation 
Product of two powers with the same base 

     x y x yb b b +⋅ =  
To multiply powers of the same base, add the exponents. 

 
Quotient of two powers with the same base 
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 To divide powers of the same base, subtract the exponent of the numerator from 
the exponent of the denominator. 

  
Power of a Power 

( )      
yx xyb b=  

To raise a power to a power, multiply the exponents. 
 

Power of a Product 
( )      a a axy x y=  

To raise a product to a power, raise each factor to that power. 
 

Power of a Quotient 
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 To raise a quotient to a power, raise the numerator and denominator to that power.  
 

Proving Things about Exponents 
If b is a positive real number and n is a positive integer then, as we did for b = 2 above, 
we define 

2 2 2n

n twos

b = ⋅ . 

Note:  Later this semester, you will learn about recursion in CSU211.  We can define bn 
recursively for positive integers n by 
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Assume that b is a positive real number and n is a positive integer.  Try using the first 
definition and only the properties of exponentiation listed above to prove: 

( )

0

1

1
1n

n

nn

m m
nn

b

b
b

b b

b b

−

=

=

=

=

 

 
Logarithms 
The logarithm base b is defined by 

log    means  .y
by x b x= =  

The functions logbx and bx are inverse functions which means: 
 If y = bx, then logby = x. 
 If y = logbx,  then by= x. 
We will talk more generally about relations, functions, and inverse functions later in the 
semester. 
 
Properties of Logarithms 
Logarithm of a product 

( ) ( ) ( )log log logb b bxy x= + y  
To compute the logarithm of a product, add the logarithms of the factors. 

 
Logarithm of a quotient 

( ) ( )log log logb b b
x x y
y
= −  

 To compute the logarithm of a quotient, subtract the logarithm of the denominator 
from the logarithm of the numerator.. 

  
Logarithm of a Power 

( ) ( )log logc
b bx c x=  

 To compute the logarithm of a power multiply the logarithm of the base of the 
argument by the exponent of the argument.  (xc is the argument.) 

 



Some questions about logarithms 
Without a calculator, evaluate 
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Without a calculator, give approximate values for  
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What does the graph of  y = log2x  look like? 
 
Proving Things about Logarithms 
Changing the base 
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If a and b are both positive numbers then  

( ) ( )log log 1a bb a =  
 
References: 
"Algebra and Trigonometry: Functions and Applications" by Paul A. Foerster, Chapter 6, 
Addison-Wesley, 1980. 
 
"Discrete Mathematics, second edition" by James L. Hein, pages 85-87, Jones and 
Bartlett Mathematics, 2003. 
 



Proofs of statements about exponents 
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                 So by definition of the nth root, .

 Since ,   by the Power of a Power rule.
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Answers to some questions about logarithms 
Without a calculator, evaluate 
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Without a calculator, give approximate values for ( )2g 1,000lo  and . ( )2log 1,000,000
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log 1000 log 1024 10

     According to my PC calcularor,  log 1000 9.9657842846620870436109582884682
     so 10 really is a good approximation.
log 1,000,000 log 1,000 1,000 log 1,000 log 1,000 20
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What does the graph of  y = log2x  look like? 

 



Proofs of Statements about Logarithms 
Changing the base 
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If a and b are both positive numbers then  

( ) ( )log log 1a bb a =  
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