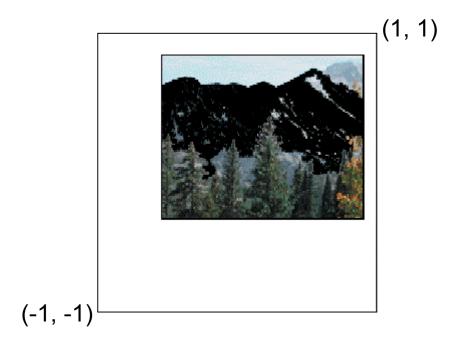


CS G140 Graduate Computer Graphics

Prof. Harriet Fell Spring 2009 Lecture 3 - January 21, 2009

Today's Topics

- From 3D to 2D
- 2 Dimensional Viewing Transformation
 http://www.siggraph.org/education/materials/HyperGraph/viewing/view2d/2dview0.htm
- Viewing from Shirley et al. Chapter 7
- Recursive Ray Tracing
 - Reflection
 - Refraction



from a 3D World to a 2D Screen

When we define an image in some world coordinate system, to display that image we must somehow map the image to the physical output device.

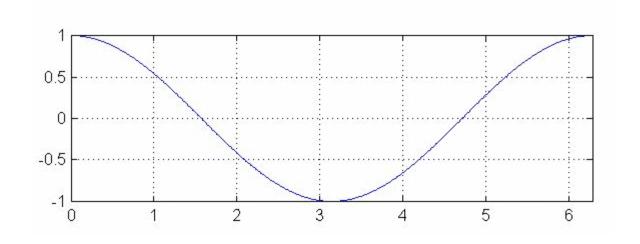
- 1. Project 3D world down to a 2D window (WDC).
- 2. Transform WDC to a Normalized Device Coordinates Viewport (NDC).
- 3. Transform (NDC) to 2D physical device coordinates (PDC).

2 Dimensional Viewing Transformation

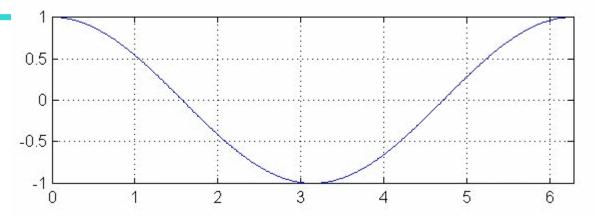
http://www.siggraph.org/education/materials/HyperGraph/viewing/view2d/2dview0.htm

Window

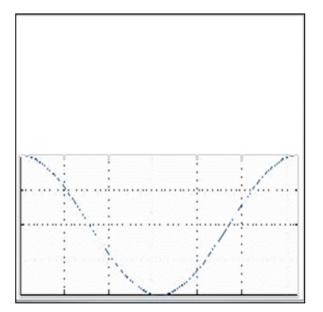
Example: Want to plot x vs. cos(x) for x between 0.0 and 2Pi. The values of cos x will be between -1.0 and +1.0. So we want the window as shown here.



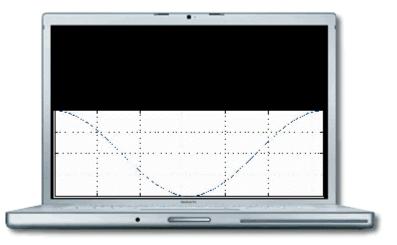
2D Viewing Transformation



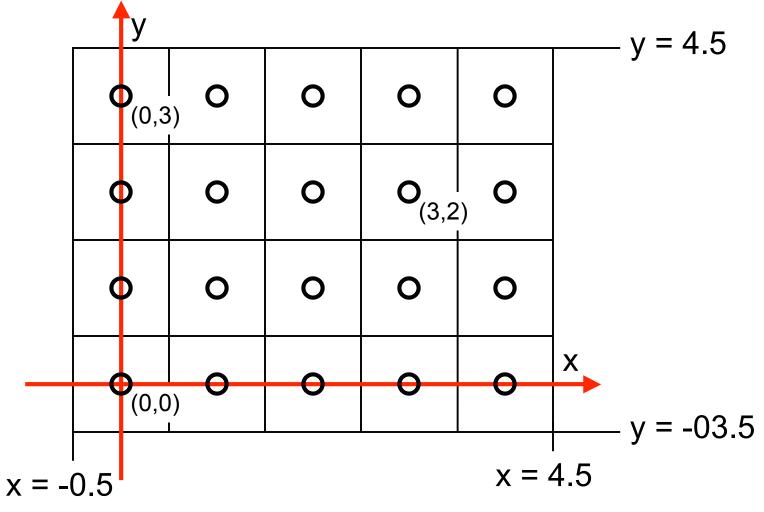
Viewport



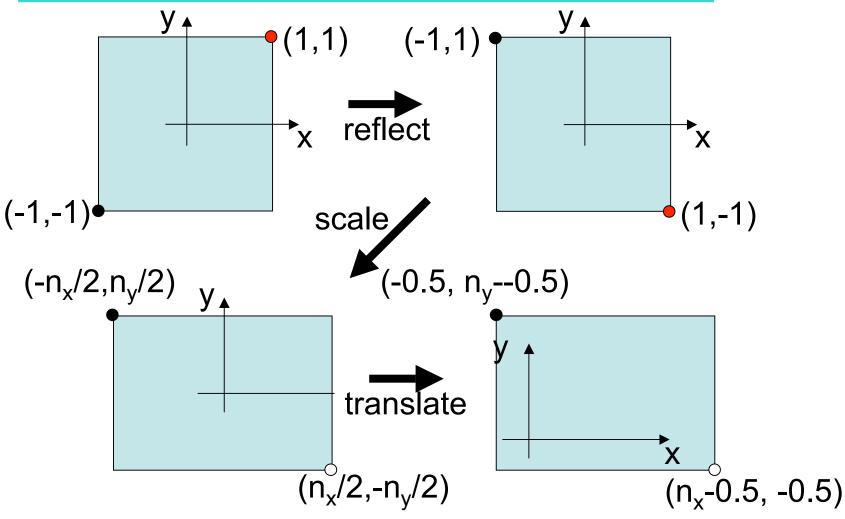
Device



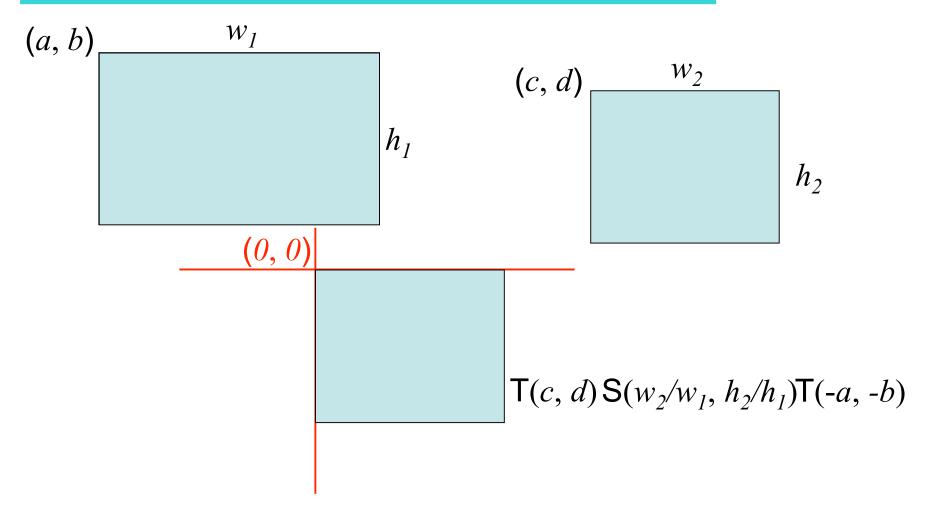
Pixel Coordinates



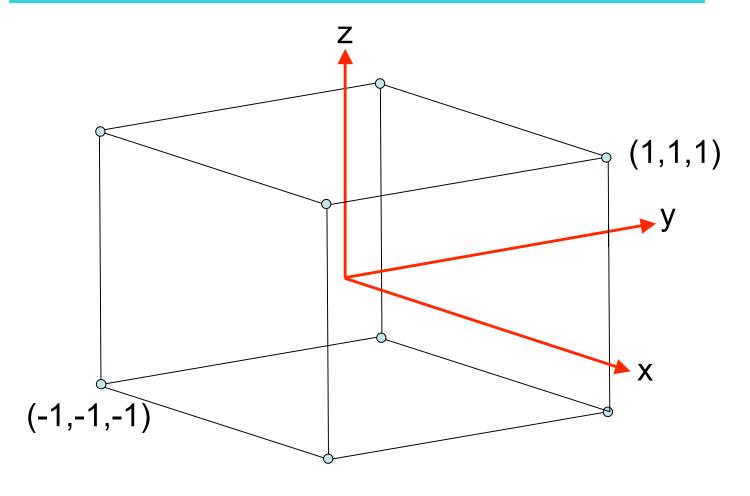
Canonical View to Pixels



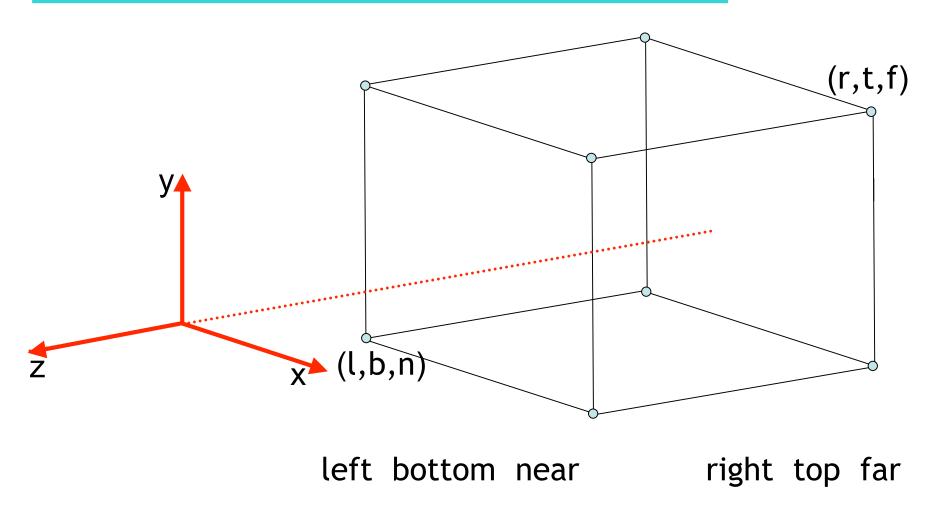
2D Rectangle to Rectangle



Canonical View Volume



Orthographic Projection



Orthographic Projection Math

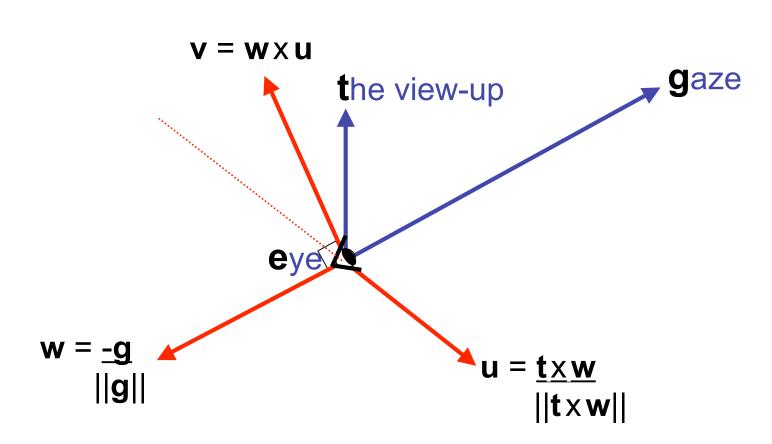
$$\begin{bmatrix} x_{canonical} \\ y_{canonical} \\ z_{canonical} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{b+t}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Orthographic Projection Math

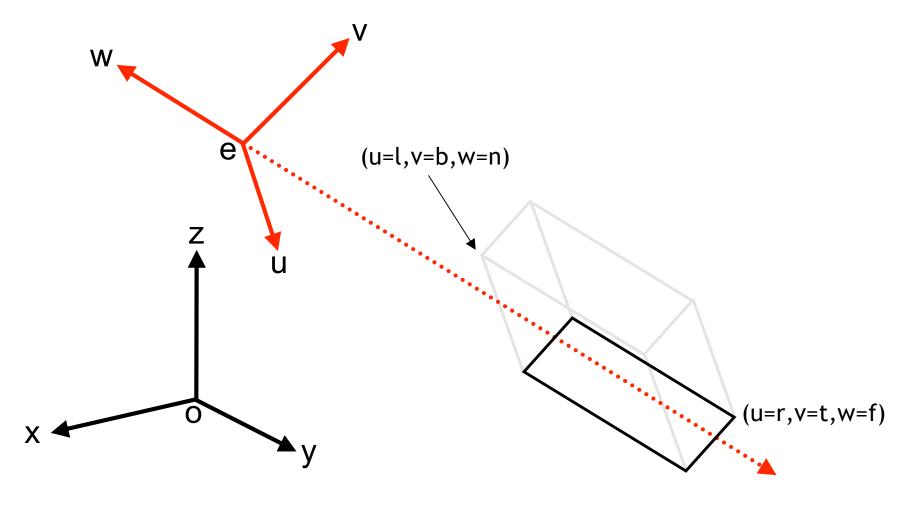
$$M_{o} = \begin{bmatrix} \frac{n_{x}}{2} & 0 & 0 & 0 \\ 0 & \frac{n_{y}}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{b+t}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_{pixel} \\ y_{pixel} \\ z_{canonical} \\ 1 \end{bmatrix} = M_o \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Arbitrary View Positions



Arbitrary Position Geometry



Arbitrary Position Transformation

Move e to the origin and align (u, v, w) with (x, y, z).

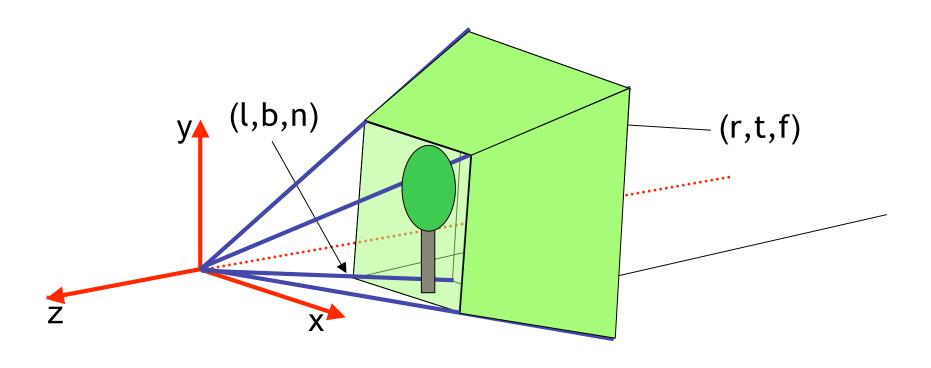
$$M_{v} = \begin{bmatrix} x_{u} & y_{u} & z_{u} & 0 \\ x_{v} & y_{v} & z_{v} & 0 \\ x_{w} & y_{w} & z_{w} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_{e} \\ 0 & 1 & 0 & -y_{e} \\ 0 & 0 & 1 & -z_{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Compute $M = M_o M_v$.

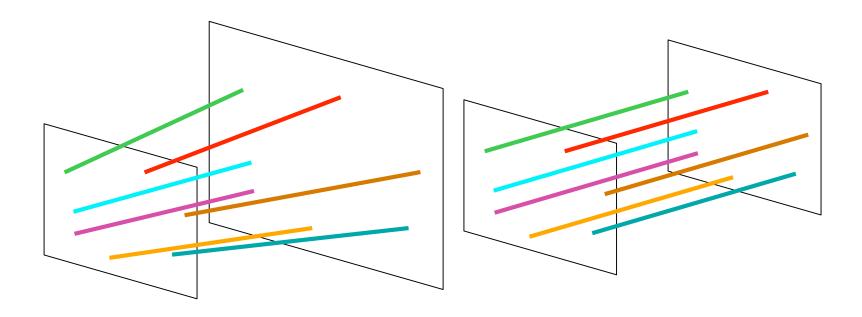
For each line segment (*a*,*b*)

$$p = Ma$$
, $q = Mb$, $drawline(p,q)$.

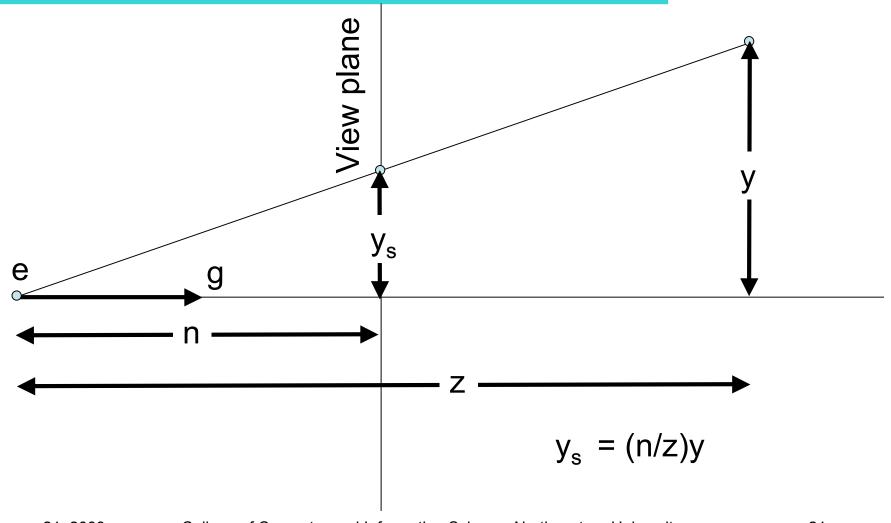
Perspective Projection



Lines to Lines



Perspective Geometry



Perspective Transformation

The perspective transformation should take

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} nx/z \\ ny/z \\ p(z) \\ 1 \end{bmatrix} \quad \text{where} \quad p(n) = n \\ p(f) = f \quad \text{and} \quad \\ n \ge z_1 > z_2 \ge f$$

$$p(n) = n$$

$$p(f) = f$$

$$n \ge z_1 > z_2 \ge f$$

implies
$$p(z_1) > p(z_2)$$
.

$$P(z) = n + f - fn/z$$
 satisfies these requirements.

Perspective Transformation

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} nx/z \\ ny/z \\ n+f-fn/z \\ 1 \end{bmatrix}$$
 is not a linear transformation.

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} nx \\ ny \\ nz + fz - fn \\ z \end{bmatrix}$$
 is a linear transformation.

The Whole Truth about Homogeneous Coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \leftrightarrow \begin{bmatrix} hx \\ hy \\ h \end{bmatrix} \middle| h \neq 0$$
 A point in 2-space corresponds to a line through the origin in 3-space minus the origin itself.

A point in 3-space corresponds to a line through the origin in 4-space minus the origin itself.

Homogenize

$$\begin{bmatrix} 6 \\ 14 \\ 2 \end{bmatrix} \xrightarrow{\text{homogenize}} \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 27 \\ 63 \\ 9 \end{bmatrix} \xrightarrow{\text{homogenize}} \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 22 \\ 121 \\ 77 \\ 11 \end{bmatrix} \xrightarrow{\text{homogenize}} \begin{bmatrix} 2 \\ 11 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 2 \\ 11 \\ 7 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 5.5 \\ 3.5 \\ .5 \end{bmatrix} \xrightarrow{\text{homogenize}} \begin{bmatrix} 2 \\ 11 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 2 \\ 11 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 5.5 \\ 3.5 \\ .5 \end{bmatrix} \xrightarrow{\text{homogenize}} \begin{bmatrix} 2 \\ 11 \\ 7 \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 2 \\ 11 \\ 7 \end{bmatrix}$$

Perspective Transformation Matrix

$$M_{p} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad M_{p} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} nx \\ ny \\ nz+fz-fn \\ z \end{bmatrix}$$

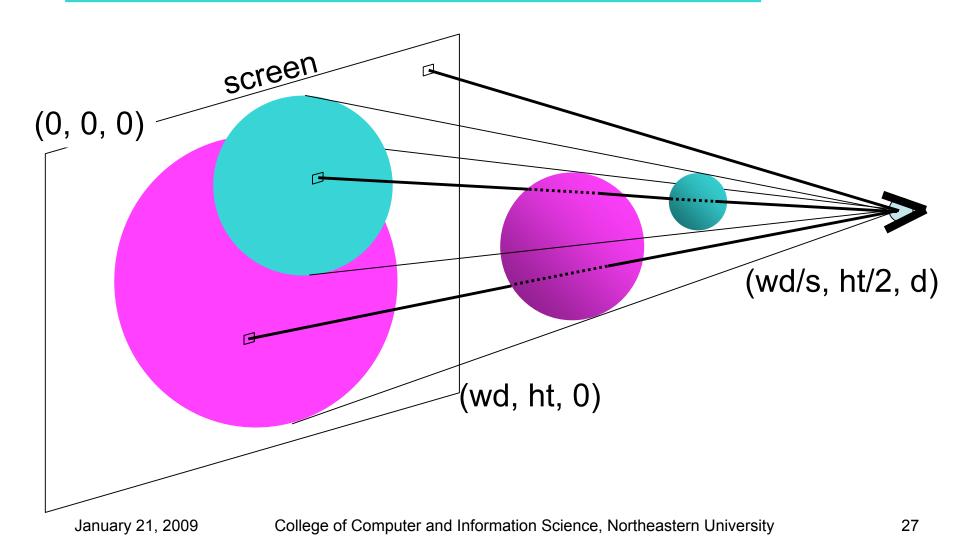
$$M_{p} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} nx \\ ny \\ nz + fz - fn \\ z \end{bmatrix}$$

Compute $M = M_o M_p M_v$.

For each line segment (a,b)

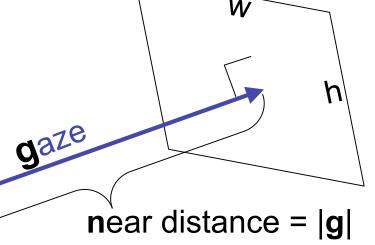
p = Ma, q = Mb, drawline(homogenize(p), homogenize(q)).

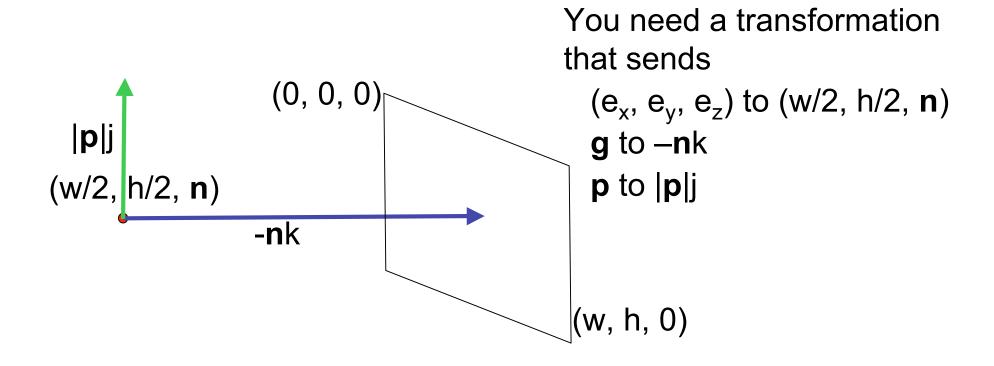
Viewing for Ray-Tracing Simplest Views



A Viewing System for Ray-Tracing

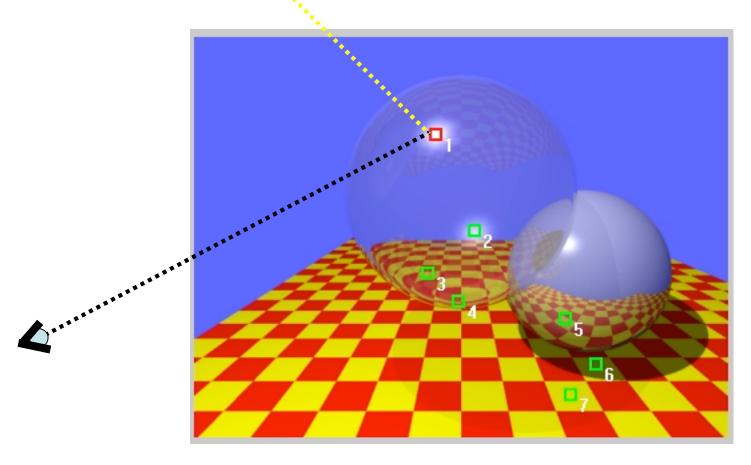
$$(e_x, e_y, e_z) = \mathbf{e}_y \mathbf{e}_z$$





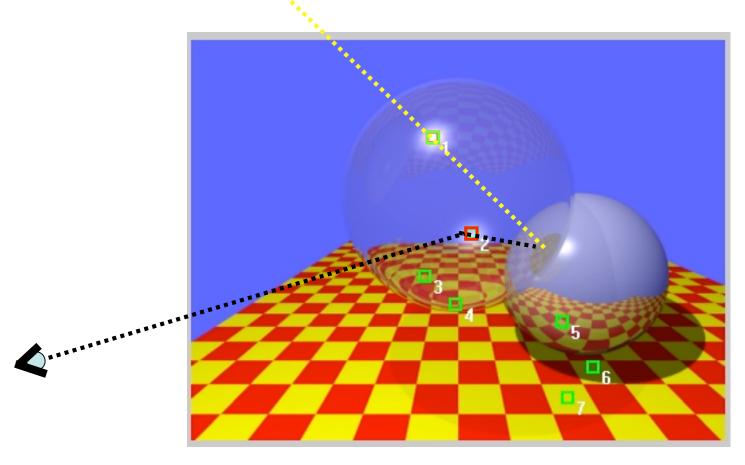
Time for a Break

Adventures of the 7 Rays - Watt



Specular Highlight on Outside of Shere

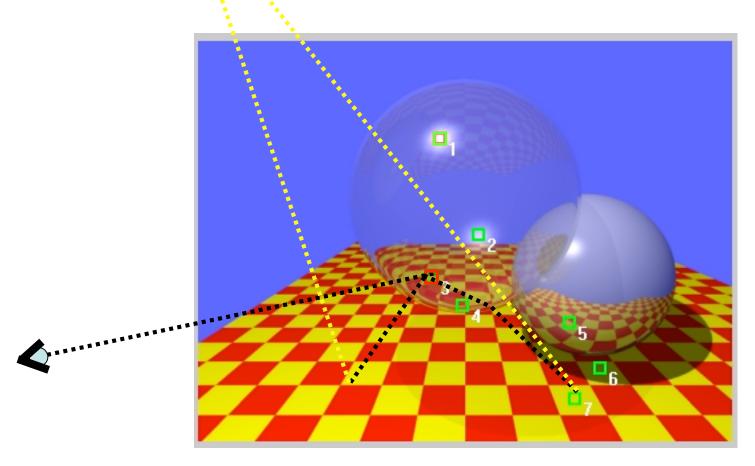
Adventures of the 7 Rays - Watt



Specular Highlight on Inside of Sphere

Recursive Ray Tracing

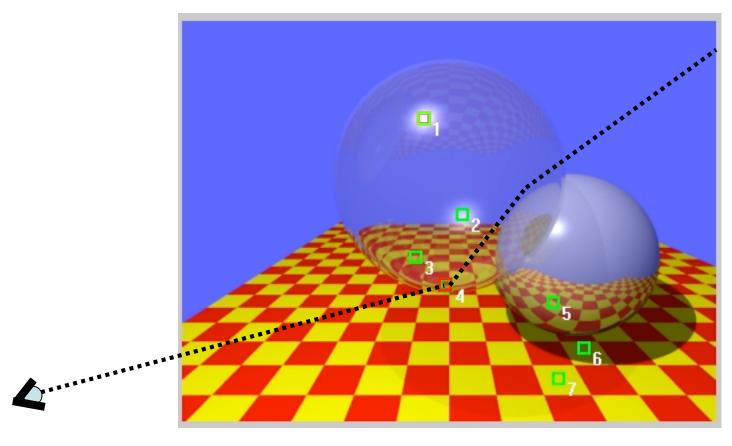
Adventures of the 7 Rays - Watt



Reflection and Refraction of Checkerboard

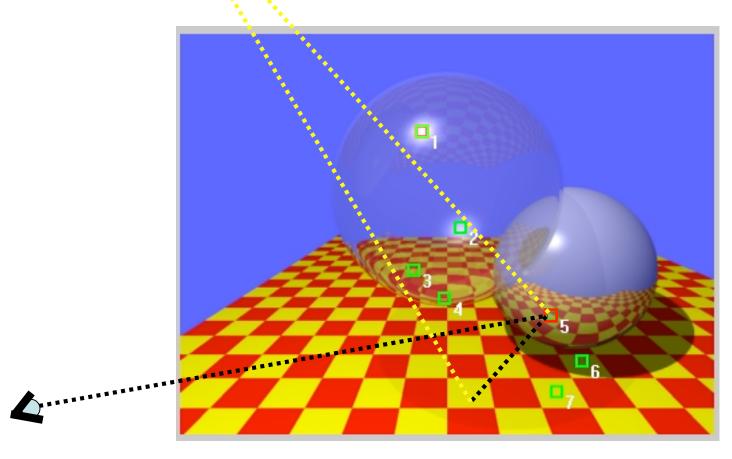
Recursive Ray Tracing

Adventures of the 7 Rays - Watt



Refraction Hitting Background

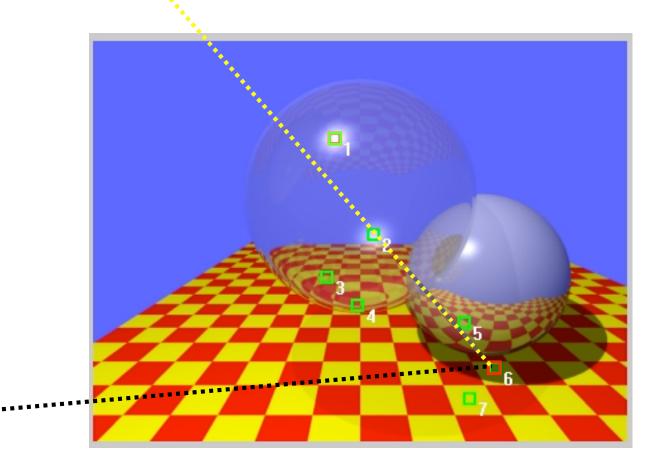
Adventures of the 7 Rays - Watt



Local Diffuse Plus Reflection from Checkerboard

Recursive Ray Tracing

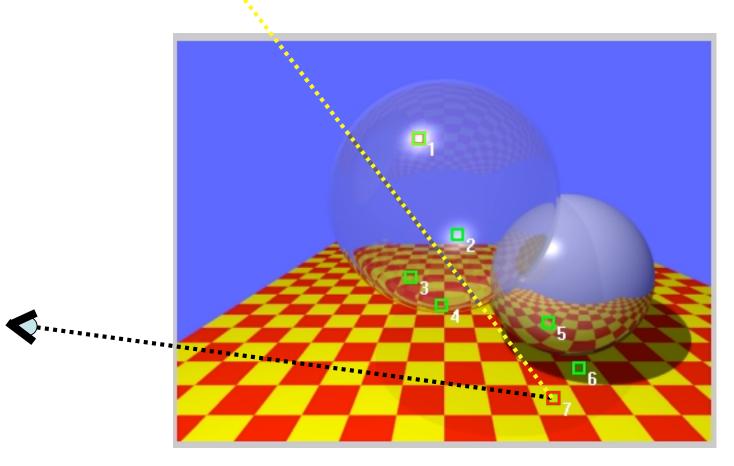
Adventures of the 7 Rays - Watt



Local Diffuse in Complete Shadow

Recursive Ray Tracing

Adventures of the 7 Rays - Watt



Local Diffuse in Shadow from Transparent Sphere

Recursive Ray-Tracing

- How do we know which rays to follow?
- How do we compute those rays?
- How do we organize code so we can follow all those different rays?

```
select center of projection(cp) and window on view plane;
for (each scan line in the image ) {
 for (each pixel in scan line ) {
   determine ray from the cp through the pixel;
   pixel = RT trace(ray, 1);}}
// intersect ray with objects; compute shade at closest intersection
// depth is current depth in ray tree
RT_color RT_trace (RT_ray ray; int depth){
 determine closest intersection of ray with an object;
 if (object hit) {
   compute normal at intersection;
   return RT shade (closest object hit, ray, intersection, normal,
                         depth);}
 else
   return BACKGROUND VALUE;
```

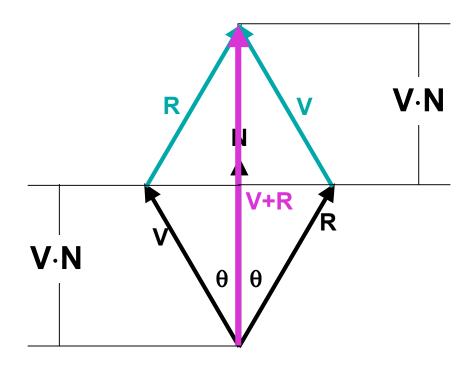
```
// Compute shade at point on object,
// tracing rays for shadows, reflection, refraction.
RT color RT shade (
 RT object object, // Object intersected
 RT_ray ray, // Incident ray
 RT point point, // Point of intersection to shade
 RT normal normal,// Normal at point
 int depth ) // Depth in ray tree
RT color color; // Color of ray
RT ray rRay, tRay, sRay;// Reflected, refracted, and shadow ray
 color = ambient term;
 for (each light) {
   sRay = ray from point to light;
   if ( dot product of normal and direction to light is positive ){
     compute how much light is blocked by opaque and
     transparent surfaces, and use to scale diffuse and specular
     terms before adding them to color;}}
```

```
if ( depth < maxDepth ) { // return if depth is too deep
   if (object is reflective) {
       rRay = ray in reflection direction from point;
       rColor = RT_trace(rRay, depth + 1);
       scale rColor by specular coefficient and add to color;
   if (object is transparent) {
       tRay = ray in refraction direction from point;
       if (total internal reflection does not occur) {
           tColor = RT trace(tRay, depth + 1);
           scale tColor by transmission coefficient
           and add to color;
return color; // Return the color of the ray
```


Computing R

$$V + R = (2 V \cdot N) N$$

$$\mathbf{R} = (2 \mathbf{V} \cdot \mathbf{N}) \mathbf{N} - \mathbf{V}$$

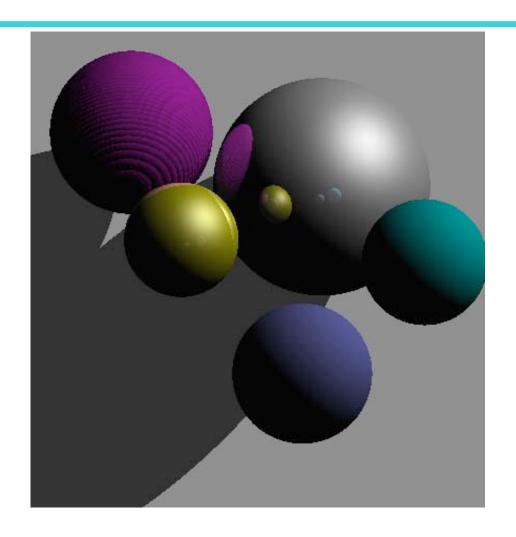


Reflections, no Highlight

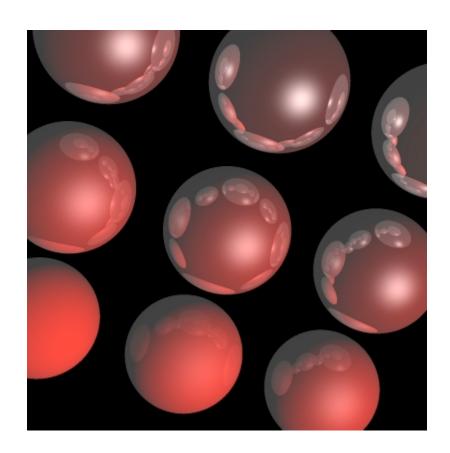
Second Order Reflection



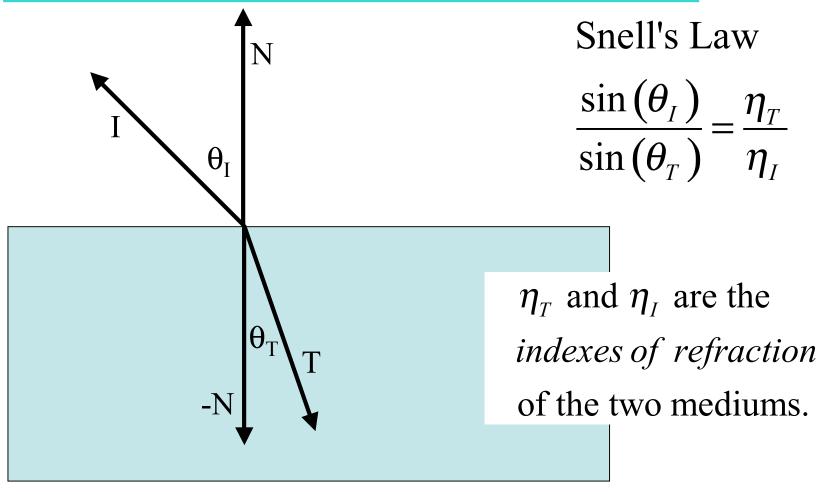
Refelction with Highlight



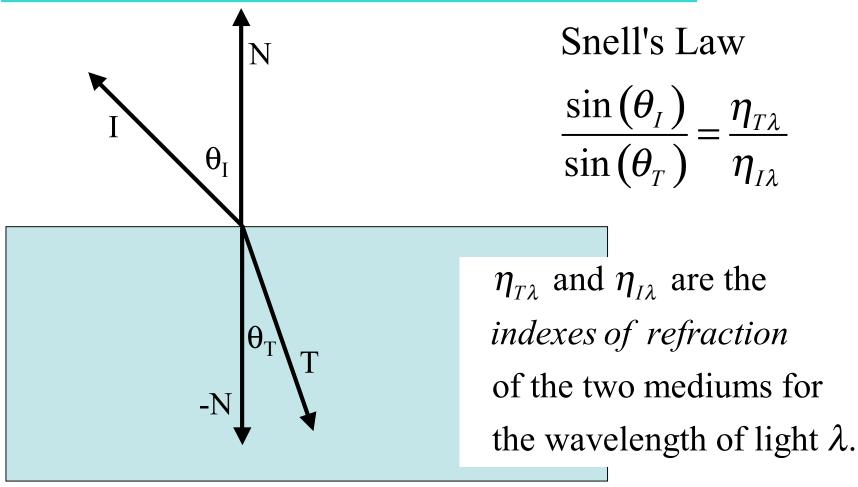
Nine Red Balls



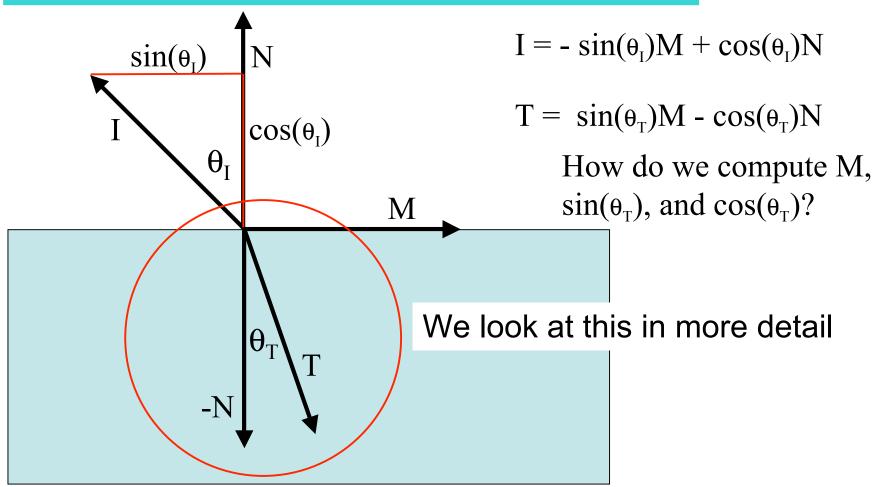
Refraction



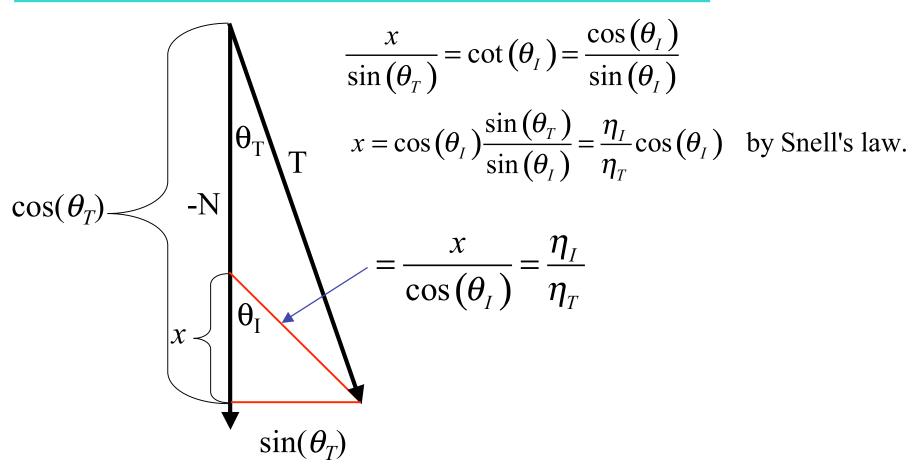
Refraction and Wavelength

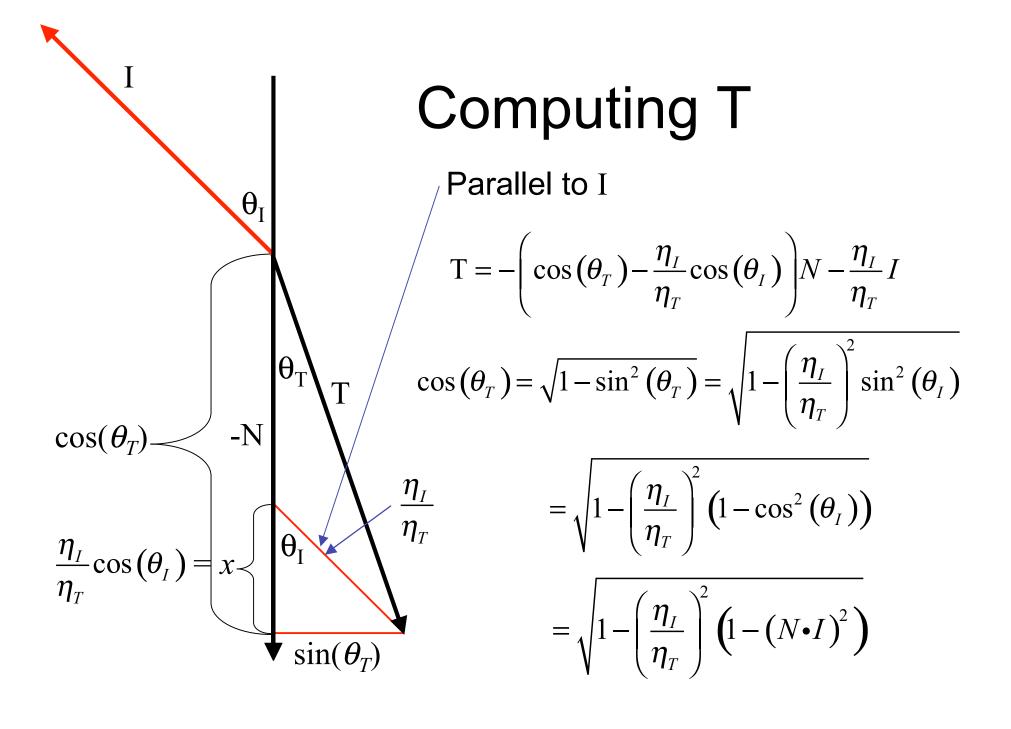


Computing T



Computing T





Total Internal Reflection

$$\cos(\theta_T) = \sqrt{1 - \left(\frac{\eta_I}{\eta_T}\right)^2 \left(1 - \left(N \cdot I\right)^2\right)}$$

When is $cos(\theta_T)$ defined?

When
$$1 - \left(\frac{\eta_I}{\eta_T}\right)^2 \left(1 - \left(N \cdot I\right)^2\right) \ge 0.$$

If $\eta_I > \eta_T$ and $N \cdot I$ is close to 0, $\cos(\theta_T)$ may not be defined.

Then there is no transmitting ray and we have

total internal reflection.

Index of Refraction

The speed of all electromagnetic radiation in vacuum is the same, approximately 3×108 meters per second, and is denoted by c. Therefore, if v is the <u>phase velocity</u> of radiation of a specific frequency in a specific material, the refractive index is given by

$$\eta = \frac{c}{v}$$

http://en.wikipedia.org/wiki/Refractive_index

Indices of Refraction

Material	η at λ=589.3 nm

vacuum 1 (exactly)

helium 1.000036

air at STP 1.0002926

water ice 1.31

liquid water (20°C) 1.333

ethanol 1.36

glycerine 1.4729

rock salt 1.516

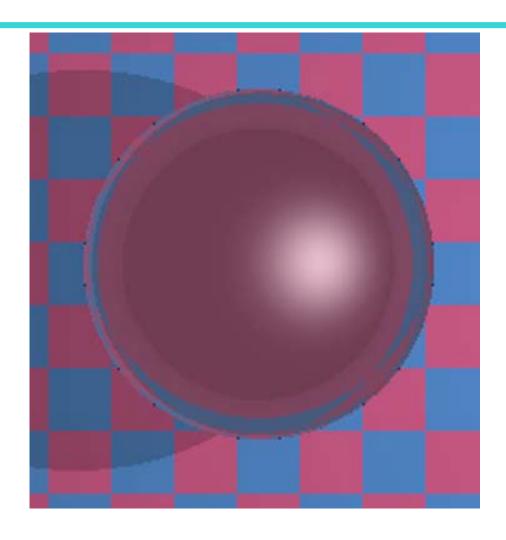
glass (typical) 1.5 to 1.9

cubic zirconia 2.15 to 2.18

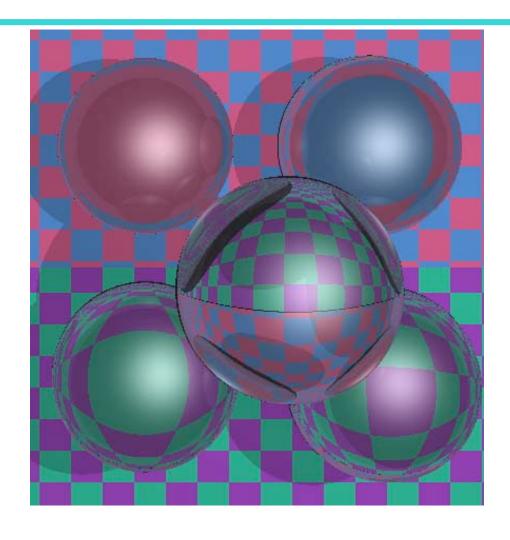
diamond 2.419

http://en.wikipedia.org/wiki/List of indices of refraction

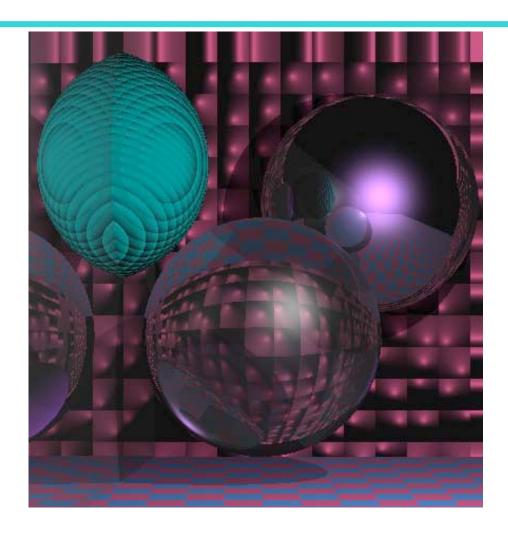
One Glass Sphere



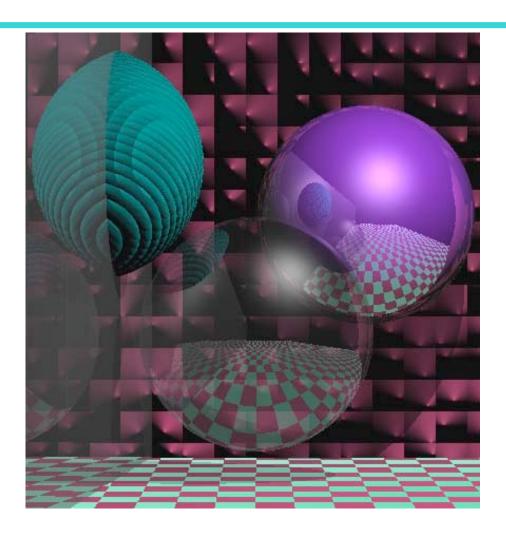
Five Glass Balls



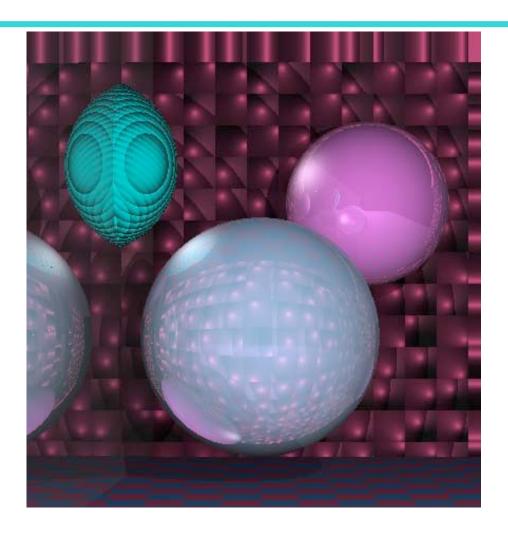
A Familiar Scene



Bubble



Milky Sphere



Lens - Carl Andrews 1999

himsen the day of parting be of gathering? shall it be said that m was in truth lawn? nd what shall I give unto him has left his has stopped th in midfurrow, or to him eavy-laden with gel of his winepress? ato them? fruit the heart become a fountain that I may fill their cups? Am I a harp that the hand of the thty may