
CSU200 Discrete Structures Professor Fell Counting 
 
Ward Robe has 15 pairs of slacks and 5 shirts. 
Natalie Attired 15 dresses and 5 pants suits.   
     ( Names and attire based on problems in Foerster.) 
How many different outfits can Ward choose from? 
How many different outfits can Natalie choose from? 
 
Though the questions look similar and even the numbers are the same, the answers are 
different.   

Ward must choose one pair of slacks and one shirt to dress. 
 He has 9 ways to choose a pair of slacks and each pair of slacks can go with any 

of the five shirts for a total of 9*5 = 45 outfits. 
Natalie must choose either a dress or a pants suit for a total of 9+5 = 14 outfits. 

 
The two different counting rules that we used can be generalized.  Ward's dressing 
problem generalizes to the Product Rule.   

The Product Rule:  
[Rosen, p. 302]  Suppose a procedure can be broken down into a sequence of two tasks.  

If there are n1 ways of doing the first task and n2 ways of doing the second task after 
the first has been done, then there are n1n2 ways to do the procedure. 

[Hein, p. 49]  If A and B are finite sets then |A × B| = |A| × |B|. 
[Fell]  If A and B are finite sets then the number of ways of choosing an element from A 

and an element from B is |A| × |B|. 
 
Natalie's dressing problem generalizes to the Sum Rule.   

The Sum Rule:  
[Rosen, p. 305]  If a first task can be done in n1 ways and a second task in n2 ways, and if 
these tasks cannot be done at the same time then there are n1 + n2 ways to do one of these 
tasks. 
[Fell]  If A and B are disjoint finite sets then the number of ways of choosing an element 
from A or B is |A ∪ B| = |A| + |B|. 
 
Examples: 
Personal Identification Numbers or PINs are entered on a numeric keypad and, hence 
made up entirely of digits. 
 
The PINs on our office locks are restricted to 4 digits.  How many different PINs are 
possible? 

The set of digits, D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} has cardinality 10.  Each PIN 
corresponds to an element of D × D × D × D.  There are 104 = 10,000 different 
PINs. 



How many different 7 digit PINs are there?  107 = 10,000,000 
How many different 4 to 7 digit PINs are there. 

 A single PIN has either 4 or 5 or 6 or 7 digits.  We use the product rule to 
separately count the sets of 4-digit , 5-digit, 6-digit, and 7-digit passwords then 
use the sum rule to count the union of these sets. 

 The number of 4 to 7 digit pins is 104 + 105 + 106 + 107 = 11,110,000. 
 

Passwords are often composed of alpha-numeric characters, {a, b, ... , z, 0, 1, 2, ... , 9} 
on systems that are not case-sensitive or {A, B, ... , Z, a, b, ... , z, 0, 1, 2, ... , 9} on 
systems that are case-sensitive. 
 
How many 4-char alpha numeric passwords are there if you can use upper- and lower-
case letters and digits (i.e. case-sensitive)? 

 There are 26 upper-case letters, 26 lower-case letters, and 10 digits for a character 
set C of size 62.  The total number of possible passwords is  

  | C × C × C × C| = (62)4  = 14776336. 
 
If a hacker has code that can try out passwords on a system at a rate of 1 per second, how 
long would it take her to break into a system that  
a) uses 4-digit passwords? 
 10000 seconds = 2 hours 46 minutes 40 seconds. 
 
b) uses 4-char case-sensitive, alpha-numeric passwords? 
 14776336 seconds = 171 days 32 minutes 16 seconds 
 
Bitstrings are strings composed of 0s and 1s. 
How many bit strings are there with 8 bits?  
 216 = 256 
How many bit strings are there with 16 bits?   
 216 = 65536n  
What is the largest integer that can be represented in 16-bit two’s complement? MAXINT 

 Since positive integers in two’s complement must have a 0 in the leftmost 
position, we have only 15 places to represent the magnitude of the integer.  The 
largest integer we can represent is 111111111111111 = 216 - 1 = 32767. 

 
If A1, A2, . . ., An are finite sets, what is the cardinality of A1 x A2 x . . . x An? 

 This is just a generalization of the product rule.  
   |A1 x A2 x . . . x An| = |A1| x |A2| x . . . x |An| 

 
Picking Students: 
The three discrete structures sections have 73, 64 and 41 students.  
a) How many distinct ways are there of choosing one discrete structures students to 
write up a sheet of notes for everyone to use at the final? 
 One student from the union of the three sections: 73 + 64 + 41 = 178 possibilities. 
 



b) How many distinct ways are there of choosing one discrete structures student 
from each class to form an advisory committee? 
 Use the product rule.  73*64*41 = 191552 
 
c) How many distinct ways are there of listing six different discrete structures 
students to form the 41 person section to go to the board one after the other to present 
problem solutions? 
 Rosen's version of the product rule applies most directly here.  There are 41 
students to choose from as the first presenter but then there are only 40 students to choose 
from as the second presenter, 39 as the third presenter and so on.  The result is 
 41*40*39*38*37*36 = 3237399360 
There is more discussion below of this kind of problem in the "permutations" section. 
 
d) How many distinct ways are there of choosing six discrete structures students to 
form the course volleyball team? 
 Now we have to choose a set of six students out of the 178 discrete structures 
students.  If we count the ways to make a list of 6 students, as in c, we get 
 178*177*176*175*174*173 possible ordered list of 6 students.  
Each set of 6 students appears in this list 6! = 6*5*4*3*2*1 times so the number of sets is 
of six students out of the 178 is 

 178*177*176*175*174*173 178!
6*5*4*3*2*1 (172!)(6!)

=   

There is more discussion below of this kind of problem in the "combinations" section. 
 
More Passwords: 
Suppose passwords are restricted to 6 case-sensitive alpha-numeric characters and must 
contain at least 1 digit and at least 1 letter.  How many are there? 
 There are (62)6  passwords composed of 6 case-sensitive alpha-numeric characters 
with no other restrictions.  Of these, (52)6  are composed of letters only and (10)6 are 
composed of digits only.  All the others have at least one digit and at least one letter. So 
the answer is [(62)6 - (52)6 - (10)6 ] . 
 
Suppose passwords may have 6 to 10 case-sensitive alpha-numeric characters and must 
contain at least 1 digit and at least 1 letter.  How many are there? 
Since a password may have 6 or 7 or 8 or 9 or 10 letters, we can count each of these 
possibilities separately and apply the sum rule to get the result. 
[(62)6 - (52)6 - (10)6 ] + [(62)7 - (52)7 - (10)7 ] + [(62)8 - (52)8 - (10)8 ] + [(62)9 - (52)9 - 
(10)9 ] + [(62)10 - (52)10 - (10)10 ] 
 
NSF Fast-Lane Passwords have 6 to 10 alpha-numeric characters where upper- and 
lower-case are distinguished.  They must contain at least 2 digits and at least 2 letters.  
How many are there? 
 
 



Inclusion-Exclusion Principle:   
 If A and A are finite sets then .A B A B A B∪ = + − ∩  
                                          |A| + |B| counts the elements in A and the elements in B but 
                                           elements of A ∩ B (the red ones), are counted twice. 
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xamples: 
ow many strings of 6 upper-case letters start with A or end with Z?   
65 start with A.  265 end with Z.  264 start with A and end with Z so they were counted 

ice.  The answer is 265 + 265 - 264 . 

his problem is from Rosen, Exercise 20, page 311. 
ow many positive integers between 1000 and 9999 inclusive 
here are 9000 consecutive integers.) 
 are divisible by 9?     

) are even?      
 have distinct digits?    

) are not divisible by 3?    
 are divisible by 5 or 7?  Use the Inclusion-Exclusion Principle here.  
 are not divisible by either 5 or 7?  
) are divisible by 5 but not by 7?   
 are divisible by 5 and 7?    

igeonhole Principle 
 k + 1 or more objects are placed in k boxes, then there is one box that has two or more 
bjects. 

xamples: 
) There are 102 students in my two sections of CSU200.  If they all take the final, at 
ast two of them will get the same grade? 

There are 101 possible grades 0, 1, . . ., 100 so the result follows from the 
igeonhole principle. 

) If I use the last two digits of their social security numbers as a code to post grades 
 anonymity, at least two students will get the same code? 

There are 100 2-digit codes, 00 through 99 so by the time I list the first 101 
udents there will be two with the same grade. 

 If a drawer contains 12 red socks and 12 blue socks and I pull some socks out in 
e dark, how many must I pull out to be sure of having a pair? 



d) Every integer n has a multiple that has only 0s and 1s in its decimal expansion. 
Proof 
Consider the n+1 numbers 1, 11, ... , 11111...11 where the last number has (n-1) ones.  If 
we evaluate each of these numbers mod n, two of them must give the same value as there 
are only n possible results, 0, ..., n-1.  If mod moda n b n= then a - b is divisible by n.  So 
take the two numbers that result in the same value and subtract the smaller from the 
larger.  The result is a multiple of n and has only 0s and 1s in its decimal expansion.  

Here's an example.  Take n=6.  11
1mod 6

mod 6
111mod
1111mo

1
5

7 3
d 7 1

=
=
=
=

 so 1111=1 = 1110 is a multiple of 6. 

 
e) In any set of n +1 positive integers not exceeding 2n, there must be one integer 
that divides another. 
Proof: 
Write each integer as a power of 2 times an odd integer, .  Then q2 je

ja = jq 1 ... qn+1 are 
n+1 odd integers < 2n.  Two of them must be the same. One of the corresponding ajs 
divides the other.  

Generalized Pigeonhole Principle 
If N objects are placed in k boxes, at least one box contains N/k objects. 

Proof: 1 1 1N N
k k

      − < + − =           
.Nk k  

 
a) There are 51 students in this class.  At least ____ students in this class have 
birthdays in the same month.  What is the largest number I can put in the blank and be 
sure the statement is true. 
  64/12 = 5 have birthdays in the same month. 

Permutations 
A permutation of a set of objects is an ordered arrangement of those objects.   
An r-Permutation is and ordered arrangement of r elements of a set. 
 
Theorem: The number of r-permutations of a set with n distinct elements is  

 P(n,r) = n(n-1)(n-2) . . . (n – r + 1) = 
( )

!
!

n
n r−

. 

Proof: 
1 n choices for first place 
2 n-1 choices left for second place 
...  

r-1 n-(r-2) choices left for (r-1)th place 
r n-(r-1) choices left for rth place 

Now use the product rule. 



Examples: 
a) A wedding party consists of the bride, the groom, the bride's mother and father, 
the groom's mother and father, the best man, the maid of honor, two ushers, and two 
bride's maids. 
i)     How many ways are there of arranging all of them in a row for a picture? 

 There are 12 people in the wedding party so there are P(12,12) = 12! ways of 
arranging them in a row. 

ii)    How many ways if the bride and groom stand together on the left side of the line? 
 There are 2 ways to arrange the bride and groom on the far left side of the line and 

P(10,10) = 10! ways of arranging the rest of the party so 2*10! possible 
arrangements. 

iii)   How many ways if the bride and groom are together but anywhere in the line? 
 There are P(10,10) = 10! ways of arranging the rest of the party without the bride 

and groom.  Then the bride and groom together can be place between and two of 
the lined up people or to the left or to the right of all of them.  That's 11 different 
positions.  There are 2 ways to arrange the bride and groom.  THe total number of 
arrangements is (10!)*11*2. 

iv)   How many ways can 5 members of the wedding party line up for a picture? 
 We must line up 5 people out of 12 so P(12, 5) = 12*11*10*9*8. 
 
b) On the trip I am about to take, I must visit Florence, Milan, Venice, London, 
Bristol, and Warwick.   
i)     How many itineraries are possible?   
 There are 6 cities so 6! possible itineraries. 
ii)    How many itineraries are possible if all the British cities are consecutive and all the 
Italian cities are consecutive? 
 Florence, Milan, and Venice are in Italy.  London, Bristol, and Warwick are in 
England.  There are 3! orders for the Italian cities and 3! orders for the British cities.  I 
can go to Italy first or to England first so there are (3!)*(3!)*2 = 72 possible itineraries. 
 
Strings 
a)  How many permutation are there of the letters A B C D E F G H I J? 
 P(10,10) = 10! 
b)  How many of them contain the block  
i)    HEAD?  

 First arrange the other letters, B, C, F, G, I, J.  There are 6! arrangements. 
 Then place the block HEAD between two of the arranged letters or at one of the 

ends.  There are 7 places it can go.  That makes a total of 7*6!. 
ii)   HJF?  

 Just like part i but you must arrange the other 7 letters and then there are 8 places 
where HJF can go. 

iii)  BIGFACEDHJ? 
 Just one. 
  



Combinations 
An r-combination of elements of a set is an unordered selection of r elements of the set, 
i.e. a subset of the set with r elements. 
 

( ),
n

C n r
r

 
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 is the number of r-combinations of a set with n elements. 

 

Theorem: 
( )

!If 0  are integers, ( , ) .
! !

n nr n C n r
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Proof:  
P(n, r) = C(n, r)P(r, r).   That is, to create an ordered list of r elements from a set of n 
elements, first choose r elements from the set (There are C(n, r) ways to do this.) and then 
choose an ordering of the r elements (There are P(r, r) ways to do this.).  Since we 

already know that 
( ) ( )

!( , )  and ( , ) !
! 0

nP n r P r r r
n r

= =
−

!
!

r
= , the result follows. 

 
Corollary: If 0 ≤ r ≤ n are integers, then C(n, r) = C(n, n-r). 
 
Examples: 
a) Eight members of the wedding party (described above) are to do a traditional 
circle dance.  How many different groups of eight can be selected? 

 There are 12 people in the wedding party so we can choose C(12, 8) different 

subsets of 8 people.  
( ) ( )

12! 12 11 10 9(12,8)  11 5 9 495.
8! 4 ! 4 3 2 1

C ⋅ ⋅ ⋅
= = = ⋅ ⋅ =

⋅ ⋅ ⋅
 

 
b) Now that we have selected 8 people for the dance, how many ways can we 
arrange them in a circle? 

 This is a permutation problem, not a combination problem.  It is similar, but not 
quite the same as finding the number of ways to arrange 8 people in a line.  There 
are P(8, 8) = 8! ways to do that.   Each circular arrangement will appear 8 times as 
a linear arrangement.  (A B C D E F G H forms the same circular arrangement as 
B C D E F G H A or C D E F G H A B, . . .)  So there are 8!/8 = 7! possible circle 
dance arrangements. 

 
c) How may ways can I select 3 men and 3 women from the wedding party? 

 There are 6 men and 6 women in the wedding party.  The number of ways of 
choosing 3 men (or 3 women) is C(6, 3) = 20.  The number of ways of selecting 3 
men and 3 women from the wedding party is 20*20 = 400. 

 
d) How many ways can I select 6 students from this class of 51 students to get a 
grade of “A”? 



 
( ) ( )

51! 51 50 49 48 47 46(51,6)  17 10 49 2 47 46 36018920.
45! 6 ! 6 5 4 3 2 1

C ⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅
  

Really, I won't do it this way; I will look at you grades. 
 
e) How many bytes contain exactly three 1’s? 

 A byte is an 8-bit string so there are 28 = 256 bytes total.  Picking a byte with 
exactly three 1's is the same as selecting a subset of size 3 out of the 8 bit 
positions.  The number of ways of doing this is 

 
( ) ( )

8! 8 7 6(8,3)  8 7 56.
5! 3 ! 3 2 1

C ⋅ ⋅
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⋅ ⋅
=  

Binomial Theorem 
Let x and y be variables and n a positive integer.  Then 
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Proof: 
Count the number of times n j jx y−  appears in the product. 

( ) ( ) ( ) ( ) ( )
n copies

x y x y x y x y x y+ + + + + . 

Each appearance of n j jx y−

n j

 is this product corresponds to a j-size subset of the n 
positions.  We take y from each of those j positions and x from the remaining n-j 

positions.  The product jx y−  will appear C n( , )
n

j
j

 
=  
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 times. 

Examples: 
a) Expand (x + y)4. 
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b) Expand (2x + y-2)3. 
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c) Give the term in (a + b)42 that has b to the 17 power.  25 1742
17
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Theorem:   If n is a positive integer and 0 ≤ k < n, then  
1
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This theorem tells you that you can compute an entry in Pascal's triangle by adding the 
two elements diagonally above it. 
(a + b)0        1        
                
(a + b)1       1  1       
                
(a + b)2      1  2  1      
        \  /      
(a + b)3     1  3  3  1     
                
(a + b)4    1  4  6  4  1    
    \  /          
(a + b)5   1  5  10  10  5  1   
     \  /         
(a + b)6  1  6  15  20  15  6  1  
          \  /    
(a + b)7 1  7  21  35  35  21  7  1 
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