College of Computer and Information Science CS U2
Professor Harriet Fell Third Hour Exam –Section 2

CS U200 Discrete Structures ection 2 November 22, 2004

1. Set-Builder Notation

Rewrite each set showing all its elements, for example, $\{x \in Z \mid 1 \le x \le 5\} = \{2, 3, 4\}$.

- a) $\{ x \in Z \mid x \mod 4 = 3 \text{ and } |x| \le 12 \}$ $\{-9, -5, -1, 3, 7, 11 \}$
- **b)** $\{ x \in Z \mid 0 \le x/4 \le 2 \}$ $\{0, 1, 2, 3, 4, 5, 6, 7, 8 \}$

2. Cartesian Product and Power Sets

Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$.

- a) List all the elements of A x B. (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)
- b) List all the members of $\mathcal{P}(B)$, the power set of B. \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, $\{1, 2, 3\}$
- c) List all the subsets of A x A that have two elements. The elements of A x A are (1, 1), (1, 2), (2, 1), (2, 2). The subsets of A x A that have two elements are {(1, 1), (1, 2)}, {(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (2, 2)}, {(2, 1), (2, 2)}
- How many subsets does $\mathcal{P}(A)$ have? $\mathcal{P}(A)$ has 4 elements \emptyset , $\{1\}$, $\{2\}$, and $\{1, 2\}$. $\mathcal{P}(A)$ has 2^4 subsets.
- e) What is the cardinality of B x $\mathcal{P}(A)$? $|B \times \mathcal{P}(A)| = |B| \times |\mathcal{P}(A)| = 3 \times 4 = 12.$

3. Summation Notation

a) Expand each of the following sums as shown in the example.

$$\sum_{k=1}^{4} 2k^2 = 2(1)^2 + 2(2)^2 + 2(3)^2 + 2(4)^2 = 2 + 8 + 18 + 32$$

i)
$$\sum_{k=1}^{3} 5^k = 5^1 + 5^2 + 5^3 = 5 + 25 + 125$$

ii)
$$\sum_{k=1}^{5} \frac{k!}{3!} = \frac{1!}{3!} + \frac{2!}{3!} + \frac{3!}{3!} + \frac{4!}{3!} + \frac{5!}{3!} = \frac{1}{6} + \frac{1}{3} + 1 + 4 + 20$$

iii)
$$\sum_{k=3}^{5} \left(k^2 - \left(k - 1 \right)^2 \right) = \left(3^2 - \left(3 - 1 \right)^2 \right) + \left(4^2 - \left(4 - 1 \right)^2 \right) + \left(5^2 - \left(6 - 1 \right)^2 \right) = 5 + 7 + 9$$

4. Summation Formulas

For each of the following sums, give a formula in terms of n for the sum, as shown in the example.

$$\sum_{k=1}^{n} 3k = \frac{3n(n+1)}{2}$$

i)
$$\sum_{k=1}^{n} 3^{k} = \frac{3^{n+1} - 3}{2}$$
Set $S = \sum_{k=1}^{n} 3^{k}$. Then $3S = \sum_{k=2}^{n+1} 3^{k}$. Therefore, $2S = \sum_{k=2}^{n+1} 3^{k} - \sum_{k=1}^{n} 3^{k} = 3^{n+1} - 3$

ii)
$$\sum_{k=10}^{n} 5k =$$

where $n \ge 10$

This is arithmetic. Use the formula $\frac{(first + last) \times (\#terms)}{2}$

5. Permutations and Combinations

Show the formulas you used as well as the final numbers.

Give the values of each of these quantities:

a)
$$P(6, 2) = \frac{6!}{4!} = 6 \cdot 5 = 30$$

b)
$$P(7, 4) = \frac{7!}{3!} = 7 \cdot 6 \cdot 5 \cdot 4 = 840$$

c)
$$C(6, 2) = \frac{6!}{4!2!} = \frac{6 \cdot 5}{2} = 15$$

d)
$$C(7, 4) = \frac{7!}{3!4!} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2} = 35$$

e)
$$C(9, 9) = \frac{9!}{0!9!} = \frac{9!}{1 \cdot 9!} = 1$$

6. Counting

Show the formulas you used as well as the final numbers.

If you have 8 books, how many ways can you

a) arrange 3 of then on a shelf?

$$P(8,3) = \frac{8!}{5!} = 8 \cdot 7 \cdot 6 = 336$$

b) choose 4 of them to take on a trip?

$$C(8,4) = \frac{8!}{4!4!} = \frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2} = 2 \cdot 7 \cdot 5 = 70$$

c) choose 3 of them to leave home?

$$C(8,3) = \frac{8!}{5!3!} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2} = 8 \cdot 7 = 56$$

d) choose 1 a day to pick a quote from for the next 3 days, repetition allowed? You have 8 choices on each day so $8^3 = 512$.

7. Probability

Show your work as well as the final numbers.

If you roll a pair of dice, one black and one white, what is the probability of

a) the sum of the numbers rolled is 4?

successful outcomes

Black die	White die
1	3
2	2
3	1

There are 3 successful outcomes in all. There are $6 \times 6 = 36$ possible outcomes so the probability is 3/36 = 1/12.

b) the sum of the numbers rolled is 11 or 12?

successful outcomes

Black die	White die
5	6
6	5
6	6

There are 3 successful outcomes in all. There are $6 \times 6 = 36$ possible outcomes so the probability is 3/36 = 1/12.

c) the number on the white one is greater than the number on the black one?

successful outcomes

White die Black die 5, 4, 3, 2, 1 5 4, 3, 2, 1 4 3, 2, 1 3 2, 1 2 1 no possibilities

There are 15 successful outcomes in all. There are $6\times6=36$ possible outcomes so the probability is 15/36 = 5/12.

8. Relations

Let A be the set $\{-3, -2, -1, 0, 1, 2, 3\}$.

a) Show the pairs (x, y) in the relation |y| = |x| by putting an \times in the corresponding squares:

- **b)** Tell whether this relation is
- i) Reflexive Yes, |x| = |x|. You could also note that the line y = x is part of the relation.
- ii) Symmetric Yes if |x| = |y| then |y| = |x|.
- ii) Transitive Yes, if |x| = |y| and |y| = |z| then |x| = |z|.
- ii) Symmetric
- ii) Transitive

Explain your answers.