Solutions for Written Homework 4

prepared by Jonathan Kleiner

1. (12 points) The Successor of a Set

The successor of a set S is the set $S \cup \{S\}$.

a) Give the successor of each of these sets.

```
i) S = \{1\} therefore: successor(S) = \{1, \{1\}\}.

ii) S = \{1, 2\} therefore: successor(S) = \{1, 2, \{1, 2\}\}.

iii) S = \emptyset therefore: successor(S) = \{\emptyset\}.

iv) S = \{\emptyset\} therefore: successor(S) = \{\emptyset, \{\emptyset\}\}.

v) S = \{\emptyset, \{\emptyset\}\} therefore: successor = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}.
```

b) If the set S has *n* elements, how many elements does the successor of S have? Explain your answer.

successor(S) has n+1 elements. A set is one element. We can have a set P of sets. The size of set P is the number of elements in P. Each element in P is a set. For example, $P = \{\{1, 2\}, \{3, 4, 5\}\}$ has 2 elements, not 5.

2. (16 points) Relations

For each of the following, give a relation Q on the real numbers satisfying the given conditions or explain why no such relation exists. (Explanations in answers are examples of when a relation property fails)

- a. no, no, no: $y = \sqrt{x}$ Note that: $2 \neq \sqrt{2}$; $2 = \sqrt{4}$ does not imply $4 = \sqrt{2}$; $2 = \sqrt{4}$ and $4 = \sqrt{16}$ do not imply that $2 = \sqrt{16}$
- **b. no, no, yes:** x < y Note that: x < x is false; 1 < 2 but 2 < 1 is false
- c. no, yes, no: $x \neq y$ Note that: $x \neq x$ is false; $x \neq y$ and $y \neq z$ says that $x \neq z$, but they could be equal.
- d. no, yes, yes: x > 0 and y > 0Note that: (0,0) is not in the set;
- e. **yes, no, no:** x = y with points (3,0) and (1,0) Note that: (3,0) is in the set but (0,3) is not; (3,0) and (0,1) imply (3,1), but (3,1) is not in the set.
- f. yes, no, yes: $x \le y$ Note that: $3 \le 4$ but $4 \le 3$ is false.
- g. yes, yes, no: x=y, y = x+1, y = x-1Note that: (0,1) and (1,2) imply (0,2) but (0,2) is not in this set.
- h. yes, yes, yes: x = y
- 3. (8 points) Expression Trees Given the expression: ((x+y)/2)*(3-(w-a)*(5+c)),
- a) Draw the corresponding expression tree.

Solutions for Written Homework 4

b) Give the Scheme expression that corresponds to the tree.

$$(*(/(+xy)2)(-3(*(-wa)(+5c))))$$

4. (4 points) (Size of Binary Trees) Prove by Induction:

Theorem: If T is a binary tree of height h, then T has at most 2^{h+1} -1 nodes.

The binary tree with height h can be full or it can be an unbalanced chain. We want to show that if T is a binary tree of height h, then T has at most 2^{h+1} -1 nodes.

Base Case: When the height of T is 0, then all we have is a root which is one node. We see that $2^{0+1}-1=2-1=1$. Next try h=1. We have a tree with at most 3 nodes, a root and two children nodes. We see that $2^{i+1}-1=4-1=3$.

Induction Step: Assume that the theorem is true up to h = i. We want to show that a tree with height h = i+1 has at most $2^{(i+1)+1}-1 = 2^{i+2}-1$.

Suppose we have a tree of height h=i+1. Then both the left and right subtrees have height h=i and have at most $2^{i+1}-1$ nodes each. If we add the nodes of both subtrees and the root we get:

size(i+1) = root + size(left subtree) + size(right subtree)
=
$$1 + 2^{i+1} - 1 + 2^{i+1} - 1 = 2^{i+1} - 1 = 2^{i+1+1} - 1 = 2^{(i+1)+1} - 1 = 2^{i+2} - 1$$
.

So we have that a tree of height h = i+1 has at most $2^{(i+1)+1}-1$. Therefore, If T is a binary tree of height h, then T has at most $2^{h+1}-1$ nodes.